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Časopis pro pěstování matematiky, roč. 106 (1981), Praha 

SOME GENERALIZATIONS OF THE NOTION OF CONTINUITY 
AND QUASI-UNIFORM CONVERGENCE 

JOZEF DOBO§, Tekovske Nemce 

(Received Juny 30, 1980) 

It is well known that the sets of quasi-continuous, somewhat continuous and 
cliquish functions are all closed with respect to the uniform convergence (see [3], 
[5], [9]). The aim of this paper is to investigate whether or not those sets are closed 
with respect to the quasi-uniform convergence (see [7], p. 143). 

Let X, Y be two topological spaces. A function / : X -> Y is said to be quasi-
continuous at a point x0 e X if for each neighbourhood U(x0) of the point x0 (in X) 
and each neighbourhood V(/(*o)) of the point /(x0) (in Y) there exists an open set 
U c U(x0), U # 0 such that/(U) c V(/(x0)) (see [5]). 

A function / : X -> Y is said to be somewhat continuous if for each set V c Y 
open in Y such that /_1(V) 4= 0 there exists an open set U <= X, U #= 0 such that 
U czf~1(V)(seQ [3]). 

Let X be a topological and ya metric space (with the metric d). A function/ : X -• 
-* y is said to be cliquish at a point x0 e X if for each neighbourhood U(x0) of the 
point x0 and each e > 0 there exists an open set U <= U(x0), U 4= 0 such that 
d(/(x'),/(x")) < £ holds for every two points x', x" e 17 (see [9]). 

A function / defined on a topological space X is said to be quasi-continuous or 
cliquish on X if it is quasi-continuous or cliquish, respectively, at each point x e X. 

The property of the quasi-continuity is equivalent to the property of the semi-
continuity (see [4], [6]). 

Every function/ : X -> Yquasi-continuous on X is also somewhat continuous on X 
(see [8]). 

Proposition 1. There exists a sequence of functions fn : R -> R quasi-uniformly 
converging to f: R -> R such that fn is quasi-continuous but f is not somewhat 
continuous. 

Proof. Let the sequence {fn}n=:l of functions fn : R -+ R be defined by 

for all x G JR. Obviously / „ - > / = X{o>- Let e > 0, m $ (0, 1, 2,.. .}. Denote p = 
= m + 2. Then for x ^ 0 we have \fm+P-i(x) - /(*)| ==- 0, and for x < 0 we have 
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!/„.+„(*) ~ / (x) | = 0, i.e. Vx e tf : min {|fm+1(x) - f(x)|,..., |fm+p(x) - f(x)\} < e. 
Hence {f„}n=1 quasi-uniformly converges to / . We now show that fn (n = 1, 2,. . .) 
are quasi-continuous functions. Let n e N. Let U be an open neighbourhood of the 
point x0 = O'and V an open neighbourhood of the point fn(x0). Then there exists 
0 < S < l/(2n) such that (x0 - 2<5, x0 + 2S) c U. Denote a = ( - 1 ) " : S and 
l/0 = (a - S9 a + <5). Then U0 is open, 0 + U0 c U and f„(U0) c V. Hence f, 
is quasi-continuous at the point x0 = 0. Let U be an open neighbourhood of the 
point xx = ( — l)njn and Van open neighbourhood of the point /„(xi). Then there 
exists 0 < S < l/(2n) such that (xj - 2<5, xt + 2b) c U. Denote b = ( - 1 ) " . 
. (1/n - S) and U, = (b - 5, b + S). Then UA is open, 0 + Ut c U and fn(Ux) c 
c V. Hence f. is quasi-continuous at the point x1 = (—l)"/n. Since f, is continuous 
at each point x e K — {0, (—l)"/n}, conclude that f„ is quasi-continuous. Since 
int f"1((l/2, 2)) = int {0} = 0, f is not somewhat continuous. 

Proposition 2. There exists a nonempty set M c R and a sequence of functions 
fn:M -> R quasi-uniformly converging to f: M -> R such that fn is cliquish but f 
is not cliquish. 

Proof. Let A = {al9 al9...}, B = {&,, 62 , . . .} be countable subsets of R such 
that A n B = 09 A = B = R. Denote M = Av B9 An = {al9 ..., art}, Bn = 
= {b l5..., bn} for each neJV. Define the sequence {fn}n=1 of functions fn : M -+ R 
by 

/• = iXAH
 l f W 1S eVeI1 ' 

" [X(M-Bn) if n is odd. 

Obviously fn -* f = XA- Let e > 0, m e {0, 1, 2, . . . } . Denote P = m + 2. Then 
for x G A we have \fm+p- i(x) - f(x)\ = 0, and for x e B we have \fm+p(x) - f(x)| = 
= 0, i.e. 

Vx e M : min {\fm+1(x) - / (x) | , ..., \fm+p(x) - /(x)|) < e . 

Hence {fn}n=1 quasi-uniformly converges t o f We now show thatf. (n = 1, 2,. . .) 
are cliquish functions. Let neN. Let x 0 e M . Denote y = min {|x0 — x| : x e 
e An u Bn9 x + x0}. Let U be an open set such that x0 e U. Let e > 0. Denote U0 = 
= (x0, x0 + y) n U. Then U0 is open, 0 + U0 c U and 

V x , x ' e U 0 : | f , ( x ) - f n ( x O | = 0 < e . 

Since for each open set V we have 

V+ 0=-> VnA + 0 + VnB, 

f is not cliquish. 

Definition 1. A family &l of sets has the finite intersection property if the inter-
section of every finite subfamily of stf is nonempty. A centred family is a family 
of sets having the finite intersection property. 
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Definition 2. An open almost-base for a space X is a family si of open subsets 
of X such that every nonempty open subset of X contains some nonempty Aesf. 

Definition 3. Let {s#n}n=1 be a sequence of open families in a space X (an open 
family is a family consisting of open sets). The sequence {s/n}n=1 is said to be 
countably complete if for every centred sequence of sets {A„k}^=1, where A„k e s/„k, 
the set H A„k is nonempty. 

keN 

Definition 4. A space X is said to be almost countably complete if there exists 
a countably complete sequence of open almost-bases for X (see [2]). 

Remark . Every locally compact Hausdorff space is a regular almost countably 
complete space. Every complete metric space is a regular almost countably complete 
space (see [2]). 

Theorem. Let X be a regular almost countably complete space and let (Y, d) 
be a metric space. Let {fn}n=1 be a sequence of cliquish functions fn :X -» Yquasi-* 
uniformly converging to f :X -> Y. Then f is cliquish. 

Proof. We show that f is cliquish at any point x0 e X. Let U be an open set such 
that x0 G U. Let e > 0. We now show that there exists a sequence of nonempty open 
sets Un cz U such that 

(0 fl VH 4= 0 , 
neN 

(ii) Vn e N : diamf„(UM) < e/6 . 

Let {&„}n= i be a countably complete sequence of open almost-bases for X. Sincefj is 
cliquish at x0, there exists a nonempty set U1 e Mx such that Ut c 17, diamf^U^ < 
< e/6. Suppose Ul9..., Un have been constructed. Let y e Un. Since X is regular, 
there exists a closed neighbourhood JVat y, such that W cz Un. Since f n + 1 is cliquish 
at y, there exists a nonempty open set Un + 1 e ^ M + 1 such that Un+1 a int W, 
diamf„+i(Un+i) < e/6. Then 

0*Un + 1 <= Un+1c: WczUnczU, Une@n. 

Since {Un + 1}n=1 is centred, 

0 + nt/n+i <=nun. 
neN neN 

Let y e 0 Un. Since fn -* f, we have 

(1) 3m e N V/t ^ m : d(f(y),fn(y)) < e/6 . 

Since {f„}*=i quasi-uniformly converges to f, we have 3peN VxeX: 

min {d(fm+1(x),f(x% ..., d(fm+p(x)J(x))} < e/6 . 
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m + p 

Denote U0 = ft Un. Let xeU0. We now show that d(f(x),f(y)) < e/2. Then 
n = l 

obviously Vx, xf eU0 : d(f(x),f(x')) < e. 
Let je{\,<>..., p) be such that d(fm+j(x),f(x)) < e/6. Then by (ii) we have 

d(fm+J(x),fm+j(y))<el6, and by (1) we obtain d(fm+j(y),f(y)) < e/6, therefore 
4/(4/00) -̂  4/m+/4/(*)) + d(fm+j(x),fm+j(y)) + d(fm+j(y),f(y)) < e/2. 

Remark. For a different proof of this theorem, see [1]. 

Corollary. Let {fw}̂ = x be a sequence of cliquish functions f„:R-+R quasi-uni-
formly converging tof:R-+R. Then f is a cliquish function. 

The author is very much indebted to Professor T. Sal at for many helpful remarks 
and suggestions offered during the preparation of this paper. 
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