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Časopis pro pěstování matematiky, rol. 102 (1977), Praha 

IDEALS OF BINARY RELATIONAL SYSTEMS 

JAROMÍR DUDA, Brno and IVAN CHAJDA, Přerov 

(Received May 20, 1976) 

The concept of an ideal of a partially ordered set was introduced for the purpose 
of investigating systems with a partial ordering. This concept is a generalization of the 
lattice ideal (see [1], [7]). However, in [6] another definition of an ideal of a partially 
ordered set is given which is more general than the classical one and makes it possible 
to obtain deeper results for some partially ordered systems, especially for Z-groups. 
The aim of this paper is to generalize this definition to the case of general binary 
relation and to show its applicability to some problems in binary relational systems. 

1. ELEMENTARY PROPERTIES OF ^-IDEALS 

Let Q be a binary relation on a set A. The pair <A, g> is called a binary relational 
system. We introduce U(a, b) = {xe A; a Q x, b Q x) and L(a, b) = {x e A; x Q a, 
XQ b] for arbitrary a, be A. The system {A, Q} is said to be Qu-directed (Ql-directed) 
if U(a, b) =# 0(L(a, b) =# 0, respectively) for each a, be A. If (A, Q} is both QU-
directed and ^/-directed, it will be called Q-directed. The set B is called a Qu-directed 
subset of A if (A, Q} is a binary relational system, B ^ A and U(a, b) n B + 0 
for each a, beB. Analogously we introduce Ql-directed and Q-directed subsets. 

Definition 1. Let (A, Q} be a binary relational system and / a non-void subset of A. 
If the conditions 

(Ix) aeA, iel, a Q i imply a el, 
(I2) i, j el implies U(i, j) nl 4= 0 

are satisfied, then I is called a Q-ideal of <A, Q). 
An arbitrary subset J of A fulfilling the condition (I t) is called a semi Q-ideal 

of<A,Q}. 
A non-void subset D of A is called a dual Q-ideal of {A, Q} if the following con­

ditions (dual to (Ij), (I2)) are satisfied: 
(Dt) be A, deD, dQb imply beD, 
(D2) d,geD implies U(d, g) n D 4= 0. 
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The set of all g-ideals of <A, Q} will be denoted by f(A). It is clear that if (A), £ > 
is a partially ordered set. 

Definition 2. A g-ideal I of <A, Q} is called maximal, if the conditions I £ J, 
I =\= J are fulfilled by no o-ideal J of <A, 0>. A £-ideal I of <^4, g> is called prime, if 

(P) a, be A , 0 4= L(a, fc) £ I imply a e I or ft € I. 

Dually we obtain the concept of a dwa/ prime Q-ideal. 
An arbitrary subset C of A is called a Q-convex subset of <A, £>, if a, b e C, x e A, 

a Q x, x Q b imply xeC. 

Notation. Let Q be a binary relation on the set A. The transitive hull of Q 
is dpnoted by the symbol f(o); i.e. for a, b e A we have a t(Q) b if and only if there 
exist a0, ..., ane A with a0 = a, a„ -= b, a ^ ! o at- for i = 1, . . . , n. 

Example 1. If g is a partial ordering on A, Definition 1 introduces the concept 
of an o-ideal from [6]. Moreover, if <A, g> is a lattice, the concept of a g-ideal 
coincides with that of a lattice ideal. If Q is an equivalence relation on A, then 
/ ( A ) = A\Q. 

Proposition 1. Let Q be a binary relation on a set A. Then 
(a) Each Q-ideal of {A, o> is a Q-convex and Qu-directed subset of A. 
(b) If <A, Q} is Ql-directed, then each Q-ideal of <A, g> is a Q-directed subset of A. 
(c) <v4, Q} is Qu-directed ,if and only if Ae f(A). 

Proof. Let I be a g-ideal of <A, Q}. By (Ij), I is g-convex and, by (I2), I is QU-
directed. If <A, Q} is ^/-directed, then L(a, b) 4= 0 for each a, b el. Let f e L(a, b). 
Then ^ a , hence by (lt) it is f e I. Thus 0 4= L(a, b) £ J, i.e. / is also ^/-directed; 
(a) and (b) are proved. If A is a g-ideal of <A, Q}, then 0 4= U(a, b) n A = U(a, b) 
for ach a, b e A, thus <A, g> is ou-directed. Conversely, if <A, Q} is gu-directed, 
then 0 #= U(a, b) = U(a, b) n AL As (I t) is satisfied automatically, we obtain 
Aef(A). 

Proposition 2. Let {ly; y e T} be a chain of Q-ideals of <A, Q} (i.e. Iy £ l6 or 
Id £ Iyfor each y, S e T). Then I = \J Iy is also a Q-ideal of <A, Q}. 

Proof. Let ae A, iel and a Q i. Then i e I7 for some y e T and, by (I-J, a e Iy. 
Hence a e I. If i, j e I, then i G Iy, j e Ib for some y,beT. Without loss of generality, 
suppose Iy £ /<-. Then i, j e I<$, thus U(i, j) n Ĵ  4= 0. As Ib £ I, also U(i, j) n I 4= 0, 
which completes the proof. 

Corollary. Each Q-ideal of (A, Q) is contained in a maximal Q-ideal of <^4, g>. 
This follows directly from Proposition 2 by Kuratowski-Zorn theorem. 
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Proposition 3. Let (A, o,> be a ol-directed binary relational system and I a prime 
Q-ideal of <-4, £>. If A — I 4= 0, then D = A — I is a dual prime Q-ideal of <A, Qy. 

Proof. Let* D = A - I * 0. Let b e A, deD and dob. If b <£ D, then b e / 
and, by (Ij), del, a. contradiction. Thus (Dj) is satisfied. 

Let c9de D and L(c, d) n D = 0. As <A, #> is ^/-directed, we have 0 4= L(c, d) = 
e L By the assumptions, I is a prime £-ideal of <-4, £>, thus eel or del, also a con­
tradiction. Thus also (D2) is satisfied and D is a dual g-ideal of <A, £>. 

Suppose a, be A and 0 + U(a, b) = D. If a e I and bel9 by (I2) we have 0 4= 
=f= U(a, b) n 7, which is a contradiction to U(a, b) = D. Thus either a e D or b e D, 
i.e. D is a prime dual g-ideal of {A, Qy. 

Proposition 4. Let (A9 £> be a ol-directed binary relational system and I a prime 
Q-ideal of <A, £>. Then Ix r\I2 = I implies I1=IorI2= I for each two Q-ideals 
Il9I2 of <A9 o>. 

Proof. The assertion is evident for / = A. Let J + A. By Proposition 4, D = 
= A — / is a dual prime #-ideal of <-4, g>. If xt elx — I9x2el2 — /, then x l 5 x2e D 
and, by (D2), L(x1? x2) n D =j= 0. If t e L(xl9 x2) n D9 then f £ xl9 t QX2 and by (It) 
we have telx r\I2 ^ I, which is a contradiction. Thus Zj — I = 0 or I2 — I = 0, 
which implies the assertion. 

2. PRINCIPAL e-IDEALS AND SUPREMAL RELATIONS 

Definition 3. Let {A, ^> be a binary relational system and 0 =t= M £ A. If the 
intersection of all g-ideals of <A, o> containing M is also a o-ideal of <A, o>, we 
denote it by l(M) and call it a Q-ideal generated by M. If M = {a1?..., a„} is a finite 
set, J(Af) is denoted briefly by I(al9..., an) and called a finitely generated Q-ideaL 
For M = {a}91(a) is called a principal Q-ideal generated by a. If 1(a) exists for each 
o e A , <_4, £> is called principal. 

Notation. If (A9 Qy is principal, #0(A) denotes the set of all principal ^-ideals 
of<A,(?>. 

Lemma 1. Let Q be a binary relation on A, a, b e A and let 1(a), 1(b) exist. If 
a t(o) b9 then 1(a) = 1(b). 

Proof. By Definition 3, be 1(b). If a t(o) b, then there exist a09..., an e A, a0 = 
= a9 an = b and a,--! Q at for i = 1, . . . , n; thus by (lt) also an-t el(b) and induc­
tively a = a0e 1(b). Hence 1(a) = 1(b). 

Definition 4. A binary relation Q is called supremal on A, if for each a, be A 
there exists at least one element s(a9 b) e U(a9 b) such that x e U(a9 b) implies s(a9 b) = 
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= x or s(a, b) Q X. Each element s(a, b) with this property is called a Q-supremum 
of a, b. 

It is clear that the O-supremum of a, b need not be determined uniquely. If for 
example A = {a, b} and a Q a, a Q b, b Q a, b Q b, then a is a g-supremum of a, b 
as well as b is. However, if s(a, b) 4= s'(a, b) are two g-suprema of a, b, then s(a, b) Q 
Q s'(a, b) and s(a, b) Q s(a, b). 

If Q is supremal on A and each a9b e A has just one 0-supremum, Q is called 
uniquely supremal on A. Clearly, each antisymmetrical supremal relation on A is 
uniquely supremal on A. The dual concepts are infimal and uniquely infimal 
relation on A. 

The following examples show that for a uniquely supremal binary relation Q the 
system <̂ 4, O> need not be a semilattice. 

Example 2. Let A be the set of all integers and a Q b if and only if b — a ^ 1. 
Then £ is uniquely supremal on A and s(a, b) = max {a, b} + 1. However, s(a, a) #= 
4= a, thus <̂ 4, O> is not a semilattice. 

Example 3. Let ^ be a reflexive, uniquely supremal and uniquely infimal relation 
on A. Then <̂ 4, ^> is a weakly associative lattice (see [3]). However, (A9 ^> is 
not generally a semilattice, since it is not necessarily transitive (see [2]). 

Lemma 2. Let Q be a supremal relation on A and J a Q-ideal of <A, o>. Then 
s(a, b) 6 J for each a,beJ and for an arbitrary Q-supremum s(a, b) of a, b. 

Proof. Let a,beJ, s(a, b) be a g-supremum of a, b and s(a, b) $ J. As J is 
a (O-ideal of <-4, #>, there exists x e U(a, b) n J. Thus x -# s(a, £>). By Definition 4 
we have s(a, b) Q X, thus x e / implies s(a, b)e J, a contradiction. 

Proposition 5. /f o is a supremal relation on A, then every set {Iy; y e T} of 
Q-ideals of {A, Q} has an infimuml = f\Iy in ($(A), £> provided I -# 0. Moreover, 

yer 

if <A, £> is a/so Ql-directed, then (#(A), <=> w a conditionally complete and join 
complete lattice. 

Proof. If Q is supremal on A, then <A, Q} is ^w-directed and, by Proposition 1(c), 
A is the greatest element of if (A), s=>. Let {Iy; y e T } c / ( ^ ) and 0 4= / = fl / r 

If a e A, i e /, a Q i, then i e Iy for each y e T and, by (lx), also a e Iy for each yeT. 
Hence a el. If i, jeI, then, by Lemma 2, s(i, j)e U(i, j) nIy for each yeT and an 
arbitrary g-supremum s(i,j) of i,j. Hence s(i,j)eU(i9j)nI. Accordingly, / is 
a .0-ideal of <.A, o>. It is evident that / is the infimum of {/ ; yeT} in (J(A), <=>. 

Let {A, Q} be .OJ-directed and Ii912ef(A). Then /x o J2 4= 0, since the relations 
aelu bel2 imply xelxnl2 for each xeL(a, b) * 0. By the former result, 
/j n / 2 is the infimum of {/,.,/2} in </(-4), £>. Let {/y ;y er} £ / ( ^ ) . Denote 
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by if the set of all g-ideals of <-4, Q} containing f) Iy. By the first result, A e Sf, 

thus Sf 4= 0. Then J = (\£f is a e-ideal of < 1̂, £>. Clearly J is the supremum of 
{Iy; y e T} in C/(-4), £>. The proof is complete. 

Corollary. Let Q be a supremal relation on A. Then <̂ 4, g> is principal and, 
moreover, there exists I(M)for each 0 4= M c A. 

Proposition 6. Lef Q be a supremal relation on A. If ($(A), £> contains the least 
element, then it is an algebraic lattice and the finitely generated Q-ideals are its 
compact elements. 

Pro,of. If (</(A), £ > contains the least element, then by Proposition 5 it is a com­
plete lattice. By Corollary of Proposition 5, CA, Q} is principal and l(M) exists for 
each 0 4= M £ A . 

Let I e /(A). Then clearly I(x) £ I for each x e I. Hence U I(x) .= I. As x e I(x), 
xel 

also I £ U l(x), thus I = U I(x). Now U J(*) is a £-ideal of <Ai, £>, hence I = 
xef xel xel 

= U -*(*) = Vf(x) (where V stands for the supremum in the lattice <</(-4), £>). 
xel xel 
Let a e i and I(a) £ VIy for some Iy e </(A), yeT.By the proof of Proposition 5, 

yer 

VIy = I( U Iy), i.e. a e 1(a) £ VIy = I( U -Ty). By Proposition 2 and Proposition 5, 
yeT yeT yeE yeE 

f(A) is the algebraic closure system with M -* I(M) as an algebraic closure operator 
on A (see [4], Theorem 1.2). This means that there exists a finite subset M of U Iy, 

yeE 
n 

such that a e I(M). Now there exists a finite subset {yu ..., yn} _= F with M s= U Jy,« 
n n n i—1 

This yields a eI(M) £ I( U^yi) = VJyo 1e. I(a) £ VIyi. Thus 1(a) is a compact 
i = i i = i i = i 

element in <</(-4), £ > for each a e A. As £ is supremal, each finitely generated 
g-ideal is principal, which completes the proof. 

Notation. Let Q be a binary relation on A. We introduce operators 

S£,L\2A - {0} -> 2^ 
by the rules 

58 (X) = {ae A; a Q x for some x e l } , 

L(X) = JSf(K) u X . 

If g is supremal on A, we introduce operators «9", <S : 2A - {0} -» 2^ by 
«9%K) = {a e A; a = s(x, j ) for some xeX, yeX, and ^-supremum s(x, j)} , 

S(K) = Sf(X) u K . 
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Lemma 3. Let Q be a binary relation on A and 0 4= X e Y £ A. Then 

Xc=L(X) c L ( y ) . 

ffg is also supremal on A, then 

X s S(X) c S(Y). 

The proof is clear. 

Notation. Let Q be supremal on A and 0 #= X c A. Define (SL)1 (K) = 
= (SL) (X) = S(L(X)) and for any integer n recursively 

(SLy+1(X) = (SL)((SLf(X)). 

Analogously, for the operators Sf and S£ let us write (SfS£)v (X) = (SfS£) 

(x) = sr{&(x)) if :s?(x) * 0 and (&&)"+* (X) = (ssse) ((sssey (x)) \{se<lsrse)a 

(x)) * 0. 
00 

Proposition 7. Let Q be a supremal relation on A. Then I(M) = \J (SL)n (M) 
for each 0 4= M <= 4 . n=1 

00 

Proof. Let M be a non-void subset of A. First we prove that IM = U (SL)n (M) 
is a g-ideal <A, Q}. . n=1 

Let a e A, x e IM and a Q x. Then x e (SL)n (M) for an integer n, thus a e 
e L((SL)n (M)) and, by Lemma 3, a e (SL) ((SL)n (M)) = (SL)n+1 (M). Hence a e IM. 
If i, j e IM, then there exist integers n, m with i e (SL)n (M), j e (SL)m (M). By Lemma 
3, for k = max {n,m} we have i, j e (SL)h (M), thus s(i, j) e (SL) (SLf (M)) = 
= (SL)k+1 (M) e IM for each ^-upremum s(i,j) of i,j. Hence U(i,j) r\IM 4= 0, 
thus IM is a g-ideal of <A, Q}. Clearly M £ IM. 

It remains to prove IM = I(M). Let I be a g-ideal of <A, Q} with M £ I. From (Ix) 
and Lemma 2 we obtain (SL) (M) c J. By induction we can easily extend it to 
(SL)k (M) c I for each integer k, thus IM e I, i.e. IM £ I(M). The converse inclusion 
is evident, thus IM = I(M). 

Corollary. Let Q be a reflexive and supremal binary relation on A. Then I(M) = 
oo 

= U (y&f (M)for each non-void subset M of A. 

Remark. From Proposition 7 we can derive an explicite description of the suprema 
of {ly; y e F} in if (A), c > in the case Q is supremal on A. Indeed, 

V I , = U(SL)»(UL). 
yeE n-\ yer 
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3. SPECIAL BINARY RELATIONS 

For some special binary relations frequently used in mathematical investigations 
the set of g-ideals can be characterized more precisely. 

A binary relation Q on the set A is called complete, if either a Q b or b Q a is 
satisfied for each a, be A. Clearly, Q is complete if and only if its symmetrical hull 
is a universal relation on A. 

Proposition 8. If Q is a complete binary relation on a set A, then 
(a) <A, £> is principal and 1(a) = {x e A; x t(g) a} for each ae A. 
(b) Every finitely generated Q-ideal of <A, Q} is principal. 
(c) Each Q-ideal of <A, g> is prime. 
(d) </(-4), ^} is a chain. 

Proof, (a) Le Q be a complete relation on A. Then a Q a for each ae A, i.e. Q is 
reflexive. If a, be A, then a Q b or b Q a. As a Q a, b g b, it implies a e U(a, b) or 
b e U(a, b). Suppose a e U(a, b). If c e U(a, b), then age, b gc, thus a = s(a, b). 
For b e U(a, b) clearly b = s(a, b). Thus g is also supremal and, by Corollary of 
Proposition 5, <A, gy is principal. For a e i fix denote M = {xeA; xt(g)a}. 
Clearly a e M. 

If be A, xe M, b g x, then there exist a0, ..., ane A with a0 = x, an = a and 
ai-i Q ai f ° r i = !>•••> H- Thus b g x implies b t(g) a, i.e. b e M. If i,j e M, then 
either i e U(i,j) or j e U(i,j). Hence U(i,j) n M =j= 0 and M is a o-ideal of <A, o> 
containing a. 

Conversely, let I be a o-ideal of <^4, g> containing a. If f e M , then tgax, ... 
..., #,._! g an = a for some al5..., aw e A. As a e 7, it is also an^1 e I and, inductively 
by (Ij), tel. Hence M - 7, i.e. M = /(a). As a e A was chosen arbitrary, the state­
ment (a) is proved. 

(b) By Corollary of Proposition 5, there exists finitely generated tO-ideal l(al9..., an) 
for every finite subset {at,..., an] of A. Without loss of generality, suppose a1ga1. 
Then clearly I(ai9 ..., an) = I(a2, ..., an). With respect to the finiteness of 
{al9..., an}, by n — 1 steps we obtain /(a-.,... , a„) = I(at) for some i e { 1 , . . . , n}. 

(c) Let 7 be a tO-ideal of <Al, gy and i, j e A. As g is complete, f e L(i, j) or j e 
e L(i, j) is fulfilled. Then 0 4= L(i, j) £ J implies ielorje I, thus / is prime. 

(d) Let J, J be g-ideals of <A, g>. By Proposition 5, 7 n J is also a £-ideal of 
<A, e> and by (c) I n J is prime. As / n J .= 7 n J, by Proposition 4 we obtain 
/ S / n / s J o r J e / n / c / , thus </(-4), <=> is a chain. 

Remark. If g is complete on 4 , clearly S(X) = X for each 0 4= X £ A. As e is 
00 

also reflexive, we have L = S£. Then by Proposition 7 we have 7(M) = (j &n(M) 
00 « = 1 

and by Proposition 8, { x e i ; x f(g) a} = U ^"({a})• 

286 



Definition 5. Let Q be a binary relation on a set A, c e B £ A. We call c the Q-
greatest element of B, if b Q C is true for all be B. 

An element de Bis called Q-maximal of B,if d Q b is true for none of the elements 
b e B, b * d. 

We say that <A, Q} satisfies the Q-maximal condition if each non-void subset of A 
has a o-maximal element. 

Lemma 4. Let B be a semi Q-ideal of (A, Q} with the Q-greatest element be B. 
Then B is the principal Q-ideal and B = 1(b). 

Proof. If x, y e B, then x Q b, y Q b and it means b e U(x, y) n B. As B is a semi 
g-ideal, B is a g-ideal of <A, £>. Further, if / is a £-ideal of <A, £> containing b, 
then t £ b implies tel for each r e A. However, t Q b is true for each f e B, thus 
5 c J . Hence B = 7(b). 

Lemma 5. Every Qu-directed subset B in a binary relational system (A, Q) has at 
most one Q-maximal element. If such an element exists in B, it is at the same time 
the Q-greatest element of B. 

Proof. If B is a gw-directed subset of A and a, b e B are ^-maximal elements of B, 
then a Q t, b Q t for each t e U(a, b) n B 4= 0, thus it remains only a = t = b. Let B 
have a ^-maximal element m. If xe B, then there exists s e U(x, m) n B since B 
is gu-directed, i.e. x Q S and m Q S. AS m is ^-maximal, we have m = s, thus x Q m. 
As JC was chosen arbitrary, m is the ^-greatest element of B. 

Proposition 9. Let <A, $> satisfy the Q-maximal condition. Then each Q-ideal 
of {A, £> is principal and has a Q-greatest element. 

Proof. By Proposition 1, each g-ideal J of <A, o> is gw-directed and, by Lemma 5, 
I has the ^-greatest element because <A, Q} satisfies the tO-maximal condition. By 
Lemma 4, I is principal. 

Definition 6. Let <A, Q}, <B, a} be binary relational systems. A homomorphism 
of (A, Q} into (B, a} is a mapping h of A into B such that a Q b implies h(a) a h(b). 
If h is a surjective and injective homomorphism of <A, £> onto <J5, a} and h""1 is 
also a homomorphism of <£, o-> onto <A, t0> we call h an isomorphism of {A, Q} 
onto <#, (T> and wirte <>1, £> = <£, cr>. For this definition see e.g. to [5]. 

Notation. If (A, Q} is principal, then by Lemma 1 the mapping J0 :a -> 1(a) 
is a homomorphism of <A, g> onto <«/o(^)» --->• Denote by 6>0 the equivalence 
relation induced by J0 on A. By the notation introduced in [5], <A, c?>/<90 means 
the binary relational system <A', g'>, the support A' of which is the factor set Aj&0 

and the relation Q' on Aj&0 is defined by X, Ye AjO0, X Q' Y if and only if x Q y 
for some x e l j e Y . 

Denote by [a] the class of Aj©0 containing the element a. 
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Proposition 10. Let {A, (?> be principal. If each principal Q-ideal of <A, g> has 
the Q-greatest element, then <f0(A), £ > £ <A, t0>/<90. 

Proof. Clearly the mapping [a] -* 1(a) is a bijection of A\O0 onto «/0(-4). Sup­
pose a, be A, [a] g' [ft]. Then there exist a' £ [a], ft' e [ft] with a' Q ft'. By Lemma 1, 
I(a') £ I(ft')» hence I(a) £ I(ft) and the mapping [a] ~» I(a) is a homomorphism. 

Let 1(a) £ I(ft). Denote by c the ^-greatest element of I(ft). Then a Q c, ft Q C and 
c € I(ft), i.e. I(ft) .=, 1(c). Clearly 1(c) £ I(ft), thus I(ft) = 1(c). From a Q C we have 
[a] e' [c] and from I(ft) = 1(c) it follows that [ft] = [c], thus also [a] @' [ft]. 
Accordingly, also the converse mapping of [a] -> I(a) is a homomorphism of 
<A,Qy\0o onto </ 0( i l ) , =>, thus </0(-4), £ > ~ (A,Qy\O0. 

Corollary. Let <A, #> ftc a principal binary relational system satisfying the 
Q-maximal condition. Then (#(A), c > is a lattice if and only if <A, o>/<90 is 
a lattice. 

This follows directly from Proposition 10, since by Proposition 9 each £-ideal 
of (A, Qy is principal and has the ^-greatest element. 

It is well-known (see e.g. [1]) that for a partial order _- the mapping a -> 1(a) 
is an isomorphism of <AL, ^ > onto (#0(A), .= >. It can be proved that also the 
converse proposition is true. These facts show that partially ordered sets can be fully 
characterized by their sets of principal :g-ideals. This characterization is given by 
the following 

Proposition 11. Let <A, o> ftc a binary relational system. The following con­
ditions are equivalent: 

(a) (A, Qyis principal and a is the Q-maximal element of 1(a) for each a e A. 
(b) J0 is an isomorphism of {A, ^> onto (#0(A), c > . 
(c) J0 is an injective mapping of A onto <?0(AL). 

(d) Q is a partial ordering on A. 

Proof. Clearly (b) => (c) and (d) => (ft). Prove (c) => (a). The existence of J0 

implies that (A, c?> is principal. Let a e A. Suppose the existence of ft e 1(a) with 
a Q ft. By Lemma 1, a Q ft implies 1(a) £ I(ft), from ft e 1(a) we have I(ft) £ 1(a), 
thus 1(a) = I(ft). From the injectivity of J0 we have a = ft. Thus a is the ^-maximal 
element of 1(a) for each ae A. 

It remains to prove (a) => (d). Let ae Abe the ^-maximal element of 1(a). As 1(a) 
is a £t*-directed subset of A, by Lemma 5 a is the ^-greatest element of 1(a). Thus 
a Q a, i.e. Q is reflexive on A. Let a, be A and a Q ft, ft Q a. By Lemma 1 we have 
1(a) = I(ft) and, by Lemma 5, a = ft, since 1(a) = I(ft) has just one ^-maximal 
element. Thus Q is also antisymmetrical. Suppose a Q ft, ft o c for a, ft, c e v4. Then 
1(a) £ I(ft) c I(c), i.e. a e I(c). As c is the ^-greatest element in 1(c) (by Lemma 5), 
we have a Q c. Accordingly, Q is also transitive, i.e. Q is a partial order on A. 
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Lemma 6. Let Q be a transitive binary relation on A. If ae A and a Q a, then 
1(a) exists and 1(a) = {x e A; x Q a}. 

Proof. Suppose ae A and a Q a. Denote M = {x e A; x Q a}. Then ae M and 
x, y e M implies x Q a, y Q a, thus a e U(x, y) n M. If b e M, xe A, x Q b, then 
b Q a and the transitivity of .0 implies x Q a and hence xe M. Accordingly, M is the 
g-ideal of <A, £> containing a. If I is also a g-ideal of <A, g> containing a, then xe M 
implies x Q a, thus, by (lt), xel, i.e. M s J. Hence /(a) = M. 

Proposition 12. For an arbitrary binary relational system <A, £> the following 
conditions are equivalent: 

(a) {A, Qy is principal and 1(a) c l(b) if and only if a Q b; 
(b) <A, 0> is principal and l(a) = {xe A; XQ a}; 
(c) Q is a quasiorder on A. 

Proof. If Q is a quasiorder, by Lemma 6 we obtain the implication (c) => (b). 
Suppose (b). Then 1(a) £ 1(b) implies a Q b, the converse implication is given by 
Lemma 1, thus (b) => (a). Suppose (a). 1(a) ^l(a) for each a e A, Q is reflexive. Let 
a, b, c e A and a Q b, b Q C. By Lemma 1 we obtain 1(a) £ 1(c) and the assumption 
(a) implies a Q C, thus Q is also transitive. Thus also (a) => (c), which completes the 
proof. 

Proposition 13. Let Q be a quasiorder on A. If Q is uniquely supremal on A, then 
(f0(A), c=>^<A , o> . 

Proof. Let Q be uniquely supremal on A. As Q is reflexive and transitive, from 
unique supremality we have also the antisymmetry, thus Q is a partial ordering on A 
and, by Proposition 11, (Jf0(A), <= > £ {A, Qy. 

Remark. Proposition 13 can be clearly dualized for Q uniquely infimal on A. 

4. EMBEDDING OF RELATIONAL SYSTEMS INTO POSETS 

The concept of a replica for the general case of algebraic structures is introduced 
in [5]. Its modification for the case of binary relational systems is given by 

Definition 7. Let ^ be class of binary relational systems and let <A[, #> be an ar­
bitrary system not necessarily from c€. A homomorphism h of <-4, g> onto a system 
<£>, by e <€ is called an embedding of <A, g> into <& and <Z>, <5> is called a %-replica, 
if for each system <£, /?> e <& and an arbitrary homomorphism g of <-4, g> onto 
<£, /?> there exists a homomorphism f of <£>, <5> onto <£, /?> with g =f. h. 

Denote by 9 the class of all partially ordered sets. It is known (see e.g. [5], § 11.3) 
that 0 forms a quasivariety of algebraic systems. Thus, by Theorem 5 from § 11.3 
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in [5], for an arbitrary binary relational system <A, Q} there exists an embedding 
into & and a ^-replica. In this section we shall give a condition for <A, Q} to have 
a ^-replica < / 0 (A ) , _=>. 

Definition 8. A binary relational system <A, Q} is called strictly principal, if it is 
principal and 1(a) _= 1(b) implies a t(o) b. 

Example 4. If Q is a complete relation on A, then, by Proposition 8 (a), <A, Q} 
is strictly principal. 

If Q is a quasiorder on A, then <A, Q} is strictly principal by Proposition 12 (a). 
If (A, Q} is a finite cycle, i.e. A = {a1,...,an} and ax £ a2»--->flii-i Q an> 

a
nQ

 at (Q neec* not be transitive or reflexive), then 1(a) = A for each a e A and 
a t(o) b is also true for each a, be A, thus <A, Q} is strictly principal. 

Proposition 14. Let <A, Q} be a strictly principal binary relational system. 
Then (f0(A), _=> is a ^-replica and J0 is an embedding of <A, Q} into 0>. 

Proof. By Lemma 1, J0 is a homomorphism of <A, Q} onto (f0(A), _=> e£P. 
Let <P, ^ > e ^ and let g be a homomorphism of <A, o> onto <P, ^ > . Introduce 
the relation f0(A) -• P by the rule /(a) -• g(a) for each a e A. 

1°. If /(a) = 1(b), then a f(g) b, b t(o) a, i.e. there exist a0, ..., an, b0,..., bme A 
such that a0 = a = bm, b0 = b = an and «,_! £ at (i = 1, . . . , n), bj^1 Q bj (j = 
= 1,. . . , m). As g is a homomorphism, it follows that g(a) = g(b) and g(b) 5j ^(a). 
As = is a partial order, g(a) = #(6). Accordingly, the relation -• is a mapping 
of f0(A) onto P. Denote this mapping by f. 

2°. If 1(a) _= 1(b), then a r(^) b because <A, Q} is strictly principal, i.e. there exist 
a0, ...,ane A with a0 = a, an = b, at-Y Q at for i = 1, ..., n. As # is a homo­
morphism, we have g(a) = g(b). Thus the mapping f is a homomorphism of 
if0(A), _=>onto<P , '=>. 

3°. Evidently, f(/0(«)) = /(*(«)) = d(a) for each a e A, thus <A(^)» => is 
a ^-replica and J0 an embedding of <A, o> into &. 

Corollary 1. Let Q be a reflexive binary relation on a set A and let {A, Q} be 
principal. If a principal Q-ideal generated by a e A in (A, Q} is equal to the principal 
t(o)-ideal generated by a e A in <A, t(o)} for each a e A, then J0 is an embedding 
of <.A, Q} into &> and (f0(A), _=> is a ^-replica. 

Proof. If Q is reflexive, then a = t(o) is a quasiorder on A, and by Proposition 12, 
{A, Q} is principal and 1(a) _= 1(b) => a a b, i.e. a t(o) b. As 1(a) is the same in <^4, Q} 
as in <A, a}, it follows that <A, Q} is strictly principal and, by Proposition 14, we 
obtain the result. 
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Corollary 2. Let Q be a complete relation on A. Then the ^-replica (<f0(A), _=> 
of <A, Q} is a chain. 

It follows directly from Proposition 14 and Proposition 8. 

Corollary 3. Let Q be an equivalence relation on a set A. Then the ^-replica 
of <A, Q} is the antichain (i.e. a complete unordered set) (A\Q, <=>. 

Proof. By example 1, <?(A) = A\Q for an equivalence relation Q on A. Then clearly 
1(d) = [a] for each ae A, where [a] denotes the class of the partition AJQ, 1(a) £ 
£ 1(b) is equivalent to [a] £ [b], which is equivalent to [a] = [b], i.e. a Q b. 
Hence <A, Q} is also strictly principal and, by Proposition 14, the assertion is ob­
tained, because f0(A) = /(A) = A\Q. 
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