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Čatopis pro pěstování matematiky, roč. 102 (1977). Praha 

ON A CLASS OF NONLINEAR EVASION GAMES 

MILAN MEDVE6, Bratislava 

(Received October 29, 1975) 

In this paper we shall consider a differential game described by the system of 
differential equations 

(1) z(w) + Axz
im"^ + ... + A„_,z' + Anz = 

= f(u, v) + M(Z, Z\ ..., z{n'l\ u, v) , 

where z e Rm,f e Rm, A{, i = 1, 2, ..., n are constant matrices,/(w, v) is a continuous 
function of the point (u, v) e U x V, 17 c £p , V a Rq are compact sets, jiz e (— oo, oo) 
is a parameter. We shall suppose that the function g(zi9 z2,..., z„, u, v) is continuous 
and bounded on Rmn x U x V. 

In the paper [ l ] a sufficient condition for existence of evasion strategy for a dif­
ferential game described by equation (1) for fi = 0 is given. In the paper [2] a suf­
ficient condition for existence of such strategy for a game described by a first order 
system of differential equations of type (1) is given. That condition is different from 
the condition given in our paper. Our condition is similar to that given in [1]. 
Similarly to [1] we shall use the technique of convolutions in the formulation of 
results as well as in the proof. 

A mapping Vu(t, Z0) defined on the set of measurable controls M(T), 0 ^ T < oo, 
U(T) e U depending on t ^ 0 and on the vector of initial conditions Z0 = (z0, z 0 , . . . 
..., z0

n~l)) is said to be a strategy, if it possesses the following properties: 
(1) For an arbitrary measurable control M(T), 0 ^ T < oo and for an arbitrary 

fixed Z0, the mapping Vu(t, Z0) is measurable as a function of t and has values in V. 
(2) If ux(x), u2(x)9 0 g T < oo are two controls and M^T) = u2(x) almost everywhere 

on [0, T], where T is arbitrary, then VUi(t, Z0) = VU2(t, Z0) almost everywhere 
on [0, T] for every Z0. 

Let M be a subspace of Rm of a dimension ^ m - 2 . Our problem is to choose 
a strategy Vu(t, Z0) such that the solution z(t), 0 ^ t < oo of the equation 

z(n) + Axzlm-1} + . . . + Anz = 

= f(u(t), Vu(t, Z0)) + fxg(z(t),..., z<- ", u(t), Vu(t, Z0)) 
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with the initial condition 

^ Z(0) = (z(0), z'(0),..., ^"""(O)) = Z0 , z(0) t M 

does not intersect the subspace M for any t ^ 0, for an arbitrary control u(t) and 
for an arbitrary vector Z0. We shall call this strategy an evasion strategy. 

Now, using the convolution symbolism (cf. [1]) we can rewrite the equation (1) 
in the form 

z(n) + Ai*z(n~l) + ... + An*z =f(u,v) + ng(z,z',...,zin-l),u,v) 

and express the solution of this equation by the following formula: 

(2) . z„ = z0 + S*z'0 + ... + S"-1 *z(
(T

1) + 

+ Sn * (<P0 * z0 + ... + $n_i * z0
n-l)) + Sn * R(S) *f(u, v) + 

+ /iSn * R(S) * g(z, z', ..., z(w"1}, u, v) , 

where $0, $i9..., <Pn_1 are certain entire matrices over the Mikusinski ring Jt 

(cf- [1]), 
R(S)= I + C(S) + C2(S) + ..., 

c(s) = - ( s * At + s2 * A2 + ... + sn * An), 

1 = diag(<5, 8,..., 8) is the unit matrix, 8 is the unit element in the ring Jt, Ah 

i -= 1, 2,.. . , n are constant matrices, i.e. the functions identically equal to At. It was 
shown in [1] that the series for R(S) converges uniformly in a disc with center at the 
origin of an arbitrary large radius Q. 

Let L be a subspace of Rm of a dimension fc ^ 2 which lies in the orthogonal 
complement of M cr Rm and let n : Rm -• Rk be a linear mapping corresponding to 
the orthogonal projection of Rm onto L. 

We assume that 

(3) A * R(S) *f(u, v) = H(S) * (Y0(u, v) + S * W,(u, v) + ...) + X(t) , 

where 
(a) Yi(u, v) are continuous in (u, v) e U x V, i = 0, 1, 2, . . . . 
(b) \^i(u, v)\ ^ Xt for all (u, v) e U x V, |• | being the Euclidean norm in Rk and the 

series X0 + S * Xt + S2 * X2 + ... is an entire function of the variable t. 
(c) H(S) is an entire matrix over the ring Jt and det* H(S) =# 0. (det* H(S) is calculated 

as a determinant in the ordinary formal way using the ring multiplication). 
(d) The function x(i) does not depend on u, v. 
(e) Denote by [Y0(u, vj] the smallest linear subspace of Rk containing all points 

!F0(M, V), (u, v)eU x V. Let us suppose that the subspace [*F0(u, v)~\ has the 
largest possible dimension among all representations (3). 
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We shall say that the parameter v in the expression A * R(S) *f(u, v) has complete 
maneuverability, if the set 

(4) (\co0Y0{u,v)czRk 

ueU 

contains interior points, where co,, *F0(u, v) denotes the convex hull of the set of all 
points Y0(u, v), v e Vfor fixed u e U. 

Now, we can formulate a sufficient condition for evasion. 

Theorem 1. If the parameter v in the expression A * R(S) *f(u, v) has complete 
maneuverability, then there exists a number fit > 0 such that for all \i, |/t| < jit 

there exists an evasion strategy. Moreover, there exist numbers A, v, 0 > 0 and an 
integer I such that 

(5) ^(r ) , M) > U(^AM))n+1 ,* , 
u 2 ^ AV ; (i + M o i r 1 

for 0 :g t < co, where (^(z^t), M) is the distance of the point zjf) from the sub-
space M (zjt) denotes the solution of (I) corresponding to a value p of the para­
meter). 

Remark . The number / in Theorem 1 is equal to the number lk, where 

H(S) -= H(1)(S) * diag (Sh,..., Slk) * H(2)(S) , 

h = h = • • • = 'fc> Hil)(S), i = 1, 2 are entire invertible matrices. It was shown in [1] 
that an arbitrary entire matrix H(S) has such a representation. 

For the sake of simplicity of computations, we can assume that the origin of Rk is 
an interior point of the set (4). Denote by Q the closed fc-dimensional cube with the 
center at the origin and with sides parallel to the axes and such that Q cz 
c= int fj cot> ^ov"' v) C*nt -P denotes the interior of P). 

ueU 

For the proof of Theorem 1 we need the following lemma, which was proved 
in [1]. 

Lemma 1. For sufficiently small Q there exists a number T > 0 such that for any 
e > 0 there exists a measurable function v(t)e V, 0 :g t = T such that 

(6) ||5" * [H(S) * (!P0(II, v) + S * Wt(u, v) + ...+ X(t)] + tn+1£\\ = £ 

for 0 ^ t ^ T and for an arbitrary preassigned u(t) eU,^e Q. For the calculation 
ofv(t) we need the values u(t) on the interval [0, t] and the point £, only. 

Remark. ||P(f)|| ^ s u P |jo p(T) ^T| , where |*| is the Euclidean norm in Rk. 
te[0,T] 
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where 

Proof of Theorem 1. From (2), (3) we get 

H * z,[t) = cp(t, Z0) + Sn * \H(S) * (V0(u, v) + S* Wt(u, v)+ ...) + *(*)] + 

+ »Sn * R(S) * g(zfl9 z\9..., zin~x\ u,v), 

<p(t9 Z0) = A * [z0 + S * z0 + ... + S"'1 * z(
0""1} + 

+ Sn*(0o*zo + ... + * l l-1*z§ ,~1 ))]-

Sublemma 1. If \ix > 0 is a given number and g(zfl(0), M) > 0 for \p\ < fiu then 
(a) for a sufficiently large number X 

(7) • <>(-,(<), M) _ ^ M for 0<t< e^°} M\ , W K "y h } ~ 2 ~ ~ A(l + |2rM(0)|) 

\ti\ < / i , , z„(o) = (z„(o), z;(o),..., z<;- l\o)) = z 0 . 

(b) If T is sufficiently small, then there exists a number v > 0 such that for an 
arbitrary Z0 and for \n\ < fit 

(8) v(l + |Z„(.)|) _ 1 + |Z0 | , 0<t<T, 

(zM(0 = (z,(0,z;(0,...,zr'>(0)). 

The proof of Sublemma 1 is analogous to the proof of inequalities (5.4), (5.5) 
in [1]. 

Sublemma 2. There exists aO > 0 so small that for an arbitrary initial vector Z0, 
there exists a point £(Z0) e Q satisfying the condition 

(9) l^z^-s^^'^^Zo)! = 0r+1, o^^r. 

Proof. By [1, Lemma 5.1] there exist a point €(Z0)e Q and a number & > 0 
such that 

í_±iM_i_) _ m _ Є ' . 

This implies 

fn+l 

фZo)--L--ąz0) 
n + 1 

= \(p(t,z0)-s*f+,-H(z0)\^et-+i, 

where 0 = 6'\(n + 1). 
Now, we choose a number a > 0, which satisfies the following inequalities: 

(10) a < i6Tn+1 , a < XT 

where X can be chosen arbitrarily large. 
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Let us suppose that at the beginning of the game at time t = 0 it is Q(Z^0), M) > a. 
Choose the control v(t) arbitrarily. If for some t = tl9 Q(zfl(t1), M) = tf> then define 
a control v(t) on the interval [tl9 tx + T] in the following way 

(11) <r) = w(r~r 1,u,^ZM(r 1)),8), 

where w(t, u, %, e) is a control satisfying the inequality (9) for given s > 0, u(t) e U 
and { e Q. 

Sublemma 3. If v(t) is a control defined by the equality (11), then there exists 
a number /i1 > 0 such that for |^| < fit 

(12)(a) ^ ( 0 , M ) ^ Q " + 1

( r T ^ , ti = t<h + T 

(b) e(zll(tl + T),M) = a. 

Proof. From (7), (8) it follows that for 

o = t - h =

 g ( z " ( f ^ M\ = 

Є . 

A(I + | Z ^ ) | ) w + \zjtj\y 

(13) Q(zJt), M) = - = 8 (-T%

 = 6 f-\+1 , \ x K ^ 
K W W ; 2 W W (i + |z,(r,)|)"+ 1 

<?(z„(t), M) = |ft * z„(f)| •= \<p(t - tu Z,(h)) -S*(t- JO"*'-1 W O ) + 

+ S * (f - /.)-+,-» HZfa)) + Sn * [H(S) *(>F0 + S*Vi + ...) + X(t)] + 

+ fiS" * R(S) * g(zlt, z'„, ..., z(;- »>, u, »)| = 

= \cp(t - r., Z ^ . ) ) - S * (* - z ,)"" ' - 1 W i ) ) | " 

-t\Sn * [H(S) * (!P0(M, v) + S * ^(u, v) + ...) + X(t)] + 

+ s * (t - / 1 ) " + , _ 1 «(z„(0)| - A.|S" * *(s) * g{z„ J*.-, 4"-,)>«• «0| ^ 

^ |^0 - t„ z„(ti)) - s * (t - ty*'-1 {(Z,(tl))\ -

- fS"-1 * [H(S) * (W0(u, v) + S * ^,(«, ») + ...) + X(t)J + 

+ (t- t,)"^-1 ^(ZXh))\\ - n\Sn * R(S) * g(z„ -;,..., z$-l\ «, v)\ . 

Since \g(zu z2,..., zn, u, v)\ :g c for all (zt, z2,..., zB, u, v)e Rmn x U x V, where 
c > 0 is constant, there exists a constant c t > 0 such that for |ju| ^ fiu 0 <i f g T + 
+ ^ it is |Sn * #(S) * #(zM, z^,..., zjl1""1*, u, v)| S ct. Therefore, using Sublemma 1 
and Sublemma 2 we conclude 

Q(ztt(t),M)Zz0(t-tiy+1 -e-fic^ 
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Choose e and /.t so small that 

0 <.e + /.c, < min ( ±0 (-Y r^ ; , i0T"+1 1. 
V W (1 + |z,(ti)|)"+1 ) 

Then for t. _ t _ ti + T |/i| < nt we get 

e(zjf), M) > \Q (~\"+l —-•—• , 

"K"U' >-* \x) (i + i z ^ i r 1 

e(zp(f. + T),M)>,\QTn^ >a. 

Inequalities (8) and (13) imply 

(!4) • ,(=,(,), JO i »(!•)"• ( , + | ^ , ) | r , . ., S . S «, + T 

and 

e(a'i + n M)^° 
which proves Sublemma 3. 

Since at the end of the evasion maneuver the solution zj^t) is outside of the 
ex-neighborhood of M and the number Tis fixed, it is possible to continue the game 
for an arbitrarily long time, provided the conditions (14) are fulfilled. Theorem 1 
is proved. 

Example. Let the game be described by the following system of differential 
equations 

(15) x(p) + AlX
(p~l) + ... + Apx = u + W l (x , y9 x', / , . . . , x(s), /s\ u9 v) 

y™ + fl-y*-" + ... + Bqy =v + w2(x9 y, x', / , ..., x(s), /•>, u9 v) 

where x j e i*m, m = 2,A;, i = 1, 2, ..., p, J3f, i = 1, 2,..., q are constant matrices, 
s < min(P, q)9 9i{zu z2,..., Z2m(s+i)> M> *>)> * = 1, 2 are continuous and bounded 
on JR

2m<s+1> x U x V, U, V are compact sets, jue(—oo, oo) is a parameter. Let 
M = {z = (x, y) e Rm x JRm | x — j> = 0}. The orthogonal complement of M is 
M1 = {z = (x, >>) e Km x Rm | x + y = 0}. The matrix of the projection on M 1 is 

»-*(_{"{) and *-*(_{ "})• 
where 7 is the unit m x m matrix. 

(1) Suppose q < p. Then the system (15) has the following form 

z(t) _ (*)\ _ (m o \ (m\. (?> * p(s) o \ M , 

where 

P(S) = / + c,(S) + c?(S) + . . . , c.(S) - -(S * i4. + ... + S' • „ , ) , 
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Q(S) = í + C2(S) + C2(S) + . . . , C2(S) = - ( S * B, + ... + S* + Bq), 

-•(r"w,,.0M)-(:)-- (r^-C)-
-HG^-MK: ) -
-•[(-SS::)*—(-«::í-

= S" * | / ~* j + S * ^ ( u , ») + S2 * <F2(u, v) + ... 1 , 

fl co, W0(u, v) = co, f V ) 

usU \ VJ 

i.e. W0(u, v) = I ). Therefore, if the convex hull of the set V contains an interior 

point, then the set 

contains an interior point as well. The conditions of Theorem 1 are fulfilled and so 
for sufficiently small \i there exists an evasion strategy and 

ФÁl),м)iì(^AШ L 
Av ) (1 + \Z„(t)\)" 

for X, v sufficiently large, where 9 is a positive constant. 

(2) It is possible to compute that for p = q the vector ^0(u, v) = I J. 

To satisfy the condition int f) coy *F0(u, v) #= 0 it suffices to satisfy the condition: 
ueU 

int co V 4= 0 and U c * int co V, where co V is the convex hull of V and U c * int co V 
means that there exists a vector ae Rk such that U + a = {u + a|ueU} c. 
c: int co V. 

This example for \i = 0 was shown by R. V. GAMKRELIDZE in his lecture during 
the semester on optimal control theory held in the S. Banach International Mathe­
matical Center in Warsaw in 1973. 
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