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SOME GENERALIZATIONS OF THE NOTION OF CONTINUITY
AND QUASI-UNIFORM CONVERGENCE

Jozer DoBoS§, Tekovské Nemce

(Received Juny 30, 1980)

It is well known that the sets of quasi-continuous, somewhat continuous and
cliquish functions are all closed with respect to the uniform convergence (see [3],
[5] [9]). The aim of this paper is to investigate whether or not those sets are closed
with respect to the quasi-uniform convergence (see [7], p. 143).

Let X, Y be two topological spaces. A function f:X — Y is said to be quasi-
continuous at a point x, € X if for each neighbourhood U(x,) of the point x, (in X)
and each neighbourhood V(f(x)) of the point f(x,) (in Y) there exists an open set
U < U(x,), U # 0 such that f(U) = V(f(x,)) (see [5]).

A function f: X — Y is said to be somewhat continuous if for each set V< Y
open in Y such that f~(V) = 0 there exists an open set U c X, U # 0 such that
U < f7Y(V) (see [3]).

Let X be a topological and Y a metric space (with the metric d). A function f : X —
— Yis said to be cliquish at a point x, € X if for each neighbourhood U(x,) of the
point x, and each & > O there exists an open set U = U(x,), U % 0 such that
d(f(x'), f(x")) < ¢ holds for every two points x', x" € U (see [9]).

A function f defined on a topological space X is said to be quasi-continuous or
cliquish on X if it is quasi~continuous or cliquish, respectively, at each point x € X.

The property of the quasi-continuity is equivalent to the property of the semi-
continuity (see [4], [6]).

Every function f : X — Y quasi-continuous on X is also somewhat continuous on X

(see [8]).

Proposition 1. There exists a sequence of functions f, : R - R quasi-uniformly
converging to f: R — R such that f, is quasi-continuous but f is not somewhat
continuous. '

Proof. Let the sequence {f,};% of functions f, : R — R be defined by

fn(x) = X(O.I/n>((— l)n . x)

for all x e R. Obviously f, = f = X0 Let ¢ >0, me{0,1,2,...}. Denote p =
= m + 2. Then for x = 0 we have |fu+,-1(¥) — J(*)| = 0, and for x < 0 we have
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|fmsn(x) = f(x)] = 0, i.e. Vx € R : min {|fms1(x) = FX)]s -y [fmso(x) = FF)} < e
Hence {f,}, quasi-uniformly converges to f. We now show that f, (n = 1,2,...)
are quasi-continuous functions. Let n e N. Let U be an open neighbourhood of the
point x, = 0"and ¥ an open neighbourhood of the point f,(x,). Then there exists
0 < & < 1/(2n) such that (xo — 26, xo + 20) = U. Denote a = (—1)".6 and
Uo=(a— 6, a+é). Then U, is open, § + Uy = U and f,(Uy) = V. Hence f,
is quasi-continuous at the point x, = 0. Let U be an open neighbourhood of the
point x, = (—1)"/n and V an open neighbourhood of the point f,(x,). Then there
exists 0 <& < 1/(2n) such that (x; — 26, x; + 26) = U. Denote b = (—1)".
.(1fn = 8)and U; = (b — 6, b + 6). Then U, is open, § + U; = U and f,(U,) =
< V. Hence f, is quasi-continuous at the point x, = (—1)"/n. Since f, is continuous
at each point xe R — {0, (—1)"/n}, conclude that f, is quasi-continuous. Since
int f~1((1/2, 2)) = int {0} = 0, f is not somewhat continuous.

Proposition 2. There exists a nonempty set M = R and a sequence of functions
f. : M > R quasi-uniformly converging to f : M — R such that f, is clzquzsh but f
is not cliquish.

"Proof. Let 4 = {a,,az, = {by, b,, ...} be countable subsets of R such
that AnB=0, A=B= R Denote M=AuUB, 4,=1{ay,...,a,}, B, =
= {by, ..., b,} for each n e N. Define the sequence {fu}s=, of functions f, : M - R
by

. if n is even,
fn= {X(M—B,.) if nis odd .

Obviously f, » f = xs- Let €¢>0, me{0,1,2,...}. Denote p=m + 2. Then
for x € A we have | /4 p-1(%) — f(x)| = 0, and for x € B we have |f,,.,(x) — f(x)| =
= 0, i.e.

VxeM :min {|fpiy(x) = SX)]s -0 [fmen®) =S} <&

Hence {fu}s=1 quasi-uniformly _converges to f. We now show that f, (n = 1, 2,. )
are cliquish functlons Iet neN. Let xoe M. Denote y = min { |x0 - x] xe
€ A, U B,, x + x,}. Let U be an open set such that x, € U. Let ¢ > 0. Denote U, =
= (xo, xo + ) 0 U. Then U, is open, 0 + U, = U and

Vx, x' e Uy : If,,(x) Su(x" | -0 <e.

Since for each open set V we have

VE0=VnA+0+VnB,
f is not cliquish. -

Definition 1. A family o of sets has the finite intersection property if the inter-
section of every finite subfamily of &/ is nonempty. A centred family is a famlly
of sets having the finite intersection property.
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Definition 2. An open almost-base for a space X is a family o/ of open subsets
of X such that every nonempty open subset of X contains some nonempty Ae .

Definition 3. Let {</,}= | be a sequence of open families in a space X (an open
family is a family consisting of open sets). The sequence {of,}2-, is said to be
countably complete if for every centred sequence of sets {A, }o-,, where A, € sf,,,

the set () A,, is nonempty.
keN

Definition 4. 4 space X is said to be almost countably complete if there exists
a countably complete sequence of open almost-bases for X (see [2]).

Remark. Every locally compact Hausdorff space is a regular almost countably
complete space. Every complete metric space is a regular almost countably complete
space (see [2]).

Theorem. Let X be a regular almost countably complete space and let (Y, d)
be a metric space. Let {f,}x| be a sequence of cliquish functions f, : X — Y quasi-
uniformly converging to f : X — Y. Then f is cliquish.

Proof. We show that f is cliquish at any point x, € X. Let U be an open set such
that xo € U. Let ¢ > 0. We now show that there exists a sequence of nonempty open
sets U, < U such that i ‘

() NU, +9,
neN
(ii) VneN :diam f(U,) < /6.

Let {.@,,}ff:l be a countably complete sequencerf open almost-bases for X. Since f, is
cliquish at x,, there exists a nonempty set U, € 8, such that U, < U, diam f,(U,) <
< ¢[6. Suppose Uy, ..., U, have been constructed. Let y e U,. Since X is regular,
there exists a closed neighbourhood W at y, such that W < U, Since f,, , is cliquish
at y, there exists a nonempty open set U,,, € %,,, such that U,,, < int W,
diam f,,1(U,+,) < ¢/6. Then

0+U,y,cU,yycWecU,cU, U,e®,.
Since {U,4}s=, is centred,

0*ﬂU,.+1CﬂU,.-

neN neN
Let y € () U,. Since f,, — f, we have »
neN
(1) AmeN Vn 2 m:d(f(y), £.(»)) < ¢[6.

Since {f,}=; quasi-uniformly converges to f, we have 3pe N Vx e X:

it {4 s(5). S Al f o5 S} < of.
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m+p

Denote U, = ) U,. Let xe U, We now show that d(f(x),f(¥)) < /2. Then

obviously Vx, x' € U, : d(f(x), f(x)) < e.

Let je{l-..., p} be such that d(f,.,(x), f(x)) < &[6. Then by (ii) we have
d(fr+ (%), fms ) < €]6, and by (1) we obtain d(f.+1(»),f(¥)) < &/6, therefore
A(f(x), f(9) S d(fms ) S (%)) + Ans ), Srns 3)) + ASms 0): S () < ef2.

Remark. For a different proof of this theorem, see [1].

Corollary. Let {f,}., be a sequence of cliquish functions f, : R - R quasi-uni-
formly converging to f : R — R. Then f is a cliquish function.

The author is very much indebted to Professor T. Salat for many helpful remarks
and suggestions offered during the preparation of this paper.
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