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OVER FINITE DIMENSIONAL LINEAR ALGEBRAS 

DALIBOR KLUCKY, Olomouc 

(Received September 17, 1982) 

In this paper two special cases of a given commutative unitary ring A described 
below as well as an A-module M are considered. Our goal is to derive, for the both 
cases of A, necessary and sufficient conditions for M to be a free A-module. Specia­
lizing the obtained results in a suitable way we get a condition under which the mo­
dule M is a free module over a 1-generated finite dimensional linear algebra A over 
a given field F. 

1. In the first case, let us consider a commutative unitary ring A together with 
a finite system 

( 3 1 ? . . . , 3 m ) m = 2 

whose ideals have the following properties: 

(a) Vr, s e { 1 , . . . , m} , r # s : 3 r + 3 S = A , 

(b) 3 1 n . . . n 3 m = 0 . 

For an A-module M let us denote by ker 3 ; the annulator of 

3 ; , i.e. ker 3 , = {x e M\ V£ e 3,. : £x = 0} . 

Proposition 1. 

(1) M = ker 3X © . . . © ker 3 m . 

Proof. As (1) is trivial for m = 2, we will continue by induction supposing that 
m = 3 and that our assertion is true for m — 1. 

Let us put 3 = 3X n . . . n 3 m _ 1 . Since 

\2) o x + 3 m = A,..., 3OT_! + 3 m = A , 

then multiplying the left as well as the right hand sides of (2) we get 

3X . . . 3m_i + multiples of the ideal 3 m = A , 
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hence 3 + 3 m = A. Obviously 3 n 3 m = 0, so that 

(3) M = ker 3 © ker 3 m . 

The submodules ker 3 ; ker 3 l 5 . . . , ker 3 m _ 1 of M are also modules over A/3, 
moreover, ker 3 1 ? ..., ker 3 m _ 1 are submodules of ker 3 . Let 3*, . . . , 3 * _ 1 be the 
ideals of A/3 corresponding to the ideals 3 1 , . . . ,3 ,„_ 1 under the canonical epi-
morphism A -* A/3. So for the ring A/3 and the system of its ideals 

(-J l 9 . . . , ^ m _ i ) 

we have 

(a') Vr ,sG{1, . . . ,m - 1} , r * s : 3r* + 3* = A/3 , 

(b') 3 1 n . . . n 3 m _ 1 = 0 . 

Moreover, ker 3 * = ke r3 y for any je{l,..., m — 1}. Then, according to the 
induction hypothesis we conclude 

ker 3 = ker 3 j © ... © ker 3 m _ x 

and substituting this result into (3) we get (l). 

The existence of the decomposition (l) yields 

Theorem 1. The A-module M is a free A-module if and only if any of the - 4 / 3 -
modules of ker 3^ is a free A/3 ^-module and the dimensions dim ker 3y are the 
same. A/®J 

2. In the second case let us consider a commutative unitary local ring A together 
with its (unique) maximal ideal m. In addition let us suppose that m is a principal 
ideal AS and 9 is a nilpotent element of A of order, say, n. Then we have a descending 
chain of ideals 

A = i l D i 3 D A 3 2 D . . . D AW~l 3 ASn = 0 . 
Evidently: 

(a) Any non-zero element n e A may be uniquely expressed by 

r\ = eSr, 

where e is a unit of A and r is an integer, 0 _ r ^ n. 
(b) For any integer k, 0 _i k ^ n, we have: ker A9k = ASn~k. 

Now, let us investigate a given ^-module M possessing an element a such that 
Qn~1a =f= 0. Then the element & may be viewed as a nilpotent linear operator on M. 
In this way, we will use the notation im 9, ker 9 and similarly. Clearly im 9l g 
_i ker Sn~\ in particular 

(4) imS g k e r S " - 1 . 
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Theorem 2. The A-module M is a free A-module if and only if 

(5) im3 = kerS""1 . 

Proof. I. Let us assume that M is free over A. According to (4) it remains to prove 
the converse inclusion. Let the system U — (uA)AeA form an A-basis for M. Let 

x = Z Z>Mx 
XeA 

(almost all £A equal to zero) belong to ker i9n_1. Then 

Z {&•'%) "A = 9"-11 zxux = a- 1* = o, 
Ae/1 AeA 

so that for any 
X e A we have 3n~ ^ = 0 . 

According to (b*) £A e AS, hence x e im S. 
II. Let the identity (5) be true. The factor-modules M/im 5, imSjimd2, ... 

..., im #n~2/im i9n_1 as well as im i9n_1 = im 5n_1/im 3n are vector spaces over the 
field A/AS. 

Let us start with a system U = (u^)XeA, uk e M, forming an AJA9- — basis for M 
relatively (= modulo) im #. Let us investigate the system SU = (9wA). Obviously 
i9uA e im i9 for any Xe A. 

First, let us assume that 

Xa^jeimS2 

AeA 

for a certain system (^)Aey4 of elements of A whose almost all members equal zero. 
Then 

^ " _ 1 ( Z ^ « 0 = S " - 2 ! . ^ ) = 0 => Y . ^ e k e r S " - 1 , 
leA XeA XeA 

hence 
X £kuk e im 5 
AeA 

with respect to (5). From the definition of the system U we get £x e A9 for any 
X G A. This means that the system 9U is linear independent over A]A9 relatively 
to im 32. 

Further, let x e im #, then we may write x = 5y, j e M. This >> may be expressed 
as . 

y = Z ^ " A + 0 , 
Aeyt 

where (̂ AeAi -s a system of elements of A (for almost all A, rjx = 0) and i? e im 5. 
Hence 

* = Z 1^UA) + 9y> Sv e im 9 2 , 
AeA 
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which means that the system 9U generates im 3 over A/A9 relatively to im 3 2 . We 
may conclude: If the system U forms an A/A9-basis of M relatively to im 3, then 3U 
forms an A/A3-basis of im 3 relatively to im 3 2 . Continuing this proces we find that 
32U = {92ux)XeA forms an A/A3-basis for im 3 2 relatively to im 3 3 , . . . , 3"_1U = 
= {9n~1ux)UA forms an A/A3-basis for the vector space im 3" _ 1 . 

Let us consider again the system U and let us assume that for a system (ax)XeA of 
elements of A whose almost all members equal zero, the relation £ (xxux = 0 is true. 

keA 

Then a fortiori £ ocxux e im 3. By the definition of U, we get that for any k e A : ocx e 
keA 

e AS. Thus, we may write aA = 3/?A, Px e A (for any k e A). Hence 

. S'-nEft.";.) = I(S-%)«i = Z(9"-2«2)«, = 
Ae/i AeA Ae/l 

= 3"" 2 £ a;iW; = 0 => £ /?AwA e ker 3 " " 1 = im 3 . 
AeA keA 

Again, with respect to the definition of U we obtain px e AS => aA e A32. In a similar 
way we derive that a A e A 3 3 , . . . , a A e A 3 " = 0. Therefore the system U is linearly 
independent over A. 

Finally, let x e M. Then, by the above result, we have the following identities: 

(6) X = £ & < % + » ! , 
keA 

V1 = I ft1^"- + "2 , 
keA 

»2 = M 2 ) 9 V + "3 , 
Ae/1 

t>»-2 = z^r2)9""2«>l + t'n-i, 

»- i -Etf- 1^""V . . 
Ae/l 

where £(
A

0), £A
1},..., # " X ) e A and v,- e im 9J (j = 1, ..., n - 1). Summing the left as 

well as the right hand sides of (6), we obtain 

* = £( ~ tf^'K; 
keA 0^i^n-l 

thus the system U generates M over A. 

Altogether we have proved that U forms an ^4-basis for M. 

Remark . It follows from the just finished proof of Theorem 2 that if M is a free 
_4-module, then the vector spaces M/im 3, im 3/im 3 2 , . . . , im 3n_2/im 3"" 1 , im 3 " " 1 

have a common dimension over A/A3 and this dimension is the same as dim M. 
A 

3. E x a m p l e s : A. Let M be a vector space over a given field F and let £ be a linear 
operator on M. Let A be the linear algebra generated over F by e. Suppose that there 
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exists a non-zero polynomial g e F[X] such that g(e) = 0. Such a polynomial exists 
always if M has a finite dimension over F. Then there exists a minimal polynomial, 
say f, of e over F. Let 

/(*)=jr (*).../;-'(*) 
be the canonical decomposition of f(X) over F into the irreducible factors. Now, we 

may regard M as an A-module. Combining both Theorems 1 and 2 we state that M 

is a free A-module if and only if 

(i) Any the submodules kerfp(e) is a free AJAfJJ(e)-module (j e {1, ..., m}); 

(ii) the dimensions dimkerfp(e) over AJA f]j(e) are the same; 

(iii) Vj G {1, . . . , m) :fj(e) kerf^(e) = kerf)'" l(e). 

B. Let again M be a vector space over a given field F. Let us assume that M has 
a countable F-basis 

(wi, u2, ...). 

Then there exists a unique endomorphism 9 on M for which Su1 = 0 and for any 
natural « : Su2n = u2* + i> #M2,.+ i = 0. Let A be the linear algebra generated over F 
by i9. Then A is the localning with the maximal ideal AS. By Theorem 2, M is not 
a free A-module, as ker $ = im 9 -f Auj. 

Nonetheless, if we replace the operator 3 by another one with the properties 
$u2n-i = u2v §u2n = 0 f° r a n y natural H, then ker $ = im # and M is a free 
A-module. 
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