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ČASOPIS PRO PĚSTOVÁNÍ MATEMATIKY 
Vydává Mattmatickf ústav ČSAV, Praha 

SVAZEK 1 0 6 * PRAHA 23.11.1981 * ČÍSLO 4 

GRAM-SCHMIDT'S ORTHOGONALIZATION BASED ON THE CONCEPT 
OF GENERALIZED ORTHOGONALITY 

JAN HAVRDA, Praha 

(Received Juny 30, 1977) 

1. Introduction. The lattice of all closed subspace of a (complex) Hilbert space H 
is introduced via the orthogonality relation _L in H. The relation is given by the scalar 
product — we have x 1 y iff <x, y} = 0. If we put x ± y iff Re <x, >'> ^ 0 and follow 
the very procedure of the example we began with, we obtain the lattice of all closed 
convex cones with the vertices at the origin (see [4]). Of course, we can analogously 
produce many other examples in accordance with the choice of the definition of the 
orthogonality relation in H. It seems therefore useful to adopt the. axiomatic approach, 
that is, to start with an orthogonality relation on a set, introduce the lattice "of all 
closed subspaces" and investigate the question of how many properties of "concrete" 
examples are still preserved in general. We have started the effort along this line in 
the paper [4]. The present paper carries on the investigations of [4] by introducing 
and discussing some new phenomenae. It should be mentioned that there has been 
a few papers published with the similar intention to generalize the notion of ortho­
gonality — the motivations coming mostly from quantum physics. We may refer 
the reader e.g. to [1] —[5]. 

Let us recall that we call a relation ± c Q x Q an orthogonality relation if 1. 
JL is symetric, 2. there is a distinguished element o such that {̂ } x Q c JL and the 
intersection of i. with the diagonal is exactly (^, #). The presence of an orthogonality 
relation on the set Q gives rise to a complete lattice £f of all subsets A of Q satisfying 
A = (A1)1 (see [4]). The present note brings the analog of the standard Gram-
Schmidt orthogonalization in the lattice 5 .̂ Obviously, the technique used in the 
procedure is entirely lattice theoretic. We obtain a result on the orthogonalization 
of arbitrary many independent elements, generalizing thus the result of the paper [5]. 

2. Throughout the whole paper, Q denotes a given set endowed with an ortho­
gonality relation J_. The induced complete lattice £f = (S, c , Qy 1) with the cor­
responding orthogonality is an orthomodular lattice satisfying axioms A and V 
(see [4] for the definitions). 
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2.1. Lemma. If AeS, y e Q, y £ A, then there exists an element xeQ, x _L A, 
such that A v {y}11 = A v {x}11. 

Proof. Clearly A 4= Q follows from y $ A; hence A1 4= {#}. If y e A1 we put 
x = y, and the lemma is evidently valid. Suppose now that y $ A1. We have 
{y}11 <£ A, {y}11 4- A1, and according to Corollary 2.9 in [4], the elements 
({y}11 v A1) n A and ({y}11 v A) n A1 are atoms in Sf. There exists an element 
x e ({y}11 v A) n Al1, x 4= ̂  such that x 1 A. We now have {x}11 = ({y}11 v A) n 
n A1 as a consequence of Theorem 3.8 in [4]. Since A c A v {y}11 and the lattice Sf 
is orthomodular, we get A v {y}11 = A- v [A1 n (A v {y}11)] = i v {x}11, 
which completes the proof. 

2.2. Remark. The atom {x}11 from Lemma 2.1 is uniquely determined. Indeed, 
suppose A v {y}11 = A v {x}11 = A v Al9 where Ax c A1 is an atom in Sf. 
According to 4) of Theorem 2.1 in [4], we have {x}11 = (A v {x}11) n A1 = 
= (A v Aj) n A1 = Ax. Thus {x}11 = Ai. 

2.3. Lemma. Suppose the lattice Sf = (S, c,-Q, 1) satisfies axiom A. If the 
statement of Lemma 2.1 is true then Sf is an orthomodular lattice satisfying 
axiom V. 

Proof. We shall first prove that the lattice Sf is orthomodular. To do this, let us 
consider two sets, A, Be S such that A c B, A1 n B = {#}. We claim that A = B, 
thus Sf is an orthomodular lattice in accordance with the statement 3) of Theorem 
2A in [4], Suppose A 4= B. Then there exists an element y e B, y $ A. By the assump­
tion, there is x e Q, x e A1 such that A v {y}11 = A v {x}11. Since A v {y}11 cz 
c B, we obtain A v {x}11 c B. Then x e B and, remembering that x e A1, x e 
e A1 n B = {^}, we have A v {y}11 = A. Hence ye A — a contradiction. 

We shall now prove that the lattice Sf satisfies the axiom V. Let us assume that 
AeS, {̂ } 4= A 4= Q, y e Q, y $ A, y $ A1. By the assumption, there exist elements 
a, b e Q, a 1 A, b 1 Al1 such that A v {y}11 = A v {a}11, A1 v { j} 1 1 = .41 v 
v {b}11. Since ae A1 and b e A, we have {a}11 c: AL1, {b}11 c A. Thus, we obtain 

(A v {y}11) nA1 = (Av {a}11) n A1 = {a}11, 

(A1 v {y}11) nA = (A1 v {b}11) n ^ = {b}11 

as a consequence of the statement 4) of Theorem 2.1 in [4]. By the assumption, the 
elements {a}11 and {b}11 are atoms in Sf, therefore Sf is a F-lattice in accordance 
with Corollary 2.9 in [4]. Hence the lattice Sf satisfies axiom V. The lemma is proved. 

2.4. Lemma. Let A( e S, iel, be atoms such that At 1 Aj for all i,jeL i 4= j . 
Let Be S be an atom such that 

B e V At and, moreover, B <t V At holds for some j el. 
iel ' e l 

i*j 
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Then 
B v V At = V A, 

iel iel 
i*j 

Proof. It follows from the assumption that 

B vy Aidy At. 
iel iel 

i * 1 

Furthermore, we have 

(V At) n (B v V A^ = (V At) n (V Atf n B 1 . 
ieJ »eJ iel iel 

i*j t*J 

The right hand side of this identity, however, is equal to Aj n B1 according to the 
statement 4) of Theorem 2.1 in [4], We shall now show that Aj n B1 = {̂ }. Sup­
pose, on the contrary, that Aj c B1, that is, B c A1. Then we have by the assump­
tions of the lemma and the statement 4) of Theorem 2.1 in [4] that 

B = B n Aj c ( y Ai) n Aj = V At, 
ieJ ieJ 

contrary to the hypothesis. Summarizing, we have 

(VAt)n(B v V - 4 , ) 1 - W -
ieJ ieJ 

Finally, it follows from the statement 3) of Theorem 2.1 in [4] that 

B v V -4, = V 4, , 
ieJ ieJ 

which completes the proof. 

2.5. Definition. Let ^ be a nonempty subset of Q such that A 4= {.*}. We call the 
set Al independent if and only if the relation 

** v W11 

yeЛ-{x) 

is satisfied for all xe A. 

2.6. Remark. Since (U A^1 = f) Af holds for all 0 =f= A, c O, i e i, it is also true 
iel iel 

that ( U A^11 = V Af1. Hence the identity 
ieJ iel 

V (3'}11 = ( U W) 1 1 = (A - {*})--
yeA-{x} ye4-{x} 

is valid. 
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2.7. Definition. Let A be a nonvoid subset of Q such that A 4= {#}. We say that the 
set A is l-independent if and only if B 1 1 4= .4 1 1 for every subset B <=. A, 0 =t= B 4= A. 

2.8. Lemma.* Let a set A satisfy the conditions of the preceding definition. Then 
the set A is independent if and only if it is an l-independent set. 

Proof. Let A be an independent set. Assume that A is not an /-independent set. 
Then there is a nonempty proper subset B of A such that B 1 1 = A11. Since there 
exists x € A, x $ B, we have B c A — {x} cz A, hence B11 c (A — {x})11 <-= A11. 
Relations B 1 1 = A11 and A c A11 imply x e A cz A11 = (A - {x})11. Thus the 
set A is not independent, contrary to the hypothesis. 

Conversely, let A be an /-independent set. Choose B = A — {x}, where x e A . 
Suppose B is a nonempty set. Then (A — {x})11 §= A11 and {̂ } 4= (A — {x}1 n 
n A11 = (A - {x})1 n [(A - {x})u {x}]1 1 = (A - {x})1 n [(A - {x})11 v {x}11] 
by 3) of Theorem 2.\ in [4] and Remark 2.6. Suppose A is not an independent set. 
There exists an element x e A such that x e (A — {x})11, hence {x} 1 1 cz (A — {x})11. 
It follows that {>} 4- (A - {x})1 n [(A - {x})11 v {x}11] = (A - {x})1 n 
n (A — {x})11 = {#}, which is an evident contradiction. This completes the proof of 
our assertion. 

2.9. Lemma. If a set A is independent, then #$ A. Furthermore, if 0 4= B a A 
then B is also an independent set. 

Proof is obvious. 

2.10. Theorem. Let A a Q be an independent set and let B a nonempty subset 
of A. Suppose there is an injective mapping fB:B -> Q — {^} such that the fol­
lowing two conditions are satisfied: 

ax) if x,yeB, x 4= y, then fB(x) ±fB(y); 

bi) V W 1 1 = V {fat*)}11. 
xeB xeB 

Then the mapping fB can be extended over the entire set A in such a way that the 
extended mapping fA (fA : A -> Q — {^}, fB(x) = f4Vx) for all x e B) satisfies the 
conditions: 

a2) if x, y e A, x 4= y then fjx) ±fA(y); 

b2) v w i x = v w r . 
xeA xeA 

Proof. Denote by F the family of all extensionsfc of the mapping fB (B c C a A) 
having the following properties: 

a3) if x, y e C, x 4= y then fc(x) l f c (y ) ; 

b3) V{x}11=V{fc(x)}1\ 
xeC xeC 
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Since fB e F, the family F is nonempty. Now we define a relation " S" on F x F 
as follows: fD ^ fE if D cz E and fD(x) = f£(x) for all x e D. It can be easily verified 
that the relation = is an ordering on F. For @ # 0, let us consider a chain {fD}i)6̂  
in the ordered set (F; ^ ) . Putting E = U D, we have clearly B cz E cz A. According 

to Lemma 2.9, the set E is independent. If x e E then there exists Dt e @ such that 
x e Dx. Define f£(x) = fDl(

x) f° r such x's. It is to be noticed that the preceding 
definition is correct. For, if x2e D2e @, then either D1 cz D2 or D2 cz Du hence 
fDi(x) = fD2(x). If x, y e E, x 4= y, then there exist D', D" e 9 such that x e £>', 
j e £>". We may assume that £)' c D", therefore x e D". We obtain f£(x) = fD»(x) -1 
--•/©"(y) = /£(y)- The mapping fE:E-+Q — {#} is injective and it satisfies a3), 
where C = E. Moreover, we shall prove that the mapping fE satisfies b3), where, 
again, C = E. We have 

v W 1 1 = v{fDW}11 = v{f£(x)}11 

xeD DeD xeD 

for all De$). Hence we obtain the equality 

(*) v v w u = v vw*)}11. 
De2 xeD De@ xeD 

According to the definition of the supremum, we have V V {x}11 c V {x}11. 
De9 xeD xeE 

For every xeE there is a Dx e 3f such that xe Dx a»nd hence V W n c V V {X}1L 

xeE De& xeD 

Similarly, we can prove that V {/EO*)}11 = V V {/£(x)}xl- In comparison with 
xeE DeB xeD 

(*), we see that the condition b3) is satisfied. 
The mapping fE is the extension of the mapping fB. Hence f£ e F. We have proved 

that the mapping f£ is the upper bound of the chain {fD}De® in the ordered set 
(F; ^ ) . By Zorn's lemma, the ordered set (F; g ) has maximal elements and, for 
every mapping fc e F, fc ^ fc> where fc, is a maximal element in the set (F; ^ ) . 

We shall prove that the domain in the definition of a maximal element f c , is the 
entire set A. Assume that ye A andfc,(j>) is not defined. Hence y $ C. Since C cz A 
then C is an independent set by Lemma 2.9. Hence we have 

y4V{x}11 = V{U(x)}11. 
xeC xeC 

According to Lemma 2.1, there is an element y' e Q — {#} such that y' L V {x}11 = 
= V {/cC*)}11 so that *eC' 

xeC 

W 1 1 v V {x}11 = {y'}11 v V {x}11 = {У}1 1 v V {fc-tø} 
xєC xєC xєC 

1 1 

Thus, we putfc,u{y}(}>) = y' andfC/u{y}(x) = fc<(x) for all x e C. It follows therefore 
that the mapping fa is not a maximal element in the ordered set (F; ^ ) . This com­
pletes the proof. 
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2.11. Theorem. Let 0 =t= A c Q and let A be an independent set. Let aeQ, 
a 4= #, a ± A. Then A u {a} is also an independent set. 

Proof. Since a ± A, it follows that a JL x for all x e A which means a e {x}1 

for all xe A. Hence a e f| {x}1. Using first the statement 2) of Theorem 3.3 in [4], 
xeA 

we have f] {x}1 = ( V {x}11)1 and, *n y i e w of a 4= ̂ , we have a £ V {x}11-
xeA xeA xeA 

If the set A is a singleton, the assertion of Theorem 2.11 is clear. Thus, we shall 
assume that the set A contains at least two points. Let ze A. According to Lemma 
2.9, the set A — {z} is also independent. According to Theorem 2.10, there is a map­
ping fA-{z) : A - {z} -> Q - {*} such that f4_{z}(x) ±f4-{r}(y) for all x, y e A -
— {z}, x =f= j> and therefore V {x}11 = V {/A-{*>(*)}11- (We may choose 

xeA - {z} xeA — {z} 

an arbitrary one-point subset of the set A — {z} as the set £ of Theorem 2.10 and the 
set A — {z} as the set A of Theorem 2.10.) Again, according to Theorem 2.10, the 
mapping fA-{z) can be extended over the entire set A and we may denote the extension 
by fA. It is true that fA(x) ±fA(y) for all x, y e A, x 4= y and therefore V {x}11 = 

-via*)}11. 
xeA 

It follows that 
V {/.(x)}11 = (V{/ . (x )} - )n{ / , ( 2 )}^ 

XeA - {z} X€ A 

in accordance with the statement 4) of Theorem 2.1 in [4]. Hence we have 

{a}^v V {x}11 =- {a}11 v V W - ) } n - { - } u v 
xev4-{z} JCS.4-{Z} 

v [(V W*)} 1 1 ) n {/#)}-] c= [{a}11 v V {/.W}11] n [{a} 1 1 1 f / ^ )} - ] . 
xeA xeA 

Since a 1 A, it is true that a 1 V {x}11 = V {/.(*)}X1 as well as {a}11 c {/.(-)}11. 
XeA XeA 

Hence we have 

(..) {«}--v V ( ^ c ^ v V W ^ H n W z ) } 1 . 
xeA-{z) xeA 

To complete the proof, we assume that z e {a}11 v V {x}11. In view of (**), 
xeA-{z) 

it follows that z 6 {fj^)}1, which is the same as z JL/^z). According to the statement 
4) of Theorem 2.1 in [4], we have 

z e {-}-- = (V {x}11) n {z}11 = (V {A(x)}11) n {*}-- <= 
xeA xeA 

< = ( v W x » > W f - v "{/.iW}11- v {x}11 

xeA xeA - {z} xeA - {z} 

a contradiction. Hence z §§ {a}11 v V {x}11 an (i tWs completes the proof. 
xeA-{z} 
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2.12. Theorem. There are maximal independent sets A c Q with respect to the 
set inclusion. It is true for such an A that 

V{x} lx = O. 
xeA 

Proof. Let J / =# 0 and let {Aa}aej^ be a chain (with respect to the set inclusion) 
of independent sets Aa <= Q, a e s#. Let us put A = (J Aa. We shall show that A is 

aesf 

an independent set as well. Suppose y e A. There is /? e s£ such that y e Afi. The 
set A^ — {y} is independent by Lemma 2.9. In accordance with Theorem 2.10, there 
is a mapping fAfi-{y} : Ap - {y} -+Q - {#} such that fAp-{y}(u) ±-fAp-{y}(v) for all 
u,veAfi — {y}, u #= v, and V {x}11 == V {/A^-mM}11- Let us choose an 

xeA/r - {?} xeA / j - 0>} 

arbitrary element s e A — {y} = \J Aa — {y} = \J (Aa — {y}). There is yes/ 
aesf aesf 

such that seAy - {>>}. If A, - {y} <= Ap - {y} we put fA-{y}(s) = fAfi.{y)(s). If 
Afi — {>>} <= A. — {y} then, in accordance with Theorem 2.10, we extend the 
mapping fAp-{y} to the mapping fAy-{y) and then putf4_{y}(s) fAy-{y}(s). It can be 
shown in a similar way as in the proof of Theorem 2.10 that 

V {*}- А -V V { * Г = ^ V {.ГА-М)1Х= V {/А-{у)(х)} 
хвА — {у} аел/ хеАя—{у) аез4 хеАас~{у) хеА — {у} 

1 1 

According to Theorem 2.10, we define further fA~{y)(y) and we write fA for the new 
extended mapping. By the assertion 4) of Theorem 2.1 in [4], we have 

v «1X= v {/M^fvi/ifVlAW}1. 
x e A — {y) xeA — {y} xeA 

If ye V {x}11 :hen y e {fi(y)}1. On the other hand, 
xeA-{y) 

y* v {*r= v wr^vw^n^/M1-
xeAp-{y) xeAp-{y) xeAp 

It follows that y £ V {/AM}11 = V {x}11, contrary to y e Ap. Hence y $ V {x}11 

xeA xeA / j x e A - { y } 

We have shown that A is an independent set and it is the upper bound of the chain 
{Aa}aes/. According to Zorn's Lemma, there are maximal independent sets B c Q 
and, for every independent set C, it is true that C c £, where B is a maximal in­
dependent set. 

If B c Q, B is maximal independent set, then V {x}11 = &. Indeed, if this is not 
zeB 

the case then, according to the statement 3) of Theorem 2.1 in [4] and the statement 
2) of Theorem 3.3 in [4], it follows that 0 {x}1 n Q 4= {<?}. Then there is y e Q9 

xeB 

y 4= <?, such that y e {x}1, i.e. y 1 x for all x e B. By Theorem 2.11, the set B u {y} 
is independent as well and hence the set B is not maximal, contrary to the hypothesis. 
The theorem is proved. 
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3. Let card A stand for the cardinality of a set A. Theorem 2.12 suggests the ques­
tion: Is it true for every two maximal independent sets A, B that card A = card B? 
We shall deal with the problem in this section. 

3.1. Theorem. Let m be a positive integer, 2 = m ^ card/. Let Al9..., Am be 
pairwise orthogonal atoms, let Bj9 jel, be pairwise orthogonal atoms as well and 

m 

let V -4* = V Bj. Then m = card I. 
i=-l jel 

Proof. We shall prove the statement of this lemma by induction. Let us suppose 
m = 2. By the hypothesis, it is true that A1 v A2 = V Bj. If, for instance, Bk = Al9 

jel 

k e I, then, according to the statement of Theorem 2.1 in [4], we get 

A2 = (A, v A2) n At = ( V Bj) n B$ = V B} . 
jel jel 

Since 
A2 = V Bj => Bj 

jel 
j*k 

for j e i , j 4= fc, we have A2 = By, j el, j + fc. Since the atoms Bj9 j el, j 4= k, are 
pairwise orthogonal, it follows that card/ = 2. Let us now suppose At 4= Bk4- A2. 
Since i4x v .42 *= V Bj =-> B*, Theorem 2.7 in [4] implies that there is an atom 

BeS, B 1 Bk9 such that At v A2 = Bk v B. It follows that 

Bk v V B, = Bk v B . 
IeJ 
1*k 

According to the statement 4) of Theorem 2.1 in [4], we get 

V Bj = ( V -Bj) n Bk
x = ( B k v B ) n i i J = i i . 

jel jel 
j*k 

It follows as well that card/ = 2. Theorem 3.1 is proved for m = 2. 

Let us suppose that the statement of Theorem 3.1 is true for positive integers 
2, 3,..., m - 1. We shall prove it for the positive integer m. Suppose 

At v ... v Am = V Bj, m g card / . 
jel 

Let us first suppose that Bka Ax v ... v -4m_1, fce/. We shall prove that there 
are pairwise orthogonal atoms B 2 , . . . , Bw_ l 9 each of them orthogonal to Bk9 such 
that Bkv B2 v ... v Bm_! = Ax v ... v .4m_r. If m - 1 = 2 the statement is 
true by Theorem 2.7 in [4]. Let the statement be true for the positive integers 2, 3 , . . . 
..., m — 2; we shall prove it for m - 1. If, for instance, Bh c At v ... v -4m_2, 
then by the induction hypothesis, there are pairwise orthogonal atoms B 2 , . . . , Bm_2, 
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each of them orthogonal to Bk, such that Bk v B'2 v . . . v B'm_2 = At v ... v ^4m_2. 
WeputBm_i = ^4m_i. It is obvious that Bk v B'2 v ... v Bm_! = At v ... v -4m~i, 
where the atom B'm_l is orthogonal to the atoms Bk, B2,..., B'm_2. Let now 

m - l 

Bkt V-4 I ? 7 = 1 .2 , . . . ,m- 1. 
i = l 
i*I 

We evidently have {̂ } 4= Bfe 4= Q. It holds that Af £ Bfe for i = 1, 2,. . . , m - 1 
and, by the proof of Lemma 2.4, it is true that Ax £ Bk. According to Definition 5 
in [4], there is an atom Ct c Bk such that At c Bk v C,. It is evident that At <£ C,. 
According to Lemma 2.4, we get 

At v Bk = Bkv Ci = At v Ci9 i = 1, 2, ..., m - 1 . 

Hence 
m - l m - l 

Bk - V .4, = f?* v V C,, j = 1, 2,.. . , m - 1 . 
i = l i = l 
ІФУ І * J 

Again by Lemma 2.4, 

V .4, = Bk v V .4, = Bk v V c,, j = 1, 2,..., m - 1 . 
i = l i = l i = l 

i*j i*J 

If the atoms Ch i = 1,..., m — 1, i 4= j, are pairwise orthogonal, the statement is 
evident. If this is not the ease we apply the generalized Gram-Schmidt orthogonaliza-
tion to the atoms Cf, i = 1, 2,..., m — 1, i 4= I. Let us suppose here that, for in­
stance, j = 1. We put B'2 = C2. Let C3 4= C2. If C3 c C_ we put B3 = C3. If C3 4: 
4: C2 then, in accordance with Corollary 2.9 in [4], B'3 = (C2 v C3) n C2 is an 
atom. In accordance with the statement 2) of Theorem 2.1 in [4], C2 a C2 v C3 

satisfies C2 v C3 = C2 v [C2 n (C2 v C3] = B'2 v B3. Suppose the atoms 
B2,B'3,..., Bm_2 have already been obtained and let C2 v ... v Cm_2 = B'2 v ... 
... v B'm_2. Let Cm_i * C2 v ... v Cm_2. If Cm.t cz (C2 v ... v Cm.2f we 
put Bm_i = Cm_i. If, moreover, Cm_i 4: (C2 v ... v Cm-2) 1- then in accordance 
with Corollary 2.9 in [4], B'm_x = (C2 v ... v Cm_2 v Cm_i) n (C2 v ... 
... v Cm_2)

L is an atom. Since C2 v ... v Cm_2 c C2 v ... v Cm_2 v Cm_v 

we have according to the statement 2) of Theorem 2.1 in [4] that C2 v ... v Cm_2 v 
v Cm_i = (C2 v ... v Cm_2) v [(C2 v ... v Cm,2f n{C2 v ... v Cm_2 v 
v Cm_!)] = B_ v ... v Bm_2 v Bm_i. If it holds, for instance, that Cm_i c 
c C2 v ... v Cm_2, then ^ y ... v /lm_i = Bk v C2 v ... v Cm_2 = Bk v 
v B2 v ... v Bm_2. Then the induction hypothesis shows that m — 1 = m — 2 
(here the positive integers m — 2 and m — 1 play the role of m and card J, respec­
tively) — a contradiction. Thus, we have proved the partial statement on the existence 
of atoms B2,..., Bm_!. We have At v ... v Am_t = Bk v B'2 v ... v B'm^u 

which implies that At v ... v Am = Bk v B'2 v ... v Bm_i v Bm, where Bm = Am, 
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and this atom is orthogonal to the atoms Bk, B'2,..., B'm_1. Since, however, Ax v .. . 
. . . v Am = V Bj we have Bk v B'2 v ... v B'm = V Bj as well. By the statement 

jel jel 

4) of Theorem^. 1 in [4], the last equality implies 

B'2 v .. . v B'm = (Bk v B'2 v ... v B'm)nBi = (VBj)nBi = VBj. 
jel jel 

j*k 

By the induction assumption, we get m — 1 = card I — 1 and therefore m = 
= card / . 

Let now 
m 

Bk $ V ^ i , P = 1,. . . , m . 
i = l 
i * p 

Similarly as before, we prove that there are pairwise orthogonal atoms B'2,..., B'm, 
which are orthogonal to the atom Bk, such that Bk v B'2 v .. . B'm = Ax v ... v AOT. 
Thus, we obtain Bk v B2 v .. . v B'm = V -By which, as above, implies 

B'2 v ... vB'm=VBj. 
jel 

j*k 

Hence, by the induction hypothesis, we have m = card I and the proof is complete. 

3.2. Corollary. Let AfeS, i — 1,2,..., n, be pairwise orthogonal atoms. Let 
n 

B^eS be an atom such that Bl cz V A{. Then there are pairwise orthogonal 
i = l 

atoms B2,..., Bn such that 

VBj = V At. 
y = i i = i 

3.3. Remark. Let A, B be two maximal independent sets, card A = m. In ac­
cordance with Theorem 2.12, it holds that 

V{x}-- = Q = V W l i . 
xeA yeB 

By Theorem 2.10 there are mappings fA : A -» Q — {#}, fB : B -• Q — {&} such 
that 

V {/xW}11 = V {fB(y)}11 

xeA yeB 

and for xl9 x2 e A, xx 4= x2, the sets {f^Xi)}11, {fi(^2)}1J" a r e Pa-rwise orthogonal 
atoms. A similar assertion holds for the mapping fB. By Theorem 3.1, it holds that 
card B = m = card A. Thus, if one maximal independent set is finite, every maximal 
independent set is finite and they all have the same cardinality. Hence we obtain 
that if one maximal independent set is infinite, every maximal independent set is 
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infinite. The problem whether, in this case, they have the same cardinality or not 
remains open. A partial solution of this problem follows. 

3.4. Lemma. Let A, B c Q be orthogonal sets {this means that x JL y for all 
different x, y e A, similarly for the set B), & $ A, #$ B. Let A be a finite set, for 
instance A = {av a2, ..., an}. Then card {B n A11) — card A = n. 

Proof. If bl9 b2, ..., ftM + i e B n A11, where bt 1 bj for i =# j , i,j = 1, 2, ... 
...,n + 1, then ftie{fty}

11 c A11 = { a j 1 1 v ... v {a,,}11, j = 1, 2,. . . , n + 1. 
Hence 

vW^vW11-
1=i i = i 

We shall prove by induction that this inclusion is not valid. For n = 1, we have 
{f t j 1 1 v {b2}

L1 cz { a j 1 1 so that {ft j1 1 = {a,}11 = {b^11, contrary to bt 1 b2. 
Let us suppose that our assertion is proved for positive integers 1, 2, ..., n — 1; we 
shall now prove it for the positive integer n. For 

(M^-vVrcVW11. 
j=i *= i 

in accordance with Corollary 3.2, there are atoms B2,...,Bn such that {fti}11, 
B2,..., Bn are pairwise orthogonal atoms and 

{bi}
11vVBj = V{ai}

11z,nv{bj}
11. 

j=2 i=l j=l 

Since the atoms {ft,-}11, j = 1, 2,..., n + 1, are pairwise orthogonal as well, ac­
cording to the statement 4) of Theorem 2.1 in [4], we get B2 v ... v Bn z> 
^ {bi}11 v ... v {ftn+1}

1J-, contrary to the induction hypothesis. This completes 
the proof. 

3.5. Lemma. If the inequality 

card @ ^ £ c a r d (* n A±±) 
A finite 

holds for every two infinite maximal orthogonal sets s/, & then card stf = card $. 

Proof. We have, by the assumption of Lemma 3.5 and by Lemma 3.4, 

card J ^ ^ card {@ n A11) = £ card A = card si . 
0 - t -Acj* 0*A<=.-/ 
A finite A finite 

Similarly, card si S card @ and Lemma 3.5 is proved. 
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3.6. Remark. Let A, B be two infinite maximal independent sets. By Theorem 2.10, 
there are pairwise orthogonal atoms Ax, xe A, and pairwise orthogonal atoms By, 
yeB, such that 

V {x}11 = A11 = V Ax = Q = V By = B11 = V {y} 
xєA xєA yєB yєB 

XJL 

We consider the sets si and J which consist of just one element different from o 
of every set Ax, xe A, and just one element different from & of every set By, yeB, 
respectively (see Lemma 3.5). The sets s/, & are infinite maximal orthogonal sets, 
hence, according to Lemma 3.5 and under its assumptions, it holds that card 03 = 
=- card sf. In accordance with Theorem 2.10, we have card s4 = card A, card $ = 
= card B so that card A = card B. 
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