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Časopis pro pěstování matematiky, roč. 106 (1981), Praha 

ON THE PROOF OF THE PRIME NUMBER THEOREM 

hki CiZEK, Plzen 

(Received, September 17, 1979) 

1. INTRODUCTION 

Proofs of the prime number theorem, i.e., of the assertion 

n(x) ~ , x -> oo (or equivalently.7r(x) ~ , x -• oo ), 
log x \ J 2 log u J 

where n(x) denotes the number of primes less than or equal to x, divide roughly 
into three groups. The first group, historically the oldest, is formed by the analytic 
proofs. In these proofs a wide aparatus of the theory of functions of one complex 
variable on the Riemann C-function is used. These proofs yield the strongest results, 
because they give the best estimation of the remainder term n(x) — JJ dw/log u. 
Probably, the best known estimation of the remainder term is 

Ф)-J = 0(xexp ( — clog3 / 5 x(log logx) 1 / 5 ) ) , x.-• co 
2 lOgW 

where c is a suitable positive constant (cf. e.g. [7]). The second group contains the 
so called elementary proofs; they are called elementary, for they avoid the use of 
the C-function, i.e., of the theory of functions of one complex variable, as well as 
the Fourier transform of functions. The estimations of the remainder term yielded 
by the elementary proofs are more complicated, but weaker than those yielded by 
the analytic proofs; e.g., in the paper [1] the estimation 

я ( x ) - j = 0(x exp (—log1/7 x(log log x) 2 )) , X -» 00 
2 lOg U 

is proved. The third group is formed by the proofs of intermediate type, which use 
the theory of functions of one complex variable in most cases only to prove that 
C(l + it) =f= 0 for t 4= 0. These proofs are based especially on the Fourier transform 
of functions and Tauberian theorems. They are relatively simple, but they have not 
yielded any estimation of the remainder term till now. The aim of this paper is to show 
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that the known proofs of the prime number theorem without the remainder term, 
belonging to the third group, can be modified to obtain 

(1) * « M - f — = 0(xlog-x), 
J 2 lOg « 

X -> 00 

for every natural number n. We shall use a simple lemma on the Fourier transform 
of functions (cf. Lemma 1) to obtain the relation (l). Our procedure has two advan­
tages: firstly, our proofs are not much more complicated than the original ones and, 
secondly, there is no need to use the properties of the Riemann C-function in the 
halfplane Re s < 1. On the other hand, the estimation (1) of the remainder term in 
the prime number theorem is weak in comparison with the quoted results. For the 
sake of clarity we mention all the properties of the Riemann C-function which we 
shall use in this work. They are the following ones: 1) the C-function is analytic and 
non-zero in the halfplane Re s ^ 1 except for the point s = 1 where it has a simple 
pole, 2) C(k)(s) = 0(log*+1 t), a = 1, t = 3, s = a + it, for k = 0, 1, 2,..., 3) the 
function £'(s)/£(s) + l/(s — 1) is analytic in the halfplane Re s = 1, 4) 1/C(S) = 
= 0(log7 t), a = 1, t = 3, s = a + it. (Cf. e.g. [2], [6].) 

2. BASIC ASSERTIONS 

We call a function / absolutely continuous on an open interval (a; b), if it is 
absolutely continuous on every closed bounded subinterval of (a; b). F o r / e l}(Et) 
we define f(x) = J"?*,/(*) eitx dt, x e £,. The function / i s called the Fourier trans­
form of a function / . 

Lemma 1. Let meN and let a function feL1(E1) have absolutely continuous 
and integrable derivatives up to the order m — 1. I//(m)e 1}(EX), then j(x) = 
= (~ix)-m |?oo/ (m)(0e , r xdr, x * 0. Especially f(x) = 0(|x|"m), x - ±oo. 

The proof of this lemma is easy and well known (it may be found e.g. in [5]). 
However, the proof of the relation (1) is based on Lemma 1. 

For n € N we define the function A(n) in this way: A(n) = log p if n = pr, where p 
is a prime and r any natural number, A(n) = 0 otherwise. (A is called von Mangoldt's 
function.) In the rest of the paper we prove in two different ways the following as­
sertion: 

Theorem 1. If the function g is defined by 

«(*)«E4») l<>g- , - * = *> n^x n 

then g(x) = x + 0(xlog~*x), x -* co, for every natural k. The constant in 0 
may depend on k. 
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The relation (1) follows from Theorem 1 in the usual way, e.g. using Lemmas V. 3. 
14-16 from the book [7], pp. 172-174. 

3. THE FIRST PROOF OF THEOREM 1 

The proof of the prime number theorem without the remainder term, which we 
shall modify here, is taken from the book [3]. It is due to Titchmarsh. 

According to Lemma V. 3. 5 from the book [7], p. 158, we have for x > 0 

g{x) = _ 1 f2 + fl011. m ds = / i ( x ) + / 2(X) , 
2niJ2-»i s2 C(s) 

where 
_ , . 1 f2 + 0Oi xs ds , . 1 r2 + coix\,,A 
Ji(*) = — T( TV I^X)=^V'\ -2K

s)ds> 
27nJ2-ooi52(s - 1) 2 raJ 2 . f l D i s2 

and h(s) = £'(s)/£(s) + l/(s — 1) is an analytic function in the halfplane Re s = 1. 
Analogously to the proof of Lemma V. 3. 4, [7], p. 158, we can prove by calculating 

the residues of the function xsj(s2(s — 1)) at the points s = 0 and s = 1 that 

(2) Ix(x) = 0 for x e (0; 1), 75(x) = x - log x - 1 for x = 1 . 

As soon as we prove that for every natural number k 

(3) I2(x) = 0(x log"* x), x -• oo , 

holds, the proof of Theorem 1 will be complete. 
Choose A > 0. Since the function (x5/s2) h(s) is analytic in the halfplane Re s ^ 1, 

it follows from Cauchy's theorem that 

* /»2+Ai s i pl+Ai s 

(4) -L *h ( s )ds + - i : \h(s)ds + 
2ni 

1 
+ — 

2яi l + A І 

v s 1 [*2-A\ s 
± h(s) ds + — - h(s) ds = 0 . 
- 2niJ 1 _ i í l s

2 

We have C'(s)^(s) = 0(log9 |/|) for a = 1, |/| = 3, s = c + it It follows from this 
fact that h(s) = O(log9 |t|) on the same set and, further, that for A = 3 and x = 1 
the absolute value of the second and the fourth integral in the relation (4) is less than 
or equal to (lj(2n)) (x2lA2) C log9 A, where C > 0 is a suitable constant. This means 
that 

-t fl+Ai „s i fi2-Ai _s 

lim —: — h(s) ds = lim —: ~ h(s) ds = 0 . 
-̂•oo 27ti J 2+^i s A-*OQ 2ni J i„Ai s 
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Letting A -* oo in the relation (4), we obtain 

' a W " ^ ?-2h(s)ds=-±\ ^h(s)ds = 

" - - T -?^h(l + it)dt=--r MlJl^e i fI^dr=-^-I3(logx), 
27tJ . 0 0 ( l + ir)2 V ' 27rJ_00 (1 + if)2 In 3V * • 

where I3(y) = J*^ (ft(l + if)/(l + if)2) e1" df. To prove the relation (3) it is now 
sufficient to show that I3(y) = 0(y~k), y -> oo, for every keN. To this aim, ac­
cording to Lemma 1, we must check that the derivatives of all orders of the function 
h(l + if)/(l + it)2 are absolutely continuous (this is clear) and integrable on Et. 
We evidently have h(l + if)/(l + if)2 = [h(l + if)/(l + if)2]. It now suffices to 
estimate the growth of the fc-th derivative of this function for f -> + oo. By the defini­
tion of the function h we have 

*(- + *0 - ?(- + ») + 1 _ h(t) + h (t) 
(i + uy " (i + io2 c(i + it) it(i + i t ) 2 " l W 2{)' 

say. It is easy to show that h(k)(t) = 0(t~k~3), t ~> +oo, fc = 0, 1, 2, ... . Since 
[r(s)/C(5)](k) = 0(log9 ( k + 1 ) f), a = 1 , f = 3, 5 = a + if, as follows from Leibniz's 
rule, the theorem on differentiation of a composite function and the properties 2) 
and 4) of the C-function mentioned in the first section, we obtain for the function ht 

again by Leibniz's rule that h(k)(t) = 0(r2 log9(fc+1) f), f ~* oo, k = 0, 1, ... . 
Altogether we have 

p ( i + ifVP = Q, _2 j 9(*+i) A + o ( r . - 3 ) = 0 ( r 2 i o g
9 ( k + 1 ) 0 , 

|_(1 + iř) J 
ř -> oo 

for k = 0, 1, ... ; this means that the derivatives of all orders of the function 
h(l + if)/(l + if)2 are integrable on Ex. The assumptions of Lemma 1 are satisfied 
for every keN and, accordingly, I3(y) = 0(y~~k), y --> oo, for every keN. This 
implies the relation (3) for every keN. 

4. THE SECOND PROOF OF THEOREM 1 

We use a modification of the Wiener-Ikehara theorem from the book [4] (Theorem 
2, p. 124) for the second proof of Theorem 1. This modification — our Theorem 2 — 
may be interesting in itself. 

Theorem 2. Let n e N. Let further A(x) be a nonnegative nondecreasing function 
defined for x e <0; +oo) and let the integral 

/(-)«£4*)< ; dx, s =- a + if џ 
J 0 
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converge for a > 1. Let the function g(s) = f(s) — l/(s — 1) be continuous 
in the halfplane a _ 1. If there exists an absolutely continuous derivative 
(d'-^df-^g^ + it) on Ex and (dng\dtn)e L\EX), then 

e~* A(x) = 1 + 0(x~n) , x -* oo . 

For the sake of brevity we mention only the points of difference between the proof 
of this theorem and the proof of Theorem 2 in [4]. Let us observe first of all the 
course of the original proof. The author, denoting B(x) = e~xA(x), chooses the 
function u such that u(t) = 1 — |f| for |/| _ 1, u(t) = 0 otherwise. Now, he first 
proves that lim J2/* B(y — vj(2X)) u(v) dv = J*^ u(v) dv for every X > 0 and then 

y-+oo 

that this identity implies lim B(x) = 1 (cf. [4], p. 124, relations (9) and (10)). 
JC->00 

We shall proceed similarly with the only difference. Four u we take any function 
for which u e CQ0(E1), supp u = < — 1; 1> and w(x) = 0 for all xe Et. Such a function 
u exists. It suffices to define u(t) = J_oo v(x)v(t — x)dx, teEu where v(x) = 
= exp [(4x2 — l)"1] for |x| < \, v(x) = 0 otherwise. Since u ^ 0, we have 
Ĵ oo u(v)dv > 0. Choosing the function u in this way we first show that for X > 1 

(5) f \ (y - ~\ u(v) dv=\ u(v) dv + 0(y~n), y -> oo , 

(the constant in O does not depend on X\) and then we derive from (5) that 

(6) B(x) = 1 + 0(x~n), x -• oo . 

The proof now proceeds like in [4]; generally we write u(tj(2X)) instead of 
1 — |f|/(2>l). In this way we obtain the relation 

(7) I"'B iy - v) "wdt;=P*v) dv+f 19{i+h) u {£)eiyt dt • 
Since u e C00^) and u has a compact support, the relation u(x) = 0(x~k)9 x ~> oo, 
holds for any keN. Consequently 

r*2Xy /»oo 

(8) u(v) dv = u(v) dv + 0(y~n), y -» oo , 
J - 00 J — 00 

where the constant in O does not depend on X for X > 1. Further, 

i;;,(1^„(i)^,.[f(l+i),(i)j(,) 
and the function g(l + it) u(tj(2X)) satisfies the assumptions of Lemma 1 in virtue 
of the assumptions of Theorem 2. According to Lemma 1 we have for y #=0 
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(9) J > + i'Hi>",6"(-rJL^ + i , )"(s)]e"'d'-
If we show that there exists a constant K > 0 such that for all X > 1 the inequality 

(io) LUs(l+H$¥<K 

holds, then it follows from the inequality and the relation (9) that 

(11) f ^(l + it) u (—\ Qxyt dt = 0(y~n), >>->oc. 

The relation (5) is a consequence of (7), (8) and (11). For the proof of the inequality 
(10) it is sufficient to realize that if J0

A |g(n)(l + if)| dt = 0(1) on the set of all X > 1, 
then l\(2X)k $x\gin-k)(l + it)\dt= 0(1) on the same set for k = 1, 2,.. . , n. 
Further, we have for X > 1 

J-2Aidi"L w J I *=oW(2A)fcJ-2J w l 

= I 7 ^ fV"W(- + -#-' = 0(1) k=o [2Xf J 0 

for (dn/df) g(l + if) e L\EX) and g(l - if) = g(l + if). 
We shall now prove the relation (6). Let numbers a > 1, X > 1 be given. According 

to (5) there exist numbers K > 0 and y0 > a\2X such that 

P B (y - —^ w(v) dv g f°° u(v) dv + Ky"" 

holds for all y > y0. Hence we deduce similarly as in the proof in [4] that for all 
y > yo 

/•oo /*oo 

lim B(x) u(v) dv £ u(v) dv + Ky~n, 
x"*y- J-oo J-oo 

i.e., 

lim B(x) S 1 + K'y~n for all y > y09 where K' = f j w(v) dv J K . 

Since B(x) = e~x A(x) and the function A is nondecreasing, the function B is con­
tinuous on the interval (>'0; + oo) except for a countable set of points. The inequality 
B(y) ^ 1 + K'y~n holds, however, at the points of discontinuity of the function B. 
We can verify this fact letting y -* yx + , where yx is a point of discontinuity and y 
are points of continuity of the function B. The inequality B(y) ^ 1 — K'y~n for 
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y > y0 can be proved similarly as in [4], p. 126, (14), if we consider the continuity 
properties of the function B. We have proved the relation (6), and Theorem 2 as well. 

If we want to deduce Theorem 1 from Theorem 2, i.e., to verify that g(x) = 
= ^ A(n) log (x/n) = x + 0(xlog"*x), x -> oo, for any fceN, we must put 

A(x) = g(e*) in Theorem 2 and show that in the halfplane Re s > 1 the relation 

as) _r<Kx) 
s2 C(») 

Г i i ï í d x = ľ í(e-)e _"dx 
J i * s + 1 Jo K * 

holds. It can be verified without any difficulties that the function f(s) = 
= — (C(s)ls2 £(5)) satisfies all the assumptions of Theorem 2 for any n e N; the in-
tegrability of the n-th derivative of the function f(s) — l/(s — 1) was verified in the 
third section. According to Theorem 2 we have e~x g(ex) = 1 -f 0(x"w), x -• oo, 
i.e. g(x) = x + 0(x log"" x), x -» oo, q.e.d. 

It seems quite probable that no better estimation of the remainder term in the prime 
number theorem can be proved by the method used in this paper than 0(x log"* x), 
x -+ oo. 
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