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FLOWS OF HEAT AND TIME MOVING BOUNDARY

MirosLAv DonTt, Praha

(Received November 27, 1981)

INTRODUCTORY REMARKS

Let R™ stand for the m-dimensional Euclidean space (m = 1) and let D = R™
be an opzn set with a compact boundary B. Given T, T, e R, T; < T}, let

C=Bx<T,T,), E=Dx (T, T,).

In [11] J. Krdl has defined a generalized heat flow for heat potentials derived from
measures concentrated on C. The flow of heat is considered ‘‘leaking through C”,
that is, “through” some part of the boundary of E. That definition makes it possible
to solve the second boundary value problem for the heat equation on E with boundary
values prescribed on C by means of integral equations under very general conditions.
As a byproduct an integral representation of the solution of the first boundary value
problem for the adjoint heat equation is obtained — in the sense of integral equations
the first and the second boundary value problem for the heat equation are adjoint
in this case. In [11] the assumption that E is of the form D x (Tj, Ty) is essential.

The case of time moving boundary is considered in [3], [4], [5] but with the restric-
tion that m = 1 and E is of the form

E = {[x,{]eR* te(a,b), x > (1)} ,

where ¢ is a continuous function of bounded variation on an interval {a, b), or of
the form )
E={[x,f]eR?* te(a,b), ¢,(t) < x < 9,(1)},

where ¢, ¢, are continuous functions of bounded variation on the interval {a, b),
@41(t) < @(1) for te<a, b). Only the first boundary value problem is considered
in [3], [4]- In [5] it is shown that in the case of time moving boundary the first and
second boundary value problems are not adjoint to each other in the sense of itnegral
equations but the first boundary value problem and some special type of the third
boundary value problem are. The assumption m = 1 is essential in [3], [4], [5].
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In the present paper the case of time moving boundary in R™**, m 2 1, is consid-
ered. This is made possible essentially by the work [21] of J. Vesely, where a general-
ized heat potential is defined and studied which is just suitable for our purposes and
corresponds (in an adjoint form) to the flows of heat defined by J. Krél. Using the
method applied by I. Netuka in [16], [17] in connection with the third boundary
value problem for the heat equation on a set of the form E = D x (Tj, T,), we shall
investigate the third boundary value problem for the heat equation but on a set in
R™*! with time moving boundary (note that the same method is used in [5] in the
case m = 1 — we shall only show here that this method is applicable also if m > 1).
The solution is found in the form of a heat potential by means of an integral equation.
Considering a special type of the third boundary value problem the solution of the
first boundary value problem for the adjoint heat equation can be obtained by the
adjoint integral equation.

Let us introduce some notatjons we shall use in the following.

m = 1 will be a given integer, R"*! = R™ x R' will be the Euclidean (m + 1)-
space. Points in R™*! will be usually denoted by [x,t], [£, 7] etc., where x =
= [xp, 0o Xy € =[&4, ..., En] € R™, 1, 1€ RY. We shall write, for [x, t] e R™*!,
6 >0,

Qx, 1;6) = {[&, 1] e R™ 1, I[x, t] - [¢ r]] < 68},
I(x,1;0) = 0Q(x, 1; 8), Q*(x;06) = {¢eR™ |x — ¢ < 6},
*(x;6) = 00%(x; ), I* = I*(0; 1)

(the Euclidean norms in R™ and in R™** are denoted by the same symbol | |-
a misunderstanding is out of questlon)

For a € R we denote
R,={[x,f]eR™" t <a};

for a, fe R}, &« < B we put
R,ﬂ=Rﬂ_R.¢.

G will stand for the heat kernel in R™**, that is, for [x, t] € R**! we have G(x, t) =
=0if t<£0 and

2
(0.1) G(x, t) = (4nt)™™% exp (— I—Z—l—) .
for t > 0. Let us note that G defined in this way differs from the kernel used in [11]
or in [21] by a multiplicative constant. G* stands for the adjomt heat kernel, that is,
G*(x, 1) = G(x, —1), [x, f] e R™*1.

By the term measure on R* we shall always mean a ﬁmtq signed Borel measure
on R*. If p is a measure on R*, then u*, u~, |u| = p* '+ p~ stand for the positive,
negative and total variation of y, respectively, and ||u| = |u| (R¥) denotes the norm
of u. Support of u is denoted by-spt u. If K = RFis a compact set then by a measure
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on K we mean a measure x on R* with spt 4 = K. If K = R*is closed, u is a measure
on R, then le denotes the restriction of u to K, that is, the measure defined by

Hx(M) = (M N K)
for any Borel’M < R*.
For a measure g on R™*! with a compact support define the heat potential U, by

(0.2) Ufx, 1) = G(x = & t — t)dp(&, 1)

Rm+1
for [x, t] € R™** for which this integral exists (finite or infinite; if y is non-negative

then U, is defined on the whole of R™*1). Similarly U} stands for the adjoint heat
potential of u, that is,

(03) - Un(x, t) = G*(x — & t — 1) dp(&, 1)

Rm+1

for [x, f] € R™*! fot which integral in (0.3) exists. The potentials U,, U} are infinitely
differentiable on R™*' — spt u; U, and U} solve the heat and the adjoint heat
equation, respectively, on R™*! — spt p, that is

jzlajuy — Ops1U, =0, ‘Zlan,’f + 0pe1Up =0
< =

on R™** — spt pu (9, denotes the derivative with respect to the j-th variable).

Let us state now an assertion and a simple consequence concerning the continuity
of the heat and adjoint heat potentials which will be useful in the following (see, for
instance, [12], [13], [15]).

0.1. Theorem. Let u be a non-negative measure on R™*! with compact support.
If0 + K < R™*! is compact then the restriction U,,IK of U, to K is finite and con-
tinuous on K if and only if

(04) tim. (sup{ f " WA, 15 ) des [, 1] GK}) —0,

d
where (for [x,f] e R™*%, ¢ > 0)
Alx, t;¢) = {[6,7]eR™ Y G(x — &, t — 1) > ¢} .
Similarly, the restriction of Uy to K is continuous on K if and only if

03 lim (sup { I:’y(A*(x, ') de [, GKD o,

where
A*(x, t;¢) = {[¢,t]eR™ Y GH(x =&t — 1) > c} .
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0.2. Corollary. Let u be a non-negative measure on R™** with compact support
and suppose that U”|K (UX|x) is continuous on a compact K = R™*'. If v is a non-
negative measure, v < u (that is, (M) < p(M) for any Borel M = R™*') then
U,|x (U3|x, respectively) is continuous on K, too. Particularly, if D = R™*! is
closed then U, p|x (U p|x) is continuous on K.

In what follows let a, b € R! be fixed numbers, a < b. Further, fix an open set
E < R,,. We shall denote

(0.6) B =0E N Ry,

and we shall always suppose that B =+ 0, B is compact.

% = %(B) will stand for the set of all continuous functions on B, # = %(B) for
the set of all bounded Baire functions on B and &' = .%'(B) for the set of all (ﬁnite,
signed, Borel) measures on B. Further, denote

(0.7) By=BnR,, Bo=RB(B)=1{feB f(x,1)=0V[x,(]eB - By},
%o = o(B) = 6(B) N By(B), Bo = By(B) = {ue®; |u| (B~ By =0}.

%.and %, endowed with the supremum norm (which we shall denote by |...||) as
well as ' and %, with the norm ||...|| are Banach spaces.

By 2 = 9(R™*!) we denote the set of all infinitely differentiable functions with
compact support in R™*!. Further, for [x, f] € R"*!, x € R*, we shall denote.

D(x,1)={peD; [x,t]¢spto}, 2,={peP; spto = R,},
D%, 1) = Dy D(x,1).

In what follows we shall also use the notation V, V, where
V=101 0 Oms1]> V =1[015..05 0] -

For a given measure y € %'(B) let us define a functional (a distribution) H, on 2, by
(08) <o, Hy = — J f (QUL(x, 1) Do(x, 1) — Up(x, 1) dmsr0(x, 1)} dx dt,

' E
¢ € 4. In virtue of the estimates («, € R!, a < f)

(0.9) JL lajG(x,t)|dxdt§jz7—t\/(ﬁ—a), 1<j<m,

(0.10) J' L. Glx, fydxdt < f—a -

the integral in (0.8) always exists and is finite so that we can define a functional H,
by (0.8) indeed.
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For k = 0 let £, stand for the k-dimensional Hausdorff measure; in the case
k = 0 we mean by 5, the counting measure.
For t € (a, b) let us write, for a while,

‘ E(t) = {xe R™; [x, ] € E}

and suppose that E has a smooth boundary (in R™**) and that for any te€ (a, b)
either E(f) = @ or E(f) = R™ or E(t) has a smooth boundary (in R™). Further, suppose
that the potential U, and its first derivatives can be extended continuously from E
to E. Let ¢ € 9, and let F,, F, be defined on E by

Fl = Fl(x’ t) = [(p alU”, ey (p amU“] 9 F2 = Fz(x, t) = [0, ooy (pU“] s

where [@(x, £) 0,U,(x, 1), ..., @(, t) 8,U,(x, t)] € R™, while [0, ..., ¢(x, ) U,(x, t)] €
€ R™*!, Further, let N = [Ny, ..., N,,, N,] stand for the exterior normal of E and

n = [ny,...,n,] for the exterior normal of E(f) (for a given t € (a, b), provided
E(t) + 0, E(t) £ R™). We see that

VF, =j;6jU” 0;0 — Uy Bms10 + (U, 0ps 10 + ¢ 8,41U,) -

Since ¢ € P, and U,(x, t) = 0 for t < a, we obtain

(0.11) (@, H) = -H VF, dx dt + ﬁ VF, dx dt =
E E

b
=—J< VFldx)dt+JJ'VF2dxdt=
a E(t) E

b m
= —J‘<.[‘ (pZaJU"njd”m_l)dt+J¢N‘U“d%m.
[’} B

a E(r) =1
Consequently, H, can be regarded as a weak characterization of a combination of
the normal derivative of U, ““in the x-direction” and a certain multiple of U, on B
(on B we do not consider directly the values of U, but “boundary limits of U, from
within E”!). ’

If E is of the form E = D x (a, b) (D = R™ open) the functional H, is a weak
characterization of the normal derivative of U, and H, is termed the heat flow
then — compare [11]. For the expression of H,, in the case m = 1 see also [5].

For [£ 1] € R™*! let §,, stand for the Dirac measure (on R™*') concentrated
at [¢£, 7). Take notice of the fact, which follows from the Fubini theorem, that

(0.12) o {p,H, =
_ - L ( j J’ {éla,.c(x & 1= 1) 0,0(% ) = G(x — & t 1) By 10(x, 1)} dx dt) .

- due ) =f (9, Hay > iz, 7).

B
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We see that it will be useful to investigate the behaviour of Hj, ([£, 7] € B). This is
one of the reasons for considering the operator W defined in this way: for ¢ € 9,,
[¢, 7] € R™*1, put

== Ji[ {ji@jG(x — &t =1)3;0(x, 1) = G(x — & t = 7) G4 10(x, 1)} dx dt .

Suppose, for a while, that ¢ € 2,(&, t) and employ the change of variables ¥ = —t
in the integral in (0.13). At the same time denote ¥ = —1, @(x, {) = ¢(x, —1) and

E_={[x1t]; [x, —t]€E}.

Then we have

(0.14) W(p(é, 1:) =

= —_U { 3 0;G(¢ — x, T —1)0,0(x, —=1) + G(¢ — x, T — 1) gg%_—_t_)} dx di =
L=

= (dn)™"2 T§(E, 7).,

where T'is the operator defined in [21] and considered here for E_. In [21] T@(¢, T)
is defined for each @ € (&, %). Considering now only ¢ € 2,(¢, ) then, in fact, we
ignore the part of dE where ¢t = b. If we consider only [&, 1] € R™*! for which 7 = a
then, by the definition of the kernel G, the part of 0E, where t = a, is ignored. We
see that in this case the condition (4) from [21], that is, the compactness of E, can
be replaced by the condition that B defined by (0.6) is compact. With respect to the
relation (0.14) between W and T we may transfer to our situation many assertions
from [21] only after a slight modification without detailed proofs.

1. PARABOLIC VARIATION AND OPERATORS W, W, W, H

As in the introduction, let E = R,, be a fixed open set such that B defined by (0.6)
is compact and B #+ 0. This section is devoted to the investigation of basic properties
of operators W, W, H and concepts which are necessary in this connection. Assertions
stated here are, for greater part, essentialy known, but they were stated either for the
case of cylindrical sets in R™** ([11]) or for the case m = 1 ([3], [4], [5]) or in an
adjoint form ([21]). For our purposes it will be possibly useful to give here a survey
of some assertions concerning W, W, H and related concepts (a.nd their definitions).

One of the questions concerning the operator W is the following: Given [¢, 7] e
€ R™*1, Under which conditions can Wo(¢, t), as a functional on 9,, be represented
by a measure? That is, under which conditions is there a measure p,, on R™*! such
that .

Wo(&, 1) = |o(x, t) dpg o, 1)

for any ¢ € 9,?
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First let us show another form of expression of Wo(¢, 7). For this purpose we intro-
duce the following notation. For a given [&, 7] € R™*! let S, , be a mapping from
(0, ) x (0, o) x I'*(I'*is the boundary of the unit ballin R™) into R™*! defined by

- 2
(11) g ,t(Q’ n, 0*) = [é + 90*, T+ i—]
Ul
¢>0,n>0,0%eI*). For a given [¢,7] € R**, n > 0, 6* e I'*, denote
5 +1 0* *
E(n, 6*) = {o > 0; S;.(e,n, 6*) € E} .

1.1. Lemma. For any [£, 7] € R™*Y, ¢ € 9, we have

-~ _ * © _ 0 ~
(1.2) Wo(é, 1) = 3n "'/2J d%m_l(ﬂ*)J e ymi-1 r — ¢o(S;, o, n, 6%)) de -
‘ re 0 J En.67) 0Q

Proof of this lemma is quite analogous to the proof of Lemma 1.2 from [21] and
we omit it.

Let us introduce the following notations. For [¢, 7] e R™*', 5 > 0, 6* e I'*, let
2
(13) HY (1) = {[é + 00%, T + g;:l, 0> 0} .

A point [x, t] € H} (n) is called a hit of H} (1) on E if for any r > 0

(1.4) H(HT(n) 0 Qx, ;7)) " E) >0
and at the same time
(1.5) H((HE(n) n Qx,t;7)) — E)> 0.

For a given r > 0 (r is allowed to be + ) i (6*, ; r) will stand for the number
(finite or infinite) of hits of H} (1) on E which are contained in the set

[@*¢&r) x (r,t+1)]NR,.

Note that in the case r = + oo i (0%, ; r) is the number of all hits [x, £] of Hj ()
on E for which ¢ # b. In any case all hits of H? (1) on E lie on the boundary of E.
Thus in the case T 2 a, A, (0%, #; ) is the number of all hits [x, 1] of Hf(r) on E
for which [x, ] € BN R,.

The following assertion is fundamental for our purposes.

1.2. Lemma. Given [& ] e R™ Y, r > 0. The function fi; (0%, ;1) is a mea-

surable function of the variables (0*, n) on I'* x (0, co) with respect to #,,_, @ # ;.
If we denote

(L6) F(E ) = J' dot,_ (0% j eIt 7, (0%, s r) dn
Jre 0
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(1L7) 2" ={9e2y(&1); [o] =1, spto = [@*&7r) x (s, + 1)]}
then
(1.8) sup {Wo(¢, 1); € D'} = dn~ ™2 (¢, 7).

Proof of this assertion is quite analogous to the proof of Lemma 1.3 from [21]
and we omit it, too.

1.3. Note. Further we shall also write #(&, 7) instead of §°(¢, 7). The value #(¢, 7)
is termed the adjoint parabolic variation of E at [£, t]. As we have already noted,
if © > a then 7, (0%, n; o) is the number of hits [x, f] of Hi (n) on E for which
[x, f]€ B A R, since in this case all hits of H} (1) on E lie on 0E — R,. This is not
valid if T < a since then it may happen that there is a hit of H} (1) on E which lies
in R, — B. In the sequel we shall deal with functions on B and with points in B
which are hits but not with hits outside B. For this reason we shall restrict, in many

cases, our considerations only to the case T = a. For example the definition of Wf
(see below) is this case.

1.4. Given [¢, 1] e R™*', © 2 a, suppose #(&, 1) < oo. Then
(1.9) A (6%, 3 0) < 0

for almost all (6%, 7)e I'* x (0, o) (with respect to #,_, ® #,). For (6*,1) e
eI'* x (0, oo) satisfying (1.9) and for ¢ > 0 put

sed0%m0) =0 (= £1)

provided there is a § > 0 such that

.#1<{|:é+(g+au)9*, T+(94;1_’10“)f:|; ue(O,&)}nE)=0,

#1<{[§+(g—au)6*tt+(—g——z:—uz:|; ue(O,é)}—E):O.

Further we put (provided (1.9) is still fuifilled)

Sg':(e*, ”, 0) = ‘_1
if there is a 6 > 0 such that

H, ({[6 + ub*, ¢ +§$]; ue(O,&)}_—E) =0.

In all the other cases (for 6* e I'*, > 0, ¢ 2 0) define

se(0%,1m,0)=0.
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Let f € #(B). For (6*,n) e I'* x (0, o) we define ([£, 7] is still the given point for
which 7 2 g and #(¢, 7) < )

2
(1.10) ) 254 0%,n) = Ea:f(f + 0%, 7 + —3;) se. (0%, 1 0),

where the sum on the right hand side extends over all ¢ > 0 for which s, (6%, 1, ¢) +
#* 0 and

2
t+Z b
4n
(if there is no such ¢ we put 257 (6%, 1) = 0). For ¢ € 9, put further
(1.11) 57 (0%, m) = 57 (0%, 1) + (&, 7) 5¢.(6% 1, 0)-

It is directly seen from Lemma 1.1 that the following assertion holds.

1.5. Lemma. Let [£, 7] € R™*', © 2 a, and suppose that

5(¢,1) < .
Then for every ¢ € 9,

1.12 Wo(E, 1) = 4n~™2 | dof,,_ (6% we—nﬂm/z—x $55(0%, 5) dn .
@
r+ 0

1.6. Lemma 1.5 particularly implies that £ is a measurable function with respect
to the measure #,,_; ® #; on I'* x (0, ). In the case ¢ € P,(¢, ) the function
%" is measurable as well. Since Z%° does not depend on the values of f (f € #(B)) on

B (0Ry v {[& 1]})

one can obtain by passing to the limit that Z%* is measurable with respect to #,,_; ®
® 3, on I'* x (0, o) for any f € B(B). Hence s; (6%, 1, 0) is a measurable function
of variables (6*, n) with respect to J#,,_; ® #; on I'* x (0, ) (thisis seen in the
case a < T < b; butif t = b then s¢(*, +, 0) = 0).

It is seen from the definition of 25" and of 7, , that for f € #(B) with |f| < k on B
the inequality

(1.13) |Z57(6*, m)| < kit (6%, 1, o)

is valid. (1.13) makes it possible to define an operator W in the following way. Let
[¢, ©] € R™*, © = a and suppose (&, ©) < . For f € #(B) we then define

A1) W) = f

r

dw,,,_,(e*)j e ™21 25%(0%, 1) dn .
. 0

From (1.14), (1.13) and (1.6) it follows immediately that
(1.15) g IWf(f, 1)] S kin~™2 (¢, 1)
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provided f € #(B), |f| < k on B. Accosding to (1.15) it follows from Lemma 1.2
that

(1.16) sup {Wf(&,1); fe®B, |f| £1} =
= sup {Wf(&,1); fe%bo |f]| S 1} =372 8(¢, 7).

As we have noted, if [£, 1] € R"*!, © 2 a and #(&, 1) < oo, the function s, (-, *, 0)
is measurable on I'* x (0, o) with respect to #,,_; ® #;. In this case we define
a value FE(f, 1.'), which we call the parabolic density of E, by

(1.17)  Pg¢, 1) = —Jﬂr'"‘/zJ‘

r

dst,,- 1(0*)“‘ e~ ™ s, (6%, 7,0)dy.
. 0

It is easy to see that 0 < Pg(¢,7) < 1 and from (1.14), (1.12) and (1.11) we obtain
the following relation between W and W-

(1.18) Wo(e, ) = Wole. 1) — 9(6.0) Pel&.7), (oe2y).

Let us now find another expression of W and show some properties of the adjoint
parabolic variation .
Since B is supposed to be compact there is a finite o’ > O such that

(1.19) B < @%(0; ') x R'.
Fix this &’ and denote
(1.20) E, = En[Q*0;a’) x R'].

Recall that the perimeter (M) of an open (or Borel) set M = R™*! is defined by
(1.21) #(M) = sup {J:[ Vw(>, ) dxdt; w = [wy, ..., Wpi], W€ 9, ]wl < 1} .
M

One can prove the following assertion in a way quite similar to the proof of Proposi-
tion 2.3 from [21].

1.7. Proposition. Let the points [x;, t;,]e R™*', i = 1,2,...,m + 2, be in general
position (that is, not situated on a single hyperplane) and suppose that

H(xpt)< o0, i=12,...,m+2.
Then any f > max {t;; i = 1,2, ..., m + 2} satisfies
P(E, — Rp) <
(where (1.19) is valid for o’ and E,. is defined by (1.20)).

1.8. We shall be concerned, in the sequel, only with the case the adjoint parabolic
variation # is finite — everywhere or on a “‘sufficiently large set”. This “‘sufficiently
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large set” will be R, or R,,. If # is finite on R,, (or R,,) then 2(E,. — R;) < oo for
any B > a (E,. is defined by (1.20)). Note that it may happen that # is finite on R,
but #(E,.) = +co. In what follows we shall be concerned with the case when the
adjoint parabolig variation ¥ is even bounded on R,,. The author does not know
if in that case 2(E,.) < oo or if it may happen that # is bounded on R,, but #(E,’) =
= +o0.

Henceforth we shall usually suppose that there is o' > 0 for which (1.19) is valid,
such that

(1.22) 2(E,) < o

holds (where E,. is defined by (1.20)).

Note that quite analogously to the proof of Proposition 2.1 from [21] it can be
shown that under the condition (1.22) we have

(&, 1) <

for any [£, 7] € R™*, [¢, 1] ¢ B. Thus we see that in this case Wf is defined for any
fe€ R at least on R"*! — (R, U B).

Recall now some facts concerning sets with finite perimeter that we shall need in
the following (for further information on sets with finite perimeter see, for example,
[1], [2), [7])- A vector 6 eI’ = I'(0, 0; 1) is called the exterior normal of a set 4 =
< R™*! at a point [x, 1] € R"*! in the sense of Federer provided the symmetric
difference of A and the half space

M= (& ] eR™ (6 <] - [ 1])0 <0}
has the (m + 1)-dimensional density O at [x, ¢], that is, -
fim Hme (%, t57) N [(A=M) U (M~ 4)]) _ 0.
r-0+ Homs1(Qx, 15 7))

In what follows we shall write N = [N;,...,N,,, N,] = N(x,t) = N4(x, 1) = 0 if
there is an exterior normal 0 € I at [x, t]; in the opposite case we define N = N(x, )
to be the zero vector. It is known that if (4) < oo then

Ho({[x, 1] e R™*1; N4(x,1) £ 0}) < 0 .

Note that in any case

{[x, ] € R™*1; NA(x, 1) + 0} < 04.

Further, if 2(4) < o and if w is an (m + 1)-dimensional vector function, w =
= [Wyyee0o Wns1]s w;€ D (j = 1,2,..., m + 1), then the Gauss-Green formula

J‘ w(x, {) N(x, 1) dot,(x, t) = J:[ Vw(x, 1) dx dt
oa 4
is valid. -

156



Let us return to our set E. It is easily seen that if (1.22) is valid for some o' with
(1.19) then (1.22) is fulfilled for any o’ > 0 for which (1.19) holds. Suppose (1.22) is
fulfilled and let w = [wy, ..., W,4,] be a vector function such that w;e 9 (j =
=1,2,...,m+ 1) and w(x, t) = 0 whenever either t = a or t = b. Denoting
N = NE and

(1.23) B = {[x,t] € B; N(x,1t) + 0}

we see that o#,(B) < oo and
(1.24) J‘J‘ Vw(x, t) dx dt = f w(x, t) N(x, t) d.;f’,,;(x, 1) =
= J.Bw(x, 1) N(x, t) do,(x, 1) .

In the rest of the paper N = N(x, t) = [Ny, ..., N,, N,] will always stand for the
exterior normal of E in the sense of Federer.

Now let [£,1]e R™, © 2 a, ¢ € D,(¢, ©) and suppose #(¢, 1) < oo. Then it is
seen from (1.18) and the definition of W that

(1.25) Wo(¢, ) = Wo(&, 1) =
= _'[I {X0,6(x~¢& t = 1)0;0(x, 1) = G(x = & t = 1) Ops19(x, )} dx dt

j=1
(note that one could define We(¢, 7) by (1.25) for ¢ € 9,(¢, 1) without the asumption
#(¢,t) < oo — cf. the definition ot T'in [21] — but we shall not need it). Denoting

F(x,t) =[—o(x,1)0,G(x — &, t — 1), ..., —0(x, 1) 0,G(x — &, t — 1),
o(x, 1) G(x — &, t —1)],

we have, with respect to the assumption ¢ € 9,(¢, 1), T 2 a,

(1.26) Wo(¢, 1) = j J' EVF(x, 1) dx dt = '[ FN ds#,, =

B

- f o(x, 1) {N,G(x — & 1 — ) —.’__"Zle 8,G(x — & t — 1)} dou(x, 1).

Let {f,} be a sequence of f, € %, |f,| < k, which is pointwise convergent to an f
on B. Then it follows directly from the definition of W (since #(¢, t) < o) that
Wf(& 1) = Wf(E, ©) (n > ). As we have noted, under the assumption (1.22) we
have .#m(ﬁ) < oo and thus the same assertion on the passage to the limit is valid
for the integrals on the right hand side of (1.26) (in this direct way we obtain it in the
case [£, 7] ¢ B; in the case [, 7] € B(#(&, 1) < o0) we use the result of Lemma 1.2).
Taking into account that the value Wf(¢, ) does not depend on the values of f at
[£, ] € B with © = b and if [¢, ] € B the value Wf(£, 1) is independent of f(¢, 1)
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(which follows directly from the definition of W), we conclude that for any f € %(B),
[¢,7] e R™*1, 1 2 a (assuming §(¢, 1) < o0) we have

(1.27) ' AR
- J £ ) {NG(x — & 1 — 7) —_}::le 0,G(x = & 1 — 1)) dn(x, 1) |

(B, is defined by (0.7)). According to the fact that #,,(B) < oo one can deduce from
the expression (1.27) of W that Wf as a function of the variables [£, 7] is an adjoint
parabolic function (i.e. one solving the adjoint heat equation) on R™*! — (R, U B)
(if we regarded (1.27) as a definition of Wf then Wf would be adjoint parabolic
even on R"*! — B).

Note that analogously to Lemma 3.2 from [21] it can be proved that the adjoint
parabolic variation # as a function of variables [6, 1:] is lower semicontinuous on
R™*1 — R, (it is seen from the expression of Wo(¢, 1) for ¢ € D,(¢, ) that Wo is
continuous at [¢, t] also if [£, 7] € B).

The following assertion follows easily from Lemma 1.2 and from (1.25), (1.27).

1.9. Proposition. Let [£, t] € R™*', © = a. Then the functional W. (&, 1) is repre-
sented by a measure v, . € %'(B), that is,

(1.28) Wi, 7) = f fdve,
. B

for each f € B(B), if and only if the condition
(1.29) #(£,17) <

is fulfilled. If (1.29) holds then the measure v e %'(B) is uniquely determined
and even vg . € Bo(B). If, in addition, (1.22) holds then for any Borel set M (M <
< R"*!' or M < B)

(1.30) v, (M) = ' {NG(x—¢& t— r). - S N;0,G(x =& t = 1)} dotp(x, 1) =

= Weulés 1) = %n‘"'”f dot - 4(6* )f mym2=1 55 (0% ) dp |

where x5 is the characteristic function of M. Further, for r > 0,
(1.31) ‘"'/2”'(?,‘ 1) = |ve | (@%(& r) X(,t+r)=

J. ING(x = & 1= 1) - ZNI 0,G(x = &, t — 1)| dot,(x, 1).
Bon[Q*(&;r) x (t,t+r)] i=1 i
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1.10. Proposition.

(A) If[&,t]eR™, © 2 a, (¢, 1) < 00, I = R™** is an interval, then

(1.32) e (BAI)| 1.
(B) If
(1.33) Vg = sup {8(¢, ); [& t]e B}

then for any [, t]e R™*, 1 2 q,
(1.34) 3(¢,7) < Vg + 22™2.

Proof. (A) can be proved in the same way as Lemma 3.4 in [21].

Suppose V5 < oo (there is nothing to prove in the other case). Then for any
B>a
P(E, "Rp) < 0,

where «' > 0 is such that (1.19) holds, E,. is defined by (1.20) (as we have already
noted, it is not known to the author if under the condition ¥ < oo the condition
(1.22) is fulfilled). Similarly to the proof of Proposition 3.5 from [21] we can
show that (1.34) holds on any set of the form R™*! — R,, where B > a, that is,
(1.34) holds on R™*! — R,. Now it suffices-to note that # is lower semicontinuous.

1.11. Further we shall investigate the boundary behaviour of the potential Wf.
First let us take notice of some simple facts. We shall use, for a while, the following
denotation. For [£, t] € Ry, ¢ € D(¢, 1) let us define

(1.35) WWol(é, 1) =
= — jj {(VG(x — & t — ) Vo(x, 1) — G(x — & t = ) Oppr10(x, 1)} dx dt .
Rp .
Simple calculation yields
(1.36) ol 7) = j f o(x, b) G(x — & b — 7)dx.
RmM
It is seen (as in Lemma 1.1) that for [£, 7] € R,, ¢ € D(¢, ©) we have

(1.37) ot ) =

3
= %R—M/ZJ‘ d”m— 1(0*)‘[ c—n,,m/Z—l dﬂf —a?_ (p(gc,t(g’ n, 9*)) dQ ’
re o

Ro(n,6%) 0Q

where S, is defined by (1.1) and
Ry(n, 0*) = {e > 0; S; (e, m, 0*) e Ry} = (0,2/[n(b — 7)])-
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For a bounded Baire function f on R, and for [£, 1] € R,, (6*,7)e I'* x (0, o0)
Iet us denote

2
lonn) = s (4 o e 4 L),

where ¢ = 2 /[n(b — )], that s,

Fe 0% 1) = £(¢ + 2/[n(b — 7)] 6%, b).
For [¢, t] € Ry, ¢ € (&, 1), we get immediately by (1.37) that

(138)  Wp(E, 1) = 4n 2 j

4ot 1(6%) j e ™1 g (0% ) di.
r* (]

Now we may define ,Wf for any bounded Baire function f on dR, by
(139) (1) = dn2 J' Aot (6%) J‘ e~ 2=1 £, (0%, ) dn .
r+ 0

By passing to the limits in (1.38) as well as in (1.36) we obtain that for any bounded
Baire function f on dR,,

(1.40) W(E, 1) = J’ S8 Gx = & b = 1) dx

(and that, in fact, the function f; . in (1.39) is measurable with respect to #,,-; @ #,
on I'* x (0, c0) and the definition of ,Wf by (1.39) is correct). Thus we find that ,Wf
is the adjoint Weierstrass integral. Many facts concerning the (adjoint) Weierstrass
integral are known. We shall need only one of them — the fact that ,Wf as a function
on R, is continuous there.

Let f, stand for the function from #(B) with f, =1 on B and let g be a function
on 0R, such that g(x, b) = 1 if [x, b] € (OE — B) n R, and g(x, b) = 0 elsewhere
on dR,. Consider now the sum Wf; + ,Wg. For [£, t] € R,, T 2 a, we have, provided
B(¢, 1) < oo, '

(1.41) Wfi(8 1)+ s Wa (2, 7) =

= 47| s 0) [ e % ) + ) .
re 0

Let [¢,t] € Ry, T 2 a and suppose A, (0%, n; 00) < 0. It is easy to see that if
[£, t] € E then

Z55(0% m) + ge 0% m) = 1
and if [¢, 7] ¢ E then
Z55(0% m) + gp. (6% 1) = 0.
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Hence it follows that for [£, 1] ¢ E, © = a (provided #(¢, t) < o)

(1.42) W€, ©) + yWg(E,7) = 0
and for [¢, 7] €E,

(143) W6 %) + Wae0) = a2

ol

d.#m_l(o*)J e "2 tdp = 1.
* 0

Now let [¢, t] € B,7 < b, 8(¢, T) < 0. One can easily verify that if 4, (0%, n; ©) <
< oo then

Z55(0% n) + ge (6% m) = —s(6*, 7, 0)
(s(6*, n, 0) is defined in Subsection 1.4). Hence, for such [£, t] we get
(1.44) Wfi(E, 1) + sWg(&, 1) = Pelé, 7).
According to (1.44) and (1.43) we have, for [&,, 7] € B, 7o < b,

(1.45) lim (W16 7) +sWa(Z, )} =
[&,71)=[&0,%0
[&,1]eE

= (Wf1(&o» T0) + sWg(E0s 0)) + (1 — P&, 7))

and, since ,Wyg is continuous on R,,

(1.46) lim W& 1) = Wil t0) + (1 — Pellon 10)) -

[£,21~[%0,%0]
[&.71eE
In a similar way we obtain, using (1.42) and supposing, in addition, [&o, 7o) €
E(1{m+1 — E)’

(1.47) lim  Wf(& 1) = Wfi(Eo, 10) — Pe(éos 7o) -

[$,11=[50.%0]
[$,7¢E,a<t<b

Now we are in position to prove the following assertion.

1.12. Proposition. Suppose that the condition (1.22) is fulfilled and that

(1.48) R —E)> B.
Then there are finite limits
(1.49) lim W, 1), m W )
[&,21-1%0,%0] [¢,21=[o0,t0] .
[$,T]eE ‘ [&,c¢E,ast<b
Sor every f € €o(B), [€o, T0] € B, if and only if
(1.50) Vs = sup {#(¢,7); [¢,7]eB} < 0.
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If the condition (1.50) is fulfilled then for any [&,, 1o] € B and any f € (B) which is
continuous at [, 10] and f(&o, 7o) = 0 in the case 1, = b we obtain

(1.51) lim  Wf(& 1) = Wf(&o t0) + (&0 7o) (1 — FE(CO, 7)) >
[C,r[]:"-':[]i%to]
(1.52) lim  Wf(E 1) = Wf(& 70) = f(&o» 70) Pe(Eos 7o) -

[&,t1=[Z0,70]
[&,r¢E,ast<b

Proof. According to the Banach-Steinhaus theorem the condition (1.50) follows
from the existence of finite limits (1.49) (also in virtue of the lower semicontinuity
of # on R™*! — R,).

With respect to the linearity of W and to (1.46), (1.47) it suffices to show that
if 73 < o0, [&, 0] € B, f € B(B), f(&, 7o) = 0 and f is continuous at [&,, 7o] then
there is a limit

lim  Wf(¢ 1) = Wf (& o) -

[,71-[Z0,70]
t2a

However, this can be proved in a way quite similar to the proof of Theorem 3.10
in [21] (that is, by a decomposition of f into a sum f, + g,, where f, is a function
which vanishes on a neighbourhood of [, o] and ||g,|| < 1/n).

1.13. Now we are in position to state some properties of the opzrator H and to
define an operator W which, as we shall see, is adjoint to H.

For p € #'(B) the functional H,, is defined on 2, by (0.11). According to the fact
that for [¢, 7] € B, p € 9,(¢, 1)

(1.53) {9, H,,.> = Wo(¢, 1)

it is easy to show by Lemma 1.2 that H;,, _can be represented by a measure in R™**
if and only if

(1.54) (& 1) < .

Suppose now that (1.54) is fulfilied and regard H,, , as a measure. This measure is
uniquely determined by the condition

|H‘,{" (R";+l d Rb) = 0 .

It is easy to see (suppose still [£, 7] € B) that the support of Hj, _ is contained in B
and, by the preceding,
|H,..| (B dRy) =0.

Thus we see that for [¢, t] € B the functional H,, _can be identified with a unique
measure from %g(B) provided (1.54) is fulfilled. Furthermore, it is evident that if
© = b then H,, _is the zero measure. If (1.54) holds then for ¢ € 2,

Wolt, 1) = Wol&, ©) — ¢(&©) Po(&. )
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(see (1.18)) and W. (¢, 1) is also a measure (see Proposition 1.9), W. (&, 1) does not
charge [£, 7] and the norm of W. (&, 1) is equal to 4n~™25(&, 7). This together with
(1.53) gives

(1.55) |Hs, .| = 3n ™2 (&, 1) + Pe(&, 7).
We also know that for u € #'(B), ¢ € 9, (see (0.12)),

<(P: Hy> = ’[ <(P’ H6§,¢> dﬂ(é’ T) .
B

By means of this equality (and of the preceding one) one can prove the following
assertion. Its proof is analogous to the proof of Theorem 1.11 in [11] and we omit it.

1.14. Proposition. H, can be represented by a measure for every p e.@’(B) if and
only if
(1.56) Vg = sup {i#(¢, 7); [¢,7] € B} < .
If (1.56) is fulfilled then that measure is uniquely determined by the condition
(1.57) |H,| (R"** = R;)) =0

and then H, € B,(B). H regarded as an operator on B, (H : pv> H,, H : B, — %)
is then a bounded operator and

(1.58) [H| = sup {3n~™2 5(¢, 7) + Py(¢,7); [£ 7] e B}'.

Note. In the last proposition H is regarded as an operator on % (provided (1.56)
holds) while H, is defined for any u € #'. But it is easily seen that if p e %' is such
that ,yl (BN R,) = 0then H, = 0 and the restriction of H from %’ to %, is natural.
Note also that for any & e R™ we have #(¢, b) = 0 and Pg(¢, b) = 0 and thus the
supremum in (1.58) can be considered as the same supremum but taken over B,.

1.15. Let us now suppose that the conditions (1.22) and (1.56) are fulfilled and that
also the condition (1.48) is fulfilled. Then for [¢, t] € B, f € #(B)

(1.59) Sy Hay > = W& 1) = £(& 7) Pe(é, 1)

(as H, e %, for any pe %’ under the condition V5 < oo, <f, H,) is then defined
for each f € %(B)). Keeping the notation of Proposition 1.9 we have

Wf (&, 1) =J‘ Sfdvg,
B

and the equality (1.59) can be written in the form
(1.60) H,, = ve, — Pg(E,7) 0, -
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Define now an operator W on %(B) by
(1.61) Wf(E,7) = Wf(E 7) = f(& %) Pel, 7).

Note, first, that for f € 8, u € B, we have
(1.62) S H = J' (f Hay > A&, 1) = W, >
B

that is, the operator H and W are ajoint to each other. Further, if f € %O(B) then by
the above
(1.63) Wi, 7)= lim  Wf(x,1).-

[x,t]1-[&,1]
[x,t1¢E,ast<b

Hence jt follows, among others, that for any f e %,(B) also Wf e €4(B). W can be
regarded then either as an operator on %, (W: %, — %,) or as an operator on %,
(W:%, > %,)- Consider the equations

(1.64) H,=v,
(1.65) Wf=g.

In (1.64), ve %, is a given measure and the measure y is unknown and assumed to
belong also to %j. If the equation (1.64) has a solution u € % then the heat potential
U, considered on E can be regarded as a solution of the third boundary value problem
on E with the boundary condition of the form

(1.66) c (Xn,0U) H o ® Ky + NU K, =
i=1
(that is,
(j;nj 0;U,) do#,,_(x)dt + NU,do#,(x, 1) = dv(x, 1))

prescribed on B — see (0.11) in the introduction. This boundary characterization is,
of course, weak. ’

In (1.65) g € %,(B) will be given and f € ¥,(B) unknown. The equations (1.64),
(1.65) are adjoint to each other. If the équation (1.65) has a solution f € %4(B) then
it is seen from (1.63) that the potential Wf considered on

R, — E
is the classical solution of the first boundary value problem for the adjoint heat
equation on the mentioned set with the boundary function g on B (and vanishing
on d(R,, — E) N 0R,). A

In the following section we shall investigate the equations (1.64), (1.65) together
with the integral equations corresponding to the third boundary value problem for
the heat equation on E with a little more general boundary condition then (1.66).
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2. FREDHOLM RADIUS OF THE OPERATOR W,

Keep all the notations from the preceding sections. Throughout this section we
shall always suppose that the conditions (1.22), (1.56) and (1.48) are fulfilled. For
« € R let us define operators H,, W, acting on %, %,, respectively, by

(2.1) H,=H+al, Wy=W+al,

where I stands for the identity operator (on %, and %,, respectively). In what fol-
lows we shall consider the equations (1.64), (1.65) in the form

(22) a@m—0m=ma6m—0m=g

(« # 0) and in this connection it will be useful to investigate the operators H,, W,.
It follows from (1.61) and the definition of W, that for f € €, (or f € B,), [, T] € B,

(2:3) Wof(& 1) = WIE 1) + £(5 1) (2 = Pe(&, 7)) -

Among other it follows from (2.3), Proposition 1.9 and the assumption (1.56) that W,
is a bounded operator and that

@4) Wl = sup r (e D) + x — Bl o)) [ el e o)

We shall evaluate the Fredholm radius of the operator W, in this paragraph. For
this purpose let us introduce the following notation. For r > 0, [é', 1:] € B let

(2.5) B(&1) = By — Q& 15 7),
where By = Bn B, = B R, (B is defined by (1.23)). Define an operator Z, on
%o(B) (Z, can be considered also on %) by putting for fe €, (f € %), [£, 7] € B
(2.6) Z,f(&7) = fdve, =
B.(§,7)

- f e ) NG(x — & 1= 1) = SN, 0,G(x — & t — 1)} doulx 1)
Br(¢.,7) j=1

(for the definition of v, see Proposition 1.9).
2.1. Lemma. Given r > 0, define for 0 < dé < r

(2.7) 4,(9) =[:1:]EB{WM(§0 N[ mr+6)— Q& nr—9)])}.

Then there is a constant c such that for every f € B(B) with | f| < 1,[&, <], [¢, 7] e
€ B with 0 < |[¢,7] — [¢,7']| < r the inequality -

(28) [|2.f(&7) = Z(&\ )| = [a.(|[& <] - [&, <) + [[& <] = [&, 7]

is valid.
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Proof. It is easily seen that there is a constant ¢, € R such that for any [x, 1],
[, #] e R™*! with l[x, t]l >, |[x', l']l > r the following two inequalities are valid:

(2.9) . 6(x, 1) +j=§1|a,.c(x, 0 < e
(2.10) [G(x, £) — G(x', 7)) +j§l|6jG(x, ) — 0,60, )] £ es|[x% 1] — [ ]

Let [¢ 1], [¢), 7] € B and denote

M; = B(¢, 1) n B(¢,7), M, = B(¢ 1)~ B¢, 1),
M3 = Br(é', T') - Br(éa T) .
Then for fe %(B) we have

(2.11) Z (&)~ Zf(¢,7) =

= fdve, — fdvg o + fdve, — fdve o =

M; M, M, M;

[ Je NG - =7 = Gx - &, 1 =) —
—jiNj(ajG(x S & 1) = 8,G(x = &, t — )} dotu(x, i) +
| NG =& 1 - 1) -jizv,. 06 — & 1 = ) dpfx,1) -

| s NG -, =)= SN, 0,6(x — &) 1 — )} A, 1) =
M3 Jj=1

=1, +1, +1,.
Suppose now that |f| < 1. Then it follows from (2.10) that
(2.12) || < ¢y #.(Bo)|[& 7] - [¢,7]] -
Writing
8 =& - [&.7]],

let us suppose that § < r. Then

My UM, [T r+8) - Q&7 r— 8] n B,
and from (2.9) we get .

(2.13) |+ |I3] € ¢y#,(M; 0 M;) < ¢y q,(5).
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Now it suffices to put
¢ = ¢, max {1, #,(B,)}

and the assertion follows from (2.11), (2.12) and (2.13).

2.2. Corollary. Let r > 0 be such that
(2.14) H(Bo N I(E,157) =0

for each [&, ] € B. Then
Z, : 6o(B) > %,o(B)

and Z, (as an operator on %,) is a compact operator.

Proof. It suffices to take notice of the fact that (2.14) implies

lim ¢,(6) = 0.

-0+

It follows then from Lemma 2.1 that the set

is a set of equicontinuous functions (on B and belonging to %,(B)). It is also easy to
see that functions from this set are bounded by a common constant. Consequently,
Z, is a compact operator on %,,.

2.3. Notation. In what follows let wA stand for the reciprocal value of the Fredholm
radius of an operator 4, that is, if 4 : o(B) - %,(B) is a linear operator then

(2.15) wA =inf |4 - Q],
Q

where the infimum is taken over all compact operators Q on %,(B). In the sequel
it will be important to know the value wW, for the above defined operators W,.

2.4. Lemma. For any a > 0,

(2.16) oW, < lim ( sup {4n~™25(¢, 1) + | — Pe(&, 7)|}) -

r-»0+ [&,t]eBo

Proof. As #,(B,) < oo (under the assumption (1.22)) there are at most countably
many r > 0 with the property that there is a [, t] € B such that

Hu(Bo 0 I(&757) +0.

Thus there is a sequence {r,-}, r;>0,r;,—»0fori— +.oo, such that for each i =
=1,2,... and any [{, 1] €B,

Hu(BonI(¢,157))=0.
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According to Corollary 2.2 the operators Z,, are compact and hence

(217) oW, < inf [W, - Z, ] .

Since

[2¢,17) = R] = [@%¢&r) x (v, T + 1)),
we have (in accordance with the definitions of W, and Z,)

(2.18) W - z.| =

= sup ” ING(x — & t—1) =Y N, 0;G(x — &, t — 7)|dot,(x, 1) +
[¢,t)eBo BonQ(&,tir1) j=1

+ o = Pye, T)l} < sup {n7"2 (G 1) + o — Py(& 1)}
[$.t]eBo
(see also (1.31)). For 0 < r < r' we have

760 < 76 )

and now it is seen that the assertion immediately follows from (2.18), (2.17).
One can prove the following assertion in the same way as Lemma 3.4 from [11]

2.5. Lemma. Let Q be a compact operator on €o(B). Then for any ¢ > 0 there
are f1, ..., f, € 6o(B), ly; -.., iy € By such that for the operator Q,,

(2.19) 0./ =j§::1<f, Wyl (fety),
the inequality

(2.20) lo-of=e

is valid.

The following assertion is an analogue of Lemma 3.5 from [11].

2.6. Lemma. For any a > 0,
(2.21) oW, 2 lim ( sup {3z~ "2¥(&, 1) + |a — Py, 7)|}) -

r-0+ [&,t1]leBo

Proof. For r > 0, [£, 7] € B let us define
(2.22) o w(ED) = e (@ ).
Let r > 0 be such that for each [¢, 7] € B, '

Hn(BonI(E,757)=0.
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For f € €o(B), [£, 7] € B we have
223) (W, - 2)f(&1)= fdvee + (& 1) (@ = Pe(¢, 7))
BnQ(&,t;r)

and for a fixed f(e %,) the term in (2.23) is a continuous function of the variables
[¢, 7] on B. Hence it is seen that

(224) sup (W = Z) (6 7% e %o, [f] S 1} = (& 1) + x = P67

and that the term on the right hand side of (2.24) is a lower semicontinuous function
of the variables [£, 7] on B.

Now it can be proved in the same way as in the proof of Lemma 3.5 from [11}
(by means of Lemma 2.5) that for every k > wW, the inequality

(2.25) lim( sup {w(& 1)+ |a — Pe(&,7)|}) S k

r—0+ [&,1)eBo
is valid. For r; = 4r \/2 we have

Q&) x (Lt 4+ 1) € Q¢ 157)
which yields

(2.26) In~m25(E 1) S w'(é 1)
Aécording to (2.26) and (2.25)
lim ( sup {3n""?%"(&, 1) + |0 — Pe(&, 7)|}) S k

r-»0+ [&,t]eBo

and the assertion follows.

The following assertion is an immediate consequence of Lemmas 2.4 and 2.6.

2.7. Proposition. For any a > 0 the equality
(2.27) oW, = lim ( sup {3z~ "F(£, 7) + |o — Py(¢, 1)|})
r=0+ [&,t)eBo
is valid.

3. OPERATORS L, 4,V

In connection with the third boundary value problem for the heat equation on E
we shall introduce and study operators L, A, Vin this section. In the case of cylindrical
sets in R™*1 these operators have been studied in [15]. The case of time moving
boundary but with m = 1 has been investigated in [5], II.

Throughout this section let A € %4(B) be fixed. For this fixed A let us define opera-
tors L, A in the following way.
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For p e %'(B) denote
D(s) = {q» ey; j o 0] U 48 (5.9 < oo}

(here U, is the heat potential of the total variation ly| of ). For a given ue#'(B)
let L, stand for the functional on 2(u) defined by

(.1) (o L = j o(x, ) Uy(x, 1) di(x, 1), @€ D(n).

Further, put
(32) A,=H,+L,,
that is, for ¢ € 2(u),
Ko, 4> = <o, Hy) + <o, L) -

By the introductory remarks (see (0.11)) A, can be regarded as a weak characteriza-
tion of the term ‘

(3-3) (—.Zlnjaqu).?fm_l ®%1 +NtU“‘#m + U,‘l
I
on B. Note that in the terms
("'J;lnj aJU”) ';fm-l ® ”1 al’ld NIUM‘%’M

in (3.3) we mean by 9,U, and U, on B the “‘boundary limits” of d;U, and U, from
within E, while in the term U,4 in (3.3) U, means the actual values of U, on B. Our
aim is to find some conditions under which the equation

(3.4) A, =v

has a solution y € % for any given ve %,. If u e %, is a solution of (3.4) and if U,
is in a sense continuous on E U B (that is, if the values of U, on B are equal, in a sense,
to the boundary limits of U, from within E) then the heat potential U, on E can
be considered a solution of the third boundary value problem for the heat equation
on E with the boundary condition

(3.5) (—j;n'j U)oy ® #y + U(NH,, +2)=v
(that is, '

(—j;lnj 0;U,) Ao pp_y(x) dt + U,[N,dof,(x, 1) + di(x, t)] = dv(x, 1))
considered on B.
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Let us take notice of the following simple fact we shall frequently need in the sequel.
If u, A € #'(B) are not negative or such that

LU,,‘,(x, 1) d[a| (x,1) < o

then it follows from the Fubini theorem that

(3.6) LU”(x, ) dix, 1) = J & ) du(e )

First we shall find some conditions under which the functional A4, can be repre-
sented by a unique measure from .4?{,(3). If A, can be represented by a unique measure
from %(B) then, particularly, 4, has a unique linear extension from 2(u) to 2,.
The proof of the following assertion is quite analogous to the proof of Proposition
3.1 from [5] and we omit it.

3.1. Proposition. The following two conditions are equivalent to each other:

(i) For any p e B, there is a unique linear extension of A, from D(y) to D,.
(ii) The potential Ui'}, is bounded on any compact set contained in By, (B, is defined
by (0.7)).

3.2. Lemma. There is a number y > 0 with the following property: For any
To < b there is a ¢, € D, such that 0 < ¢,, <1 in R"*', ¢, =1 0n BN R, and

(3.7) |<(proa H&g,,)
for every [&, 1] € B,.

Proof of this lemma is analogous to the proof of Lemma 3.2 from [5] but we
present it here for completion.

Let ¥, : R' - R! be an infinitely differentiable function with compact support
such that 0 < ¢, <1 on R', spty, = (—o0,b), ¥, =1 on <a, 7o), ¥; <0 on
(to» b). Let @ > sup {[x|; [x, {] € B} and let ¥, : R™ - R* be infinitely differentiable
with compact support in R™, such that 0 < y, < 1 on R™, l@,-l//2| S1(j=1,2,...
..., m) on R™, y, = 1 on Q*(0; ¢). Define ¢,, by

O, 1) = Y1 () ¥alx), ([x,t]e R™Y).
Then (pme@b, Py = 1onBn Rm’ 0= @ < 1 on R™*1,
Given [¢, 1] € B, then

(38)  |<Pup Hs, )| < J J !ﬁl(t)jillajG(x — & t — 1) |0¥a(x)| dx dr +

<7

+ J‘J‘ Vo) i) G(x = & t — 1) dxdt =1, + I,.
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Since [0;,] £ 1(j = 1,..., m), [¢;| £ 1 then (0.9) yields

(3.9) ‘ I £ \27'? V(b —a).

Put, for a while, E, = E — R,. Then

I, = J f [dn(t — ©)] ™" exp( 14(—L> Vo) [W4(0)] dx dr
Denote 7, = sup {t; ¥,(¢) + 0}. If t = 7, then I, = 0. Suppose that t < 7,. Then

I < |¢ ()| [4n(s — )]~ f exp< H) dx} dr.

m

Since

.[ o D (_ L%__-ég) dx = [4n(t — 7)]"?

and since ¥/; < 0 on {a, b) (and at the same time 0 < ¢, < 1), we have
(3-10) I, gj. [wi()|de < 1.
By (3.8), (3.9) and (3.10) it suffices to put

y=1+2—m\/(b—a).

Jr

3.3. In what follows we shall denote

m} = sup {Ufy(x, 1); [x, {]€B,},
Vs = sup {#(x, 1); [x, 1] e B} .

Using Lemma 3.2 one can prove the followmg assertion in the same way as Theorem
3.4 from [5].

3.4. Theorem. Suppose that 2 (e .%6) is non-negative. Then the following two con-
ditions are equivalent to each other:

(i) For any pe &, there is a unique v, € B, representing A, on D,, that is,
(3.11) {p, A, =J‘(pdv,, ;s QED,,

B
(ii) : Vg+my <.
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Let us now define an operator V in the following way. For f € #(B), [x, f] € B put
(G12)  Wf(x i) = Ul(x, ) = I FE1) GHx — & t — 1) dA(&, <) =
B
- f £(& <) [2(z — 0] ™2 exp <— M) iz 1),
B-R, -

4(t — 1)

provided the integrals in (3.12) exist (fA stands for the product of the function f
and the measure 1). '

Note that if m} < oo then for f € %(B) the function Vf is bounded on B. If even
U7 |s is continuous on B then Vf € %,(B) for any f € ¢(B) and hence V can be regarded
as an operator on ¢(B) or on %,(B) (thatis, V: € — € or V: €, — %,).

3.5. Proposition. Suppose A € B is non-negative. Then the following two condi-
tions are equivalent to each other:
(i) ¥fe €o(B) for each fe %y(B).
(i) UIIBO is continuous and bounded on B,,.

Proof of this assertion is quite analogous to the proof of Proposition 4.1 from [5]
and we omit it.

3.6. Remark. Suppose 4 € 4, is such that the restriction U r“| B, 18 continuous and
bounded on B,. Then U} |z, U}-|s, are continuous and bounded on By, too (see
Corollary 0.2). Since m} < oo, for any u € %, the functional L, can be represented
by a unique measure from %;. In this case we identify L, with this representing
measure and L can be then regarded as an operator on %4(B) (u+> L,). For p € %,
f € %y(B) the following equality follows from the Fubini theorem:

(3.13) Vi = f SE D) ULE D) dAE7) = < L -
B

This means that the operators L and V (on %; and on ¥%,, respectively; f+> Vf,
V:%, - %,) are adjoint to each other. »

The following assertion can be proved in the same way as Proposition 4.3 in [5];
we omit the proof here.

3.7. Proposition. Suppose A€ B, is non-negative and such that UI|B0 is conti-
nuous and bounded on B,. Then the operator V is compact (operator on 4,) if and
only if U}y is continuous on B.

The following auxiliary assertion is an analogue of Lemma 4.4 from [5]; we present
its proof here for completion.

3.8. Lemma. Let 1€ %By(B) be non-negative and such that Uji[s is continuous
on B. Suppose in addition that for any t € R', ((0R,) = 0. For each § > 0, t € R* put

A"-’ = l,(RH'd"Rt)
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and define a function Sy on B by
Six, 1) = Us, (x,1) ([x,t]eB).

Then for any & > 0, S; is continuous on B and
(3.14) lim (sup {Ss(x, t); [x,f]eB})=0.
30+

Proof. Since we suppose A(6R,) = O for any t € R! and since U} is finite on B,
we have for each [x, 1] e B

Ss(x,1) =0
for & —» 0+ and this convergence is monotonous. B is compact and thus it suffices,

according to the Dini theorem, to show that for any fixed > 0 S; is continuous on B.
If [x, ], [*, t;] € B, t; = t, then

(3.15) Ss(x, 1) = Saxy t1)] = |UF, (%, ) = Uy, [(x011)| =

= U::,é(x’ t) - Urt,a(xl! tl) - J‘ G*(xl - é’ tl - T) dl(é; T)

Re,+6—Re+s

(G*(xy = & t; — 1) =0 for t <t;, £€R™). U:'{l,, is supposed to be continuous,
so U}, , is continuous (¢ fixed). It means that for a given ¢ > 0 there is a &' > 0,
o' < 6, such that

(3.16) [US, (% ©) = U7, (30, 1y)] < de
for any [x,, t;] € B n Q(x, t; &’). &’ can be chosen such that
[47(6 — 6)] ™* MRy+5+5 — Ryss) < e

(for A(OR,+5) = 0). For [x5,1,]eR™ 1 <t; <t + &, [£, 7] €Ry 45 — Ryyy We
have
G*(x; — & t; — 1) £ [4n(ty — )] ™2 < [4=(5 — &) ™2.

Hence
(3.17) 'f GHxy— &, 1, — 7) A&, 7) <
Rey+6~Ress

< [42(6 — 6)]™™2 ARy vs — Rers) < [47(6 — &)1 A(Ry1 555 — Ryvs) < ke
From (3.15), (3.16) and (3.17) it follows that
[S5(x, 1) = Sy(x1, )] < &
for [xy, t,] € BN Q(x,t;6'), t; 2 t ([, ¢] fixed).

Similarly in the case t; St; let t —6 <t; <t As G¥(x — ¢, t —1) =0 if

t<tand G¥(x, — & £y — 1) =0if T < ¢, (£ € R™), we have
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U:c,o(x’ t) = U::-a.za(x’ t) ’

U:‘thd(xl, 1) = U:‘_',_M(xl, 1) — ,; ] G*(x; — &, t; — 1)dA(E, 1)
and hence e
(3.18) |Ss(x, 1) = Ss(x1, 11)] =
< UE () = US_, ()] + f GH(xy — & 1, — 7)di(E, 7).
Re+s—Ri+s

U}, _, .| is continuous on B (1 fixed) and the last integral in (3.18) can be estimated
in a way similar to the preceding one. Consequently, S; is continuous on B.

4. THE EQUATION 4,=v

4.1. Henceforth we shall suppose that the condition (1.22) is fulfilled for some o
with (1.19). Note once more that then
Hn(B) < 0
(B is defined by (1.23)).

Further, we shall suppose henceforth that the conditions (1.48) and (1.50) are
fulfilled, that the restriction UTM’B is continuous on B (i€ #; fixed) and that
|4| (9R,) = O for each te R'. Then A, e %, for any pe %, by Theorem 3.4 (write
A, = v, — see (3.11)) and A is an operator acting on Bg (4 : p—> A,, A : By — By).
For any f € €, we have Vf € %, (see Remark 3.6). Note that (1.62) and (3.13) imply
that for f € €o(B), u € B4(B),

(4.1) Ky Ay = <Wf, ) + <Ly,

that is, the operators 4 and (W + V) are adjoint to each other.
We shall investigate the following two equations which are adjoint to each other:

A, =v
(ve %, is given, y € B, unknown),
| W+ V)f=g
(9 € %, is given, f € €, unknown).

4.2. Lemma. Suppose that the assumptions from 4.1 concerning E and A are
fulfilled and suppose that there is an o > 0 such that

(4.2) 1 lim ( sup {4n~ ™2 #(¢, 1) + |« — Pe(&,7)|}) < 1.

o r=0+ [&,t]eBo
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Then the equation
wW+Vv)f=0

has in €, only the trivial solution.
Proof. For r > 0, T R! let us denote
T = A kevrro
and define a function S, on B by
S/(& 1) =UL (&), ([&<]eB).

According to the assumption (4.2) and to Lemma 3.8 there is an r, > 0 such that

@3)  y=1 sup um e (6 0) + fu = PylEt) + Su(6 1)) < 1.
N o [&,t]eBo

We can write W in the form

(44) W=oc<£W,—1>,

o

where I is the identity operator, W, = W + al, that is, for f€ %,, [¢, t] € B,

(4.5) W f(E 1) = WF(E 1) + f(& 1) (0 — P(&,7)).

Suppose there is an f € o(B) not vanishing identically and such that
W+V)f=0.

Put

B = sup {r; [£, 7] € B, f(& 1) £0} .

Let us take notice first of the fact that f(¢, 1) = O for any [£, ©] € B with T = .
If B = b then there is nothing to prove since f € ,. Suppose f < b and let [£, 7] € B,
© = B. Then f(x, t) = 0 whenever [x,t] € B, t > f and thus Wf(¢, 1) = 0 as well
as Vf(&,t) = 0. Hence

0=[a(im=1)+v]se9 = o(Le - B )0 - t2.0).
However, according to the assumption (4.2)
i(a ~Pfe ) <1

and we find that f(&; t) = 0, indeed.
It is easy to see that there is a k < oo such that for te R', xe R™, [x| > r

G(x, 1) + Y |0,G(x, 1) < k.
j=1
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Since .9?,,,(3) < oo thereisa é > 0, 6 < r, such that
1

“k#(Bn(Ry— R, ;) +7<1
o

(where y is defined by (4.3)). B is compact, f is continuous on B and hence there is
a [&o, 10] € B N (Ry — Ry_;) such that
/(s 70)| = sup {[f(& 7)]; [&, 7] e B, v = B — 5}.

According to the definition of B we see that | (o, 7o)| > 0 and by the above, 7o < .
Let us denote :

M; = B (R, — Rg_;) n [Q*(&p5 7o) % RY],
M, = [B (R, — Rp_,)] = [2*(%0; o) x R'].
For [& 1] € M, U M, we have |f(¢, 1)| < |/ (o 7o)| which yields

'Waf(éO’ TO) + Vf(fo» TO)I é

< [ f(x, ) {NG(x — &, t — 10) — iN,. 0;G(x — &g, t — To)} Ao p(x, 1)| +
J Bo Jj=1
+ /(€0 wo)| | = P(&o, 70)| + Ulyyiai(Eos 70) =
<[ f(x ) (NG(x = &or 1 = 10) = N, ,6(x — & t = 70)} d#(x, 1) +
J M i=1

+ 'f(fo» To)l I“ - Fz(éo» To)l + ,f(éo, To)l S,.(os 7o) +

IIA

+ , F(x, ) {N,G(x — &, t — 1) —_S;N,- 0;G(x — &, t — 10)} dt(x, 1)

= 'f(fo’ TO)I [3n="25"(80, 7o) + '“ — Pg(&,, To)l +
+ S,o(¢0s To) + kH# (B (R; — Ry-p))] S

< o f(éor%0) (w + i k#(B (R, — R,,-,))) < (€0 70)] -

However, this is a contradiction since, by the assumptioﬁ,
0 = (W+ V) f(Zor 70) = Waf (01 7o) + W(Eor 7o) = af (60r 7o) -

4.3. Theorem. Suppose that the assumptions from 4.1 concerning E and ) are
fulfilled and suppose that there is an o > 0 such that

1 lim ( sup {3n~"%5 (&, 7) + |a — Pe(&,7)]}) < 1.

& r+0+ [&,1)eBo
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Then for any v € B,(B) the equation
(456) A=
has in B4(B) a unique solution p, and for any g € €o(B) the equation
(4.7) W+V)f=g
has in €y(B) a unique solution f.

Proof. Proposition 2.7 asserts that

oW, = lim ( sup {3n~"?¥"(&, 1) + [a ~ Py(¢, r)l}) ,

r-+0+ [&,t)eBo
where wW, stands for the reciprocal value of the Fredholm radius of W,. Under the
assumptions of the theorem ¥ is compact (see Proposition 3.7) and thus
o(W, + V) = oW,.

Writing the equation (4.7) in the form
ocl:l(W;+ V)—I:|f=g
«

and taking into account that w[1/x (W, + V)] < 1 by the assumption and that the
subspace

{fe%yB); (W+ V)f =0}

is trivial according to Lemma 4.2, we conclude by the Riesz-Schauder theory (see
[19]) that the equation (4.7) has a unique solution for any g € ,. As the operators 4,
(W + V) are adjoint to each other, it follows from the Riesz-Schauder theory that
the equation (4.6) has a unique solution for any v € %; as well.

Taking A to be the zero measure we obtain the following immediate consequence
of Theorem 4.3.

4.4. Theorem. Suppose that the conditions (1.22), (1.48), (1.50) are fulfilled
and let A

1 lim ( sup {4n~™*¥(¢, 1) + I“ — Py, T)l}) <l1

% r+0+ [g,1]eBo
for some a > 0. Then for any v e B, the equation
(4.8) o H,=v
has in B, a unique solution u and for any ge%, the equation
(495) Wf=g

has in %, a unique solution f.
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4.5. Remark. Given v € &, suppose that the conditions of Theorem 4.3 are ful-
filled and let p € %, be the solution of the equation (4.6). If the heat potential U, is,
in a sense, continuous on E U B (it suffices, for instance, if

lim U,(& 1) =U,x,1)
[£,5)~x,1]
{£,11E

for almost all [x, t] € B with respect to A — compare introductory remarks of Section
3) then U, is an integral expression of the solution of the third boundary value
problem for the heat equation on E with a boundary condition of the form (3.5)
prescribed on B.

If the conditions of Theorem 4.4 are fulfilled and if f € €, is the solution of the
equation (4.9) for a given g € %, then the (generalized double-layer adjoint heat)
potential Wf is an integral expression of the solution of the first boundary value
problem for the adjoint heat equation on R, — E with the boundary condition g
prescribed on B (and vanishing on d(R,, — E) N 0R,).

4.6. Remark. Consider the case that E is of the form
(4.10) E=D % (a,b),
where D = R™ is an open set with compact boundary C # 0. Then

B =C x {a, b).

TIn [11] J. Krdl has stated conditions under which the equations (4.8), (4.9) are solvable
provided E is of the form (4.10), in terms of the so-called cyclic variation of D.
Recall here the definition of the cyclic variation of D = R™. For £ € R™, 0* e I'* let

Ly = {¢ + ob*; ¢ > 0} .
An x € L}" is called a hit of L{" on D if for any r > 0,
H\(LY n Q*(x;1)n D) >0, #,((L¥ n 2*(x;7)) — D)>0.

If ng(6*; r) is the number of all hits of Lg' on D belonging to Q*(¢; r) then we define
o) = f n(0%; 1) A 1(0%) -
I+
Forn>0,0*eI* ¢ >0,[{ 1] eR"*", © = a we have
QZ
[¢ t bt T +—]GE
4n
if and only if -
2
&+ 00*eD, T+ 42—6(a,b)-
n
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Hence [, t] € H.(n) with ¢ # b is a hit of Hy () on E if and only if t < b (that is,
e < 2/[n(b — 1)]) and x is a hit of L on D. It follows that

fig 0% n; ©0) = (6% 2 {/[n(b — 7)])-

We see furthe‘r that for [¢,7]eR™™ !, 1 <b, 0*el* n>0,0>0,0<r < oo,
- 4n *
E+ 0% t4+—|e[@Er) x (nt+r)]nR,
Q

if and only if
¢ < min {r, 2 {/[n min {r, b — t}]} = r(, )
and thus

. Ay (0%, ;1) = n(0%; r(z, 1)) .
Consequently,

(4.11) (e ) = re—wz'l f n0%; (z, m)) Aoy 1(0%) =
o re
= Jwvﬁ"") (&) e ™m2~1dy.
1]

Thus we see that the adjoint parabolic variation is, provided E is cylindrical, equal
to the term used by J. Krdl in [11] (see Proposition 1.8 from [11]).
Further, it is seen that for [¢,7]eR™ ', a S 1< b,0*el* n > Othereisad >0

such that .
R 2
#4 ({[5 + ub*, v + Z—], ue(O,é)}— E) =0
n

if and only if there is a § > 0 with
(4.12) o H({& + ub*; ue(0,6)} — D)=0;

the term in (4.12) is independent of n > 0. Let L, stand for the set of all 6* € I'* for
which there is a & > 0 such that (4.12) is valid. Supposing v3(¢) < o, then for almost
all (0%, n) e I'* x (0, o) (with respect to #,,—; @ #,), s(6*,1,0) = —1if and only
if 6* € L. If v5(¢) < oo then moreover (see [8], Lemma 2.7)

”m—l(’-c) =4 dn(é) >
where

(4.13) | A= Hp ()

and dp(¢) is the m-dimensional density of D at £. Now we have (supposing still
re{a, b))
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(4.14) P&, 1) = %n'""z‘f

Lg

d.#,,,_,(O*)J‘ e~ dn = dp(¢).
0

Let us show that if for K = C, K % 0,
Vo(K) = lim (sup {v}(¢); € K}),
r-0+
then

(4.15) lim (sup (37”276, 9 [4 ¥] € B £€K)) = VoK)

A
We proceed similarly as in the proof of Lemma 3.7 in [11].
For [¢, 1], [& 1] eBe, 7, £ 1,, clearly
5'(5, Tx) 2 5’(51 Tz) 5
hence
sup {3n""25"(&, 1); [&, 1] € By, E€K} = sup {3n” "2 (&, a); €K} .
If r >0, r < b — a then for any n > 0,
r(a, n) = min {r, 2 \/(n7)} .
It n < r[4 then r(a,n) = 2 ./(n¥) and if n > r[4 then r(a, n) = r. Thus we obtain
r/4 ®© :
¥(¢, a) = J vp (&) e~ ™2  dn + f op(&)e™™ > dn .
(V] r/4

As v3/7(&) < o}(€) for n < 1[4, we have

In~m2(E, a) S 3™y '(5)J e Al dy = — Uo(f)
Further,
—71' m/2~r(§ a) > vb(i) —m/2 r(é)J' m/2 1 d" s

hence

sup {3n""%°(¢, a); €K} 2
= sup {u;,(é); fGK} (Z — igm2 J'r/4e_,,’1m/z—1 d,’)

0
and (4.15) follows.

Now, by means of (4.14), (4.15) one can, provided E is cylindrical, express the
condition under which the equations (4.8), (4.9) are solvable in terms of the cyclic
variation of D and the m-dimensional density of D. We see that these conditions are
the same as in [11] (compare [11], Theorem 3.10, Theorem 3.9).
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