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časopis pro p stování matematiky, roč. 106 (1981), Praha 

THIRD BOUNDARY VALUE PROBLEM 
FOR THE HEAT EQUATION I 

MIROSLAV DONT, Praha 

(Received August 14, 1979) 

INTRODUCTORY REMARKS AND NOTATIONS 

We shall deal with the heat potential in the Euclidean plane R2. Points in R2 

will be denoted by [x, /], [£, T] etc. 
Fix a, be R1, a < b and let cp : <a, b> -> R1 be a continuous function on the 

interval <a, b>. Denote 

(0.1) E = {[x, /] eR2;te (a, b), x > q>(t)} , 

(0.2) K = K9 = {[x, t] eR2; te {a, b\ x = cp(t)} . 

For aeR1 let 
Ra = {[x, t] eR2; t < a} 

and for a, fi e R1, a < P we denote 

R*p ~ Rp ~~ Rx -

By ^ we denote the class of all infinitely differentiable functions with compact 
support in R2; the support of a function ij/ will by denoted by spt \J/. For a e R 1 let 

0 a = {xj/ e B; spt xj/ a Rx} . 

Let G stand for the heat kernel in R2, that is, G(x, t) = 0 for t g 0, 

G(x,t) = (nt)-1'2exp(--) 

for t > 0. 

By the term measure we shall always mean a finite signed Borel measure usually 
in Rl. The set of all finite signed Borel measures in <a, b} (that is, measures in R1 

with supports contained in <a, b}) will be denoted by J"(<a, fc>) or simply 4$'. 
For / iG^'(<a, b}) let /i-+, /z" and |JU| be the positive, the negative and the total 
variation (respectively) of the measure fi. Then 
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V = M + - A* > H = A*+ + A* • 

The set J" is known to be a Banach space if it is equipped with the norm 

H| = H«a,b». 

For [i e J"(<a, b>) let us define the heat potential U\ by 

(0.3) Uj^x, t) = Ul(x, t) = f G(x - <p(t), t - T) d/i(t) 

for those [x, t] e R2 for which the integral in (0.3) exists. The potential U^ is certainly 
well defined on the set R2 — K and solves the heat equation on this set. 

One can easily calculate that the following inequalities hold for a, /? e Rl, a < /?; 

(0.4) ^ G(x, t) dx dt = 2(/? - a) , 

(0-5) ff \^(x,t) 
JjR.,\dx 

(see also (10), (11) in [15]). Putting 

d x d í g ^ - V O 8 - * ) 
V71 

-^a/? ~* -^ n -^a/f f 

áxát^~\\4y/(p-a) 

we obtain from (0.4), (0.5) that for any fi e J"(<a, b>) the following estimates hold: 

(0.6) JT |U,,(x,*)|dxd^2|H|(j3-a), 

(0-7) ff \^UJix,t) 

(see also (13), (14) in [15]). The validity of these inequalities allows us to define for 
H e .#(<a, b}) a distribution H„ on 9b by 

(0.8) <*,*„> = - { f ^ f - U%)<-**. (*e*). 

Let us suppose for a while that the function cp has a bounded variation on <a, b> 
and that U„ and dUjdx can be extended continuously from E to E. Then the term 
<^, HM> can be expressed in the following way. Let <P(t) = [q>(t)> i] (t e <a, b>), 

'-[-*"--*£]• 
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In virtue of the fact that the potential UM satisfies the heat equation we have 

r o t T = - ^ ^ + ^ U 
dx dx dt 

џ 

on £. Since, by assumption, spt i/> c Rb, spt ij/ is compact, and since U^(x, t) = 0 
for r ^ a, we obtain from the Green theorem that 

< ^ HM> = J f r o t F d x dt = - J F d<f> = 

^

b Ch fill 

^(t), t) U x o , 0 c v o + I ̂ (t), t) —* (<Kt), t) dt 
(if/ G ^&). In this sense one can view the distribution HM as a weak characterization of 
the term 

^ + U X 
-t- u.,. /t0 

Ox 

considered on K, where A0 is a measure on <a, b> derived from the function 
cp (dAo(0 = d(p(t); note that any measure on <a, b> can be considered a measure in R2 

with support contained in the set K — see [7], for instance). 
In the following, ^ = ^(<a, by) and ^ 0 = #0 «a , fc>) will denote the spaces 

of all continuous functions on <a, b> and of all continuous functions / on <a, b> 
such that/(fe) = 0, respectively. Both # and <g0 will be endowed with the supremum 
norm (these spaces are then Banach spaces). Then ^"(<a, b>) is the dual space of the 
space #(<a, by). The dual space of the space ^ 0 « a , b>) is the space 

# i = ^o«<*>by) = {/i€&(<<*>b»; »({*>}) = °) • 

We shall show in what follows that under a certain condition on <p (namely a geo­
metrical condition on the boundary of E) the distribution H^ can be represented by 
a measure from 0&'o and the equation 

(0.9) H, = v 

(where v is given and fi unknown) has a unique solution in 3&'0 for each v e ^ , 

For a given X e 0&'o we shall further define an operator AM, 

Ap = xlj. + .Lp , 

where 

<^, LM> = [V(<K0> 0 VM*)> 0 d^(0 

(\j/ e %) . It will be also shown that under certain conditions on the function q> and 
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on the measure k the operator AM can be represented by a measure from @0 and 
that the equation 

(0.10) __„ = v 

has a unique solution in @l0 for each v e @t'0. If /i is the solution of (0.9) or of (0.10) 
then the potential l/M solves a certain third boundary value problem of the heat 
equation on the set E with a prescribed condition on K. 

1. THE OPERATORS W AND W 

Before starting the study of the operator H let us consider the operators W, W. 
For [£, x\eR2,\j/e9 let us define !%(<_, T) by 

(1.1) tfty(& T) = 

= _ £ ( £ G(x - *, , - T)^(*,0 - G(x - t t - T) | (* , ,))d*d.. 

Let us introduce the following notation. Let r\ > 0, r > 0, T ̂  a, r 4- T £. b. Then 
we put 

H 1 , ( f , , . ) - | ^ + e,T + g ; , > 0 , | ! < r } , 

H«'.x (»/. r) = {[* - C * + fj] 5 <? > 0. ^ < 4 • 

A point a e H£t(w, r) (. = ± 1) is called a hit of H£,t(n, r) on E if, for each e > 0, 

tf.(H.,,.-, r) n £ n _.(«)) > 0 , 

-*i((He..O-. r) - £) n Qc(a)) > 0 

(where i__ is the linear Hasudorff measure in R2, Qe(a) = {ze R2; \z - a\ < e}). 
The number (finite or infinite) of the hits of Hiz(n, r) on E is denoted by «|,t(M> r). 
Further, let 

".,r(w. r) = n.,t(n, r) + nf,,1 ,̂ r) . 

1.1. Lemma. Let r > 0, T >. a, r + T _j . , . eR 1 . Then the function fit.Jjl, r) 
is a Baire function of the variable n on the interval (0, oo). / / we denote 

(1.2) v% t) _ f" - i - e"" %.(,,, r) dn - f "e"1 ' «.,t(a
2, r) da, 

Jo 2.JI. Jo 

_._--{*e _*,+.; [«,t]#sptv>, |k|| _ . - } , 
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+ 

then 

(1.3) sup { Wty(|, T); »A e <?,} = 4 " £'(£> T) • 
V« 

Proof. The proof is analogous to those of Lemma 1.6 in [15] and Proposition 
1.8 in [15]. 

Let a = T < b, i e R1 and let £r = E - Rv 

£t
+ = {[x, t] e £t; x > £} , £7 = {[x, t] e Et; x < £} . 

For t/f e 3> we then have 

wipd, T) = 

_rr e x p l - k ^ m »-< g» ( , ,0 + i ->-(,, pUdi 
J.L- V 4(< - T)J \2 V(7r(t - T)3) dx V ' } VW« " *)) * ) 

+rr e x pl/-kzj)!u »-< ^ ( x , f ) + i ^(x,oldxdt= 
JJ.-,- V -K» - T)j J2 v«t - T)3) axK' } v« ' - *)) ^ J 

= h+I2. 
In the integral It we employ the change of variables 

(* - & , 
--—--- = n, x - £ = e 
4 ( f - T ) 

(that is, 
e2 

x = £ + C, .- = T + ^ - ; 
4f/ 

let us denote this mapping by S+). In the integral I2 we employ the change of 
variables 

(* - 0 2 , 
!- =n, x- £= -e 

Mt-x) 
(that is, 

2 
x = £ - < ? , t = T + ? - ; 

4i? 

let us denote this mapping by S"). If we write 
£:=(S+)-1(£+) , £* =(S-)"1(£D then 

£ î = {[Є.'/]; в > 9, 4 > 0, J- < Ь т т, çJт + J-j < { + Л , 

£ - = |[в.ч]. ř > 0, ч > 0, ^ < Ь - т, çJт + M < É - Л . 
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Denoting further 

< = {<?; 0 < Q <2yf(ti(b - t)), <P(X + 2?\<Z + Q\, 

% =- je; o < Q < 2 V(# - T)), q>{x + £\<s- Q\ 

we obtain by the change of variables and by the Fubini theorem 

,._rr i - , m u + e , < + £ ) + ± ? i ( i + e , < + > f ) ) d e d , . 

Sit,- V(«i) v* \ "i/ ^ a> V M)) 

-ILv^je"iK{+5"+C)]ded'= 
=r{ioe"UK<+c"+o]de}d-

W L i r t ^ - + C K f ( — + 9H-
-L^5K«-*+5D>*--
-n^UK'-**+9W-'-

Now we can conclude that (if T e <a, fc), £ e JR1, i/r e ^) 
(M) ^-H"ir'{tiK{+8-i+£)>+ 

UK { - - + *h + 

It is easy to verify that 

a{fv5K«+-+9>+UK'-**+5DH-
= supJf -f-Ufc: + (?, T + £Y|d<.} + supJf i r ^ ^ - e . x + ^ l d e j . 

Now we could complete the proof in a way quite similar to the proof of Proposition 
1.8 in [15] (see also Lemma 1.3 in [39]). The crucial point of the proof consists in 
using Lemma 1.3 from [15] (we also use 1.9 from [13]). 
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1.2. Remark. We have defined vr(£, T) in the case T e <a, b), r > 0, T -f r = 

:g ft (£ 6 i*1). If T + r > b (including the case r = + oo) then we write 

v'(c;, T) = v5-T(^, T) . 
In the case T ̂  b we put 

Ffc T) = 0 

for each r > 0. Further, we shall also write v(£, T) = v°°(£, T) (T ̂  a). The term 
v(£, T) is called the adjoint parabolic variation of E (or of the function q>) at the point 
[£, T]. We shall see below what is the connection between the adjoint parabolic 
variation and the parabolic variation defined in [3]. 

1.3. Let us introduce the following notation. Let [£, T] e R2, x e <a, b) and sup­
pose that v(f, T) < co. Then 

r\t(rj, b - T) < oo 
for almost all rj > 0. 

For rj > 0 with niv(rj, b - T) < oo, for 0 < Q < 2 s](rj(b - T)) and for x• = ± 1 let 
us put 

S?,t(fc »/) =- tr (= ±1) 

if there is a (5 > 0 such that 

Hi ({[c + *(<? + ™). t + ( g +
4

T O ) 2 l ; 116(0,5)1 n £ ) = 0, 

// . (fa + X(Q - ou), r + ( g - ^ H ; „ 6 (o, 5)1 - E) = 0 . • 

Further, put 
slt(0,r,)= - 1 

if there is a 5 > 0 such that 

Я. ({ f + xи, т + ^ Л ; « є(0, 5)1 - í ) £ = 0 . 

In all the other cases put 

slx(g,rj) = 09 (Q^0,rj>0). 

Let/be a bounded Baire function on <a, b>. Then for rj > 0 we define 

(i.5) iM- Z ( l / ( * + £)-?•*•'>)• 
x=-±i\<?>o \ 4?y/ / 

For ^ 6 3b we define 

0-6) -Vfo) -*M. 
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where 
f(l) = ^(<p(t),t), (te(a,b». 

Further, we define for \j/ e Qth (and for the above given [£, T]) 

( i .7) zfy) = z^n) + W, T) (s4\t(o, n) + sf.^o, i,)). 

It follows from (1.4) that for t// e Q)b 

(1.8) m(L T) = J J - l - e~" Un) dn • 

Especially, it is seen from here that the function -? (̂̂ ) is a measurable function of 
the variable q on the interval (0, 00) (if i)/ e 3>b) and also that E^ty) is a measurable 
function on (0, 00) if \// e $)h is such that ij/(^, T) = 0. Since the term Ef(r\) is in­
dependent of f(x) and f(b), we can obtain (by means of limit processes) that the 
function £/(*?) is a measurable function of the variable ^ on (0, 00) for any bounded 
Baire function/ on <a, b>. It follows from (1.7) that also the term 

(5^(0,f/) + S^(0,f/)) 

is a measurable function of the variable ^ on (0, 00). 

Let now f be a Baire bounded function on <a, b> (the set of all bounded Baire 
functions on <a, b> will be denoted by 32 = ^(<a, b>)) and let |f| g k (say). Then 
certainly 

l-vool =k *i.ti> * - -o • 
As v(£, T) is supposed to be finite the integral 

(1.9) Wf(£, T) = £ - L - e- Zjtj) dn 

converges and 

(1.10) \Wf(5,r)\ ^^rkv(^T). 

We obtain from (1.3) and (1.10) that 

(1.11) sup {Wf({9 T); / e f o « a 5 b», ||/|| = 1} = 

= sup {Wf(S, T); fe »y ||/|| £ 1} = 4" ^> T) . 

Moreover, we find that iff, e ^ , |f„| g k, f„ -»f pointwise on <a, b>, then 

(1.12) lim FVf,(c;, T) = Wf({, T) , 
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as 
\lfn(rj)\ = k mjn, b - x) 

and (1A2) follbws from the Lebesgue theorem. 
Before finding another expression for Wf(£, T) let us introduce the following 

assertion. 

1.4. Proposition. Let [xh rf] e R2 (i = 1, 2, 3) be the points in the general position 
(that is, [xh f,] are not situated on a single line) and such that tt e <a, b) (i = 1, 2, 3). 
/ / 

b > t0 > max {tu t2, t3} 
and if 

v(xh ti) < oo , (i = 1, 2, 3) 
then 

(1.13) var[<p; <l0, b>] < oo . 

Proof. We shall not prove this assertion in detail since the proof is quite analogous 
to that of Proposition 2.3 from [39]. 

Let qe R1, q > max {<p(t); t e <a, b>}. Using the same arguments as in the proof 
of Proposition 2.3 from [39] one can show that the perimeter of the set 

Qto = {[x,t]eE-Rt0; * <q} 

is finite. But this implies that (1.13) is fulfilled. 

1.5. We shall suppose henceforth that tKe condition 

(1.14) var [cp; (a, b>] < oo 

is fulfilled. 

1.6. Now we shall show another way how to express the term Wf(£, t). For this 
purpose we shall recall some definitions from [3] and introduce the following 
notation. 

We shall denote f = — £, f = — T, t = —t, 

ip(1) = - <p(t) , /(?) = f(t) , (I e < - b, - a} = <5, a>, / e ^ « a , by)) , 

' * = { [ # , J ] ; l 6 < U } . 
The notion of the parabolic variation of the function cp (or of the set K) has been 

introduced in [3] (Definition 1.1). Now we shall* apply the definition to the function <p 
(that is, to the set K), denoting the parabolic variation of R by V% in accordance with 
the notation from [3]. Under our notation we get (see the equality (1.10) from [3]) 
that for [I, f] e R2, f e (5, a}, 
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(u5) ^) = H-M>v4^]. 
Further, an operátor T has been defined in [3] which we shall again consider here 
not for the function cp but for the function cp (that is, not for the set K but for the set 
K). By Tf(l f) for fe @((b, a}), [& f] eR2, f e (£, a> we thus mean (see [3], 
Definition 2.1) 

- m 
(if this integrál converges, which, for instance, is fulfiUed for each / e ^ ( < 5 , a}) 
provided T (̂f, f) < oo). 

** ™-^M-^*&* 
1.7. Lemma. Let [£, T] G #2, T e <a, fc). T/ien 

(1.17) I5(Č,T)= ^ ( ^ ) -
1/, in addition, v(£, T) < oo then for any function f e @((a, b}) 

Proof. Le t /e á?(<a, ft>) and suppose first that/is of the form 

/(í) = #?(')> 0> (< e <« .*» . 
where ^ e £?,,, [£, T] £ spt ý. Denote 

Then 

(1.19) Wf(č, T) = flty({, T) = if rot F dx dí = 

G((p(t) - í, / - x) ý(<ř)(ř), í) d<p(ř) + — (<p(/) - í, ř - T) ̂ (^(ř), ť) át = 

Jt V W - T)) V 4(í - T) / 

J/w2VW<->)') V « - t ) / 
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(1.19) is valid without the assumption t5«, T) < oo (f being of the mentioned special 
form). 

Now we obtain the equality (1.17) from (1.3), (1.19) and [3] (2.9). Furthermore, 
we see that the equality (1.18) holds for each fej^«a, fc>) of the form f(t) = 
= il/(cp(t), t) (t e <a, b>), \jt e 2bi [<!;, T] $ spt t/L If we suppose v«, T) < co then 
(1.12) holds for any bounded sequence of functions fn e ^(<a, b>) such that f„->f 
(pointwise on <a, by). But as (1.17) holds we have VR(l, f) < oo and we can use the 
same limit process in the second and third terms in (1.18) (as in the first term in 
(1A8)) and thus (1.18) is valid for eachfe # « a , b». 

1.8. From (1.8), (1.9) and (1.7) we obtain the following relation between Wf and 
fff. Let \l*e@b9fe # « a , b» be such that f(t) = ij/((p(t)91) (t e <a, 6 » . Then (for 
[£,T]ejR2, xe(a,b)) 

r°° 1 
(1.20) ^ / ( f , T ) = ——e-'£j(n)dn = 

Jo vN ) 

I i - e-\Un) - *& *) ^ . , ( 0 , rj) + ^ ( 0 , //))] ár, 
o ví7"/) 

W^, T) - ifr(í, T) f ° ° — — e-(sl(0, r,) + s ^ O , r,)) dij 
Jo V(«»í) 

= W^,x) + 2^,x)0~E(í,z), 
where we put 

r°° 1 
(1.21) ^ £ ~ « , T) = - — — e-\sl(0, , ) + 5^(0, i,)) d^ . 

Jo 2 V M 
The term ^ T (£, T) is called the parabolic density of the set E at the point [£, T]. 

If [£, T] e R2 - E then s£t(0, *?) = sf^O, rj) = 0 for every iy > 0 and thus 9>l«, t) = 
= 0. In the case [£, T] e £ we have s^T(0, ^) = 5^(0, r\) = — 1 for every >/ > 0 and 

*oo -t ry /•oo 

^ « , T ) = _ _ ^ d i j - = — e"a2da=l. 
J o V N \/7CJo 

Let us now show how the paiabolic density ^ « , T) can be expressed in the case 
T6 <a, b), ^ = (p(t). Let ^ be a function on *RX = K1 u {-co, +co} such that 
0 ( -oo) = O, 

^-Ĺ e a da for ř > — oo . 

Suppose that v(£, T) < oo. Then V^(|, f) < oo as well and the limit 

a0(T) = lim • * ' > - * = lim l ~ **> 
v ' -«-.,+ 2 7(f - T) i-f- 2 V(f - ?) 
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exists (see [3], Remark 2.2; the limit can also take the values + oo). Let us show the 
following simple assertion. 

1.9. Proposition. Let T€<a , b), { = cp(x) and suppose that v(£, T) < oo. Then 

(1.22) ^ (? ,T)=l~4-^( a oW). 

Jn 

Proof. Let us distinguish the following three cases: 

1) a0(T) = +oo , 2) a0(T) = - c o . , 3) <X0(T)6 JR1 . 

The following result holds in the case 1): for any k > 0 there is a <5 > 0 such that, 
for each te(x,x + 3), 

^ \ ; "~ ~- > k , that is , cp(t) > £ + 2k J(t - T) . 
2y/(t-x) 

It follows that s^T(0, t]) = 5^(0, rj) = 0 for each rj > 0, that is #£(£, T) = 0. 

In the case 2) we have: for any k < 0 there is a 5 > 0 such that, for each t e 
6 (T, T + (5), 

y V ~ < k , that is , (p(t) < £ + 2k J(t - T) . 
2 V ( ' - T ) 

We see that s^t(0, */) = ^ ( 0 , ^ ) = - 1 for each rj > 0 and thus ^ ( £ , T) = 1. 

Suppose now that the case 3) takes place. Then we have: for each e > 0 there is 
a 6 > 0 such that, for each t e (T, T + <5), 

ao(T) _ e < y ( y " { < a0(t) + e , 
2 V(f - T) 

that is, 

(1.23) £ + (a0(t) - e) 2 J(t - T) < p(f) < £ + («0(T) + e) 2 V( ' - T) . 

If a0(T) = 0 then we obtain that s^t(0, tf) = —1, sf t(0, ^) = 0 for each rj > 0 and 
thus 0£(& T) = i . 

Now let a0(T) > 0. We easily see that s^T(0, rj) = 0 for each rj > 0. Let 0 < e < 
< <X0(T) and put 

Q = (ao(T) ~ e) 2 yj(t - T) ; then t = T + f? 
2 

4(a0(T) - £ ) 2 

The first inequality from (1.23) takes the following form: 

T + 4(«0(т)-£)2)-{ + Q<ę т + 
Чao(V - -Г/ 
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It follows that 
s!>t(0,^) = 0 for ^ ( a 0 ( T ) - £ ) 2 . 

Similarly we get 

s!>t(0, n) = - 1 for n £ (a0(T) + z)1. 

As e > 0 was arbitrary we have 

s!,t(0, ,) = 0 for 0 < n < (a0(T))2 , 

sc\t(0, if)-= - 1 for ^>(a 0 ( t ) ) 2 . 

Now it is seen that 
r°° 1 i r°° 
J(«oW) j 2VW V^J-oO) 

In the case a0(T) < 0 we similarly get that s!>t(0,17) = — 1 for each 77 > 0, 

s^(0, n) = - 1 for 0 < n < (a0(t))
2 , 

5^(0,11) = 0 for */>(a(r))2 

and hence 
poo 1 /»(a0(r))2 j i /*oo 

J02V(>"j) Jo 2V(«»7) V ' I J M O 

In any case we thus have 

w *) = -H00 *~*2 da = 4 - (*(+°°) - gMx))) = 4 - (v* - 0(aaW)) • 
\fnJao(x) \Jn V71 

The assertion is proved. 

2. THE OPERATOR H 

For pi e ^ ' we have defined by (0.8) a distribution H^ on 06. In the case that for 
each \i e US' the distribution H^ can be represented by a measure on <a, b> (see 
below), the term H can be regarded as an operator on M'. Let us now study some 
properties of this operator. 

Let bx stand for the Dirac measure on R1 concentrated at the point xe R1. 

2.1. Remark. The following indentity holds for \i e @'((a9 b>), \j/ e Q)b: 

(2.1) <*, tf„> - - £ (™* (x, 0 d£ (x, r) - Ujx, t) I (x, 0 ) dx d. = 

= -£{£f(-^)^-)d^)f(x,o-
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- G(x - cp(x), t - x) dp(x) — (x, t)i dx dt = 

« - £ { [ ( f (* - <*). * - *) f (*, t) - G(x - <P(T), . - T) ̂  (*, O) dM(T)} . 

.dxdt=^-^(^(X-^),t-r)d£(X,t)-

- G(X - 9(T). t-*)jt <*, o)<»* d 4 M * ) = | % > -**.> <-/-w • 

At the same time we have 

(2.2) <*/>, H,r> = Wifr(<p(x), x), (j, e Qh) . 

With respect to (2.2) and (1.3) one can prove analogously to the proof of Lemma 
1.9 in [15] that H8x can be represented by a measure if and only if v(cp(x), x) < oo. 
H&x is a functional defined on Bb and if v((p(x), x) < oo then Hdx can be regarded 
as a measure in K2. This measure is then uniquely determined by the condition 

\HSt\(R
2-Rb) = 0. 

It is easily seen that the support of H8x is contained in the set K(= {[<p(f)> *]» t e 

e <a, b>}). This implies that Hdx can be regarded as a measure on <a, b} — if fe Si 
then there is a Baire (bounded) function \j/ on R2 such thatf(f) = \l/(cp(t), t) and then 
we put 

<J, Hit> = <*, Hir> . 

The measure H^T as a measure on <a, b} is then uniquely determined provided 

HtXW) = 0 
(which corresponds to the fact that the set of all functions fe ^Q (<a, b>) of the form 
f(r) = \l/((p(t), t) (t e <a, b>), xj/ e 2b, is dense in <$Q (<[a, b»). Recall that the space 

^ 0 -{liea'; /i({fo}) = 0} 

is the dual space of the space %>Q (<a, b>). We can assert that if v(<p(x), x) < oo then 
the distribution Hdx can be represented by a unique measure from ^Q . In the sequel, 
we shall identify Hdx with that measure. 

2.2. Let vb be the zero measure on <a, b>. Let x e <a, b) and let v(cp(x), x) < oo. 
Define a measure VT on <a, b> by putting 

(2.3) v,(«). | r «,(_ « ^ f ) « , r f ^ a 
V" J *-.<«,») \ M} - T) j 2 V(t - T) 
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for any Borel set M cz <a, b} (the integral on the right hand side of (2.3) is considered 
a Lebesgue-Stieltjes integral). Let if/ e @b, f(t) = ty(<p(i), t) (t e <a, b>). It is seen 
from (1.18) and (1.20) that 

(2.4) </, H6x> = <*, H,r> = ^(<K*)> T) = Cf(t) dvt(f) - 2 ^ £ > ( T ) , T) <5t(f). 

Until now we have not defined the parabolic density ^ (£, T) in the case x ^ b; 
in this case let us put ^(£>, x) = 0. Then (2.4) is valid for each x e <a, b> for which 
v(cp(x), x) < oo. Now it is already seen that if v(<p(x), x) < oo (and Hdx is regarded 
as a measure from 390) then 

(2.5) H,T = v t-2^£>(T),T)<5 t . 

As vt is a non-atomic measure, we have 

(2.6) \\Hdx\ = ||vt|| + 20>~E(<p(x), x) = A vOKO, t) + 2 ^ £ > ( T ) , T) . 
V71 

With regard to the fact that H5b is the zero measure we can and will in the sequel 
deal with the space 0SO instead of $'. The following assertion is valid. 

2.3. Theorem. The distribution H^ can be represented by a measure for each 
He3$0 if and only if 

(2.7) VK = sup {v(<p(x), x); x e <a, b>] < oo . 

If VK < co then for each ne &'0 one can identify H^ with a unique measure from ^0-
The operator 

Hitx^H^, (H:®'0->@'0) 

is then a bounded operator on $0 and 

(2.8) ||0|| = sup | A v(cp(x), x) + 20>;(<p(x), T); T G <a, b}\. 

Proof. Again we shall not prove this assertion in detail since the proof is quite 
similar, for instance, to that of Theorem 1.11 from [15]. In the proof we should 
use the equality 

<<rS #„> = f <*, Hdx> dfi(x) , .tye®b,iie @'0). 

If HM is a measure for each /i e $0 then the condition VK < oo follows from the 
uniform boundedness principle. (2.8) follows from (2.5). 
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2.4. In what follows we shall always suppose that the condition (2.7) is fulfilled. 
Note that then for any function fe _$(<a, b>) and any measure pi e &0((a, by) we 
have 

(2.9) <f,H,>= r<fH,t>d/i(T). 

2.5. If the condition (2.7) is fulfilled then also 

sup {VR(£, f); [I, f] e K} < oo 

and for each T e <a, b> and eachfe ^0 ((a> &>) the limit (see [3], Theorem 2.1) 

W. / (T) = lim W(?9 T') = - lim Tf(l; f') = 
[.'5t']-*[<p(T),T] [|',f']-*[^(?),t] 

T'6<a,fc.>,<r<<p(T') T'e<6,a>,f'><?(?') 

= - |~T/(<p(f), *) + 2/(f) A - -±- g(a0(T))^l = »7(<P(T), T) - 2f(T)^£>(T), T) 

exists (a0(T) has the same meaning as in 1.8). W_(W~ :/i--> W_f) can be regarded 
as an operator on <€Z (JF_ : ̂ o -» ^o )• Then we have for f e 'tfo , n e $l'0 (see (2.4)) 

(2.10) </, H„> = j*</, !.,.> d|i(t) = 

= [ {W/(<PW, T) - 2 ^ ( < P ( T ) , T)/(T)} «1/I(T) = <SF_/, ji> • 

Thus we see that the operators H (on _$0) and PV_ (on ^0 ) are adjoint to each other. 
Consider now operators Hl9 Wx: 

Hx = H + I, Wx = W_ + I 

(where I denotes the identity operator on M'0 resp. on ^o )• Then, of course, the 
operators Hl9 Wt are adjoint to each other as well. Using the notation from [4] 
(see (1.4), (1.7) [4]) we can write for fe %, T e {a, b} 

(2.11) ^ f(T) = - ]T}(CP(T), T) + 2/(f)(l - j - g(a0(T))) - /(*)! = 

= - [ r+ / ( f ) - / ( f ) ] = ~r0/(f). 

The Fredholm radius of the operator T0 has been evaluated in [4] and it has been 
shown there under which condition there exists an inverse operator to the operator 
T+, hence (as is easily seen) also to the operator W„ and also to the operator H 
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(see Theorem 1.1 [4], Lemma 2.1 [4], Theorem 2.1 [4]). This condition is 

coT0 = lim sup ( — VR(r; <p(x), f) + a^(f) ) = 
r -0+ Te(5,a> \yj7t J 

= lim sup (— V'((P(T), T) + \20>E((P(T), T) - l| j = coW^ 
r->0 + Te<a,b) \yjll J 

i< -

((coWi) * is then the Fredholm radius of the operator Wl (resp. T0)). 
Now we can formulate the following assertion. 

2.6. Theorem. Let 

lim sup (— vr(<p(r), T) + | 2^ (<P(T) , T) - l\] < 1. 
r-*0 + Te<a,b) \y/7l J 

Then for any measure v e &'0 the equation 

(1.12) H, = v 

has a unique solution \JL e &'0. 

2.7. Remark. Let us notice that if \i is the solution of the equation (2.12) then 
according to the introductory remarks the heat potential U^ (considered on E) is 

.an integral expression of a solution of a special case of the third boundary value 
problem for the heat equation on E with the boundary condition 

f« + ^ . - v • 
ex 

on K (where XQ is a measure on <a, b>, dX0(t) = dcp(t) — see the introductory 
remarks). At the same time the operators H and W- are adjoint to each other. 
Hence we can say that the above mentioned special type of the third boundary value 
problem for the heat equation on E is adjoint (in the sense of integral equations) to 
the first boundary value problem for the heat equation on the set £+ = {[x, t]e R2; 
t e (B, a), x > cp(t)} with a boundary condition prescribed on the set K = {[x, t] e 
e R2; t e <5, a}, x = <p(t)} (and also to the first boundary value problem for the 
adjoint heat equation on the set £_ = {[x,r]eR2; te(a9 b), x < cp(t)} with 
a boundary condition prescribed on the set K). It is very well known that for the 
Laplace equation the interior Dirichlet problem and the exterior Neumann problem 
are adjoint to each other (again in the sense of integral equations). J. Krai has shown 
in [15] that in Rn+1 (roughly speaking) the interior second boundary value problem 
for the heat equation and the first exterior boundary value problem for the adjoint 
heat equation are adjoint to each other (in a similar sense) provided the sets con-
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sidered are of the form C = D x (Tl9 T2), where D c JR". But we now see that in 
the case of the time moving boundary the situation is rather more complicated. 

As we have just noted, only a special type of the third boundary value problem 
can be solved by solving the integral equation (1.12). An investigation of a rather 
more general type of the third boundary value problem for the heat equation on the 
domain E will appear in another paper. 
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