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Časopis pro pěstování matematiky, roč. 102 (1977), Praha 

REMARK ON THE THEOREM OF EGOROFF 

WLADYSLAW WILCZYNJSKI, L6D± 

(Received October 29, 1975) 

I. VRKOC in [1] has proved the following theorem: there exists a real function f 
defined and measurable on [0, 1] such that there does not exist a countable family 
{An} of sets fulfilling \JAn = [0, 1] such that the restricted function f \ An is con-

n 

tinuousfor every n. The theorem of Vrkoc is a refinement of the well known theorem 
of Lusin. In this short note we shall prove the theorem which can be considered as 
a similar refinement of the theorem of Egoroff. 

Before stating the theorem we shall prove the following lemma: 

Lemma. Let {n(k, i)} be a double sequence of natural numbers, which for every k 
is increasing with respect to the variable i. There exists an increasing sequence 
{n(i)} of natural numbers such that for every k and for every i = k 

n(i) > n(k, i) . 

Proof. Put n(i) = 1 + max(n(l, i), n(2, i),..., n(i, /)) for every natural i. It is 
easy to see that the sequence {n(i)} fulfills all required conditions. 

Theorem. For every set A of the power of continuum there exists a sequence of 
real functions {/„} defined on A such thatfjx) tends to zero for every xeA and there 
does not exist a countable family {Ak} of sets fulfilling \JAk = A such that the 

k 

restricted sequence {/„ | Ak} is uniformly convergent for every k. 

Proof. Let N be a set of all increasing sequences of natural numbers. Of course, 
N is a set of the power of continuum. Let <P : A ->0nto N be a one-to-one corre­
spondence. 

For xeA let us put fn(l)(x) = l" 1 , /.(2)(x) = 2~x, ...,fn(i)(x) = T 1 , . . . and 
fj(x) = 0 for remaining natural I, where {n(l), n(2),..., n(i),...} = $(x). 

So we have defined a sequence of real functions {/„} and it is easy to verify that 
/»(*) ~* 0 f° r every xeA. 

Suppose that there exists a sequence {Ak} of sets such that \JAk = A and {/„ | Ak} 
tends uniformly to 0 for every k. * 
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Let for fixed k the sequence {n(fc, i)} of variable i be a sequence of natural numbers 
corresponding to a = l " 1 , e = 2 " 1 , ..., e = i""1, ... and to uniform convergence 
of {fn} on Ak, i.e. for every i, for every j > n(k, i) and for every x e Ak we have 
.//Ml < I'~1- Obviously we can choose {n(fc, i)} to be increasing with respect to i. 
If k changes in the set of natural numbers, we obtain a double sequence {n(fc, i)}. 
In virtue of the lemma there exists an increasing sequence {n(i)} such that for every k 
and for every i = k n(i) > n(k, i). Let x = ^_1({n(f)}). There exists a natural 
number k0 such that x e Ako. So for i — k0 we have n(i) > n(fc0, i) and |fW(,)(x)| < 
< i~l and simultaneously from the definition we havefn(i)(x) = i " 1 , a contradiction. 
The theorem is proved. 

Corollary. There exists a sequence of measurable real functions {fn} defined 
on [0, 1], which tends to zero at every point and such that there does not exist 
a sequence {Ak} of sets fulfilling \JAk = [0, 1] such that the restricted sequence 

u 
{fn | Ak} is uniformly convergent for every k. 

Proof. It suffices to take in the theorem the set A c [0,1] of the power of con­
tinuum and of measure zero and to define additionally fn(x) = 0 for every n and for 
every x.$A. Then we obtain a sequence of functions which are equal almost every­
where to zero and hence measurable. 
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