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Časopís pro pěstování matematiky, roč. 108 (1983), Praha 

RANGE CLOSURE EXTENSION OF INPUT-OUTPUT RELATIONS 
OF TOPOLOGICAL GENERAL SYSTEMS 

JAN CHVALINA, Brno 

(Received March 30, 1982) 

A topological general system — briefly tgs — is a triad Sf = (X, R, Y), where X, Y 
are topological spaces and R c X x Y is a binary relation called the input-output 
relation of S? (cf. [11] and [14]). A relation R between spaces X, Yis said to be con­
tinuous in the sense of Grimeisen (cf. [6], [7]) — or briefly G-continuous, and the 
corresponding system (X, R, Y) is said to be continuously functionally parametrizable 
([14]) — if there exists a family of continuous mappings F cz YdomR such that 
R = U gr (f) (where gr (f) is the graph of the mapping f) — see also the definition 

of the functional system decomposition [11], chap. X, Definition 2.4. It is to be noted 
that the notion of the G-continuity of relations is necessary (as is shown in [14]) for 
the construction of continuous realizations of topological time systems. Some criteria 
of the G-continuity of binary relations between topological spaces have been obtained 
in [3]. The present contribution is devoted to certain connections of the above men­
tioned notion with the extension of relations by means of closures of relation images 
of points. 

In what follows (if not said otherwise) we suppose all input-output relations R 
of systems (X, R, Y) to be domain full, i.e. dom R = X. Separation axioms and com­
pactness are considered in the sense of Kelley's monograph [9] and hence e.g. a regu­
lar or a normal space need not be Tj. 

Definition 1. A tgs ^ e = (X, Rt, Y) is said to be the range closure extension 
of a tgs &> = (X, R, Y) if Rt(x) = R(x) (which is the Y-closure of the set R(x) = 
= {y: xRy}) for each x e dom R. The relation _Re is also called the range closure 
extension of JR. 

Remarkl . I t i s not difficult to construct examples showing that a tgs which is not 
continuously functionally parametrizable (i.e. with the input-output relation being 
not G-continuous) possesses the parametrizable range closure extension. Consider 
an at least six-element set X and put if = (X, R9 X), where 

208 



R = {(xl5 x2), (x1? x3), (x2, x4), (x3, x5)} u {(x, x6) : x e X, x * x„ i = 1, 2, 3} 

and xt e X for i = 1, 2, ..., 6. The set K is endowed with the left quasi-discrete topo­
logy induced by the transitive cover Rx of R. That means that the least neighbourhood 

of a point x e X is the set (KT)_1 (x) u {*}• s i n c e R n [P^fci}) x ( Z x { x i } ) ] 
is a functional relation (i.e. a mapping), the only functional parametrization of JR 
is R = gr (/) u gr (a), where / , g : X -» X are mappings defined by: / (x x ) = x3, 

g(Xl) = x 2 , / (x 3 ) = g(x3) = x 5 , / (x 3 ) = g(x2) = x4 and/ (x) = g(x) = x6 for each 
xeX\{x1,x2,x3}. Since the set M = X\{xu x3, x5} is closed but g~~l(M) = 
= X\ {x2} is not closed (this set is dense in the space X), g : X -+ X is not con­
tinuous and hence R is not G-continuous. On the other hand, it is easy to verify that 
the range closure extension Sfe = (X, Ke, X) of the system Sf has the G-continuous 
input-output relation jRe = Rx. 

Using results of S. P. Franklin and R. H. Sorgenfrey we get the below stated as­
sertions giving certain sufficient but (cf. Remark 1) not necessary conditions for the 
G-continuity of the range closure extension of a binary relation. 

Recall that a topological space is said to be feebly locally connected if each of its 
points has at least one connected neighbourhood or, which is equivalent, each of its 
components is open — [2] Theorem 21B.5. A relation R is called point 0 (where & 
is a topological set property) if each R(x) has the property 0. By a continuous rela­
tion we mean a relation which is simultaneously lower semicontinuous (l.s.c.) and 
upper semicontinuous (u.s.c). 

Proposition 1. A tgs Sf = (X, R, Y) with a feebly locally connected input space X 
and a continuous point open input-output relation R admits the continuously 
functionally parametrizable range closure extension Sft. 

Proof. Let {Kt : iel} be the collection of all components of the space X. Since R 
is continuous and point open we have according to [4] Proposition 2 the equality 
_Re(x) = Rc(y) for any pair of points x, y e Kt and each i e I. For i e I, denote by Y{ 

the set Re(x), where x e Kt is an arbitrary point. For any pair we define the mapping 
fab :X -> Yas follows: If Kj (for jel) contains the point a, we put / a 6 (x) = b for 
each xeK j 9 and further for each iel, i 4= j we choose an arbitrary point yte Yt 

and put fafb(
x) = y; for any xeKt. Then gr (fatb) c Re and since the collection 

{Ki : i el} is a decomposition of X we have domfatb = X. Consider a point x0 eX 
and a neighbourhood U of the point fatb(x0). The component Kt containing x0 is an 
open neighbourhood of x0 and /fl,6(Kf) = {fa,b(xo)} c U. Thus fayb: X -> Y is con­
tinuous and since Re = \J gr (/,,/,), we conclude that Re is G-continuous, q.e.d. 

(a,b)eRe ' _ _ 

The relationship between systems Sfe = (X, Re, Y) and Sf = (X, R, Y) (where R 
means the topological closure of R in the product space X x Y) establishes the 
assertion (1) from [5] which says: If Y is regular and R is u.s.c. then Re = R. 
Thus we have: 
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Corollary. Let £f = (X, R, Y) be a tgs with a feebly locally connected input 
spaceX, regular output space Yand a continuous point open input-output relation R. 
Then the extension (X, R, Y) of £f admits a continuous functional parametrization. 

Remark 2rlt is to be noted in this connection that using one result of L. J. Billera 
([1] Theorem 4.1) we immediately get the below stated necessary and sufficient con­
dition for the closedness (in the product topology) of point closed relations R c 
cz X x Y provided either Yis a locally compact Hausdorff space or X x Yis a k-
space (i.e. a Kelley space): The range closure extension Re a X x Yof R is closed 
iff, given a compact subset C cz Y, a subset M cz X such that Re(M) n C = 0 is 
open. Indeed, the relation Re cz X x Y satisfies the above condition iff the cor­
responding mapping Re of X into the family 2Y of all closed subsets of Y endowed 
with the compact open topology is continuous. Now the assertion follows from [ l ] 
Theorem 4.L 

Relations considered in the following proposition need not be domain full. 

Proposition 2. The range closure extension of any lower semicontinuous binary 
relation between arbitrary topological spaces is lower semicontinuous. 

Proof. Let x0 e d o m K cz X be an arbitrary point at which the corresponding 
multivalued mapping R is l.s.c. Suppose y e R(x0) = Re(x0), and U is an open subset 
of Y containing the point y. Then U n R(x0) =j= 0 and there exists an open subset V 
of X such that x0 e V and 0 =*= R(t) nU cz Re(t) n U for each t e V. Hence Re is 
l.s.c. (see e.g. [12] § 2), q.e.d. 

Since the input-output relation of a continuously functionally parametrizable tgs 
h l.s.c. — see e.g. [6] Theorem 1 — we get: 

Corollary 1. The range closure extension of a continuously functionally para­
metrizable tgs has the l.s.c. input-output relation. 

In particular, the following assertion which is in fact a reformulation of Proposi­
tion 1 of R. S. Linicuk [10] is an immediate consequence: 

Corollary 2. Let X, Y be Tx-spaces and {fn: X -> Y| n e N } a sequence of con-
n 

tinuous mappings. Then the relations Rn = U gr(/*), n = 1, 2, ...(which coincide 
k = i 

with their range closure extensions) and the range closure extension of the relation 

-R = U gr (fn) are l.s.c. 
neN 

The following example shows that the range closure extension does not preserve 
the G-continuity of relations in general. 

Example . Let X be an at least four-element set, xu x2, x3, x4eX different ele­
ments. Define a topology J on I by putting cl^- M = M u {x3, x4} whenever 
M n {xl9 x2) 4= 0 andel-r M -= M otherwise. It is easy to verify that the mappings 
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/ , g : (X, ZT) -> (X, F) defined by f(xt) = / (x 2 ) = xl9 g(xt) = g(x2) = x2 and 
f(x) = g(x) = x for all x e K \ { x 1 , x2} are continuous. Then the range closure 
extension of the relation R = gr ( /) u gr (g) is 

Re = Ax u {(*!, x , ) : i = 2, 3, 4} u {(x2, x,) : i = 1, 3, 4} , 

where Ax is the diagonal of X x X. If F c K* is any family of mappings such that 

-Re = U gr (h), then for some h0e F we have A Q ^ I ) = x3> ^0(^2) e {*i> *2> *3> *.*} 

and h0(x) = x if x1 #= x -# x2. But this mapping is not continuous for h0(cl^- {xx}) = 
= ho({xl5 x3, x4}) = {x3, x4} and cl^-h^x^) = {x3}, therefore the relation Re a 
c= (X, &) x (X, ST) is not G-continuous. 

On the other hand, by virtue of [5] Proposition (5) and Proposition 2 above we 
immediately get: 

Proposition 3. If R cz X x Yis continuous and Y normal, then the range closure 
extension Re of R is continuous. 

We say that a tgs £f is finitely parametrizable if there exists a continuous functional 
parametrization of £f consisting of finitely many mappings. The following assertion 
is similar to that of Proposition 2 from [10] which says (in other words) that the input-
output relation of a finitely parametrizable system with the output T^space is con­
tinuous. 

Proposition 4. Let Sf = (X, R, Y) be a finitely parametrizable tgs with Y normal. 
Then the range closure extension of R is continuous. 

Proof. Suppose {fk :X -> Y\ k = 1, 2, ..., n) is a family of continuous mapping 
n 

such that K = U g r (A)- Let x0 e X be an arbitrary point, U an open subset of the 
k = i 

space Y such that Re(x0) cz U. There exists an open subset W of Y with Rt(x0) c 

c P f c f c [/. Put V== C\fk~
1(W). Then Vis an open neighbourhood of x a and 

k = l 

since fk(x)e Wfor any x e Vand k = 1, 2 , . . . , « we have 

Ke(V) = U R(x) = U {AW : k = 1, 2 , . . . , n } " c PVcz U . 

Consequently Ke is u.s.c. Since R is l.s.c. the relation Re is also l.s.c. in virtue of Pro­
position 2, q.e.d. 

We get other sufficient conditions for the continuity and closedness of range 
closure extensions by using some results of R. E. Smithson and J. E. Joseph. In ac­
cordance with [13] § 2 and [8] § 3 we formulate the following definitions: 

Definition 2. A relation JR c X x Y (where X9 Y are topological spaces) is said 
to be subcontinuous if whenever {x7 : a 6 A} is a convergent net in dom R and 
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{ya : ae A} is a net in R(X) with (xa, ya)e R for each a e A , then {jla:ae A} has 
a convergent subnet. 

Definition 3. A relation R cz X x y is said to be subclosed if for each x e dom K 
and every net" {xa : a e A} c dom R \ {x} which converges to x and every net 
{ya : OL e A} with (xa, ya) e R for each a e A which converges to some y e Y, we have 
(*,y)€-S. 

Proposition 5. Let R a X x Ybe a subclosed l.s.c. relation. If Re is subcontinuous 
then Re is closed and continuous. 

Proof. First we show that the range closure extension preserves the subclosedness 
of relations. Suppose x0 e X, {xa : a e A} is a net in X \ {x0} which converges to x0 

and {ya : a e A} c Y is a net with (xa, ya) e Rc for each a e A which converges to 
y0 e Y. Since ya e R(xa) there exists a net {t(

p
a) : PeBa} c R(xa) (a e A) converging 

to ya. Using the theorem on iterated limits — [2] Theorem 15B.13 or [19] chap. II, 
Theorem 4 — we get a net {py: y e A x YlBa} c U R(*a)

 c ^(^0 which converges 
aeA aeA 

to }v Let {Pa:(*eA} be a subnet of {py:yeA x Y\Ba} which also converges 
aeA 

to y0 (cf. [2] Theorem 15B.20 and part (d) of Remark 15B.18). Then (xa, pa)e R 
for all a e A and since R is supposed to be subclosed, we have (x0, y0)e R c jRe, 
hence -Re is subclosed as well. Since Rc is subcontinuous by assumption, it is u.s.c. 
according to [8] Theorem 3.2. By Proposition 2, Re is l.s.c, thus it is continuous and 
by [8] Theorem 2.1(g) (_Re is point closed and subclosed) it is also closed in the product 
space X x Y. 

Remark 3. The following example shows that the range closure extension does 
not preserve the subcontinuity of relations: 

Consider the set N of all non-negative integers endowed with the left order topo­
logy 3T~9 i.e. ST* = {0, N} u {{0,1, 2,..., fc} :fceN}. The mapping f : (N, ^~) -> 
~> (N, 9") defined by f(n) = n -f- 1 is continuous, hence subcontinuous (as a single-
valued relation). The range closure extension fe off is the relation 

fe = {(n,k):n + 1 ^ fc, n e N } . 

Since it follows immediately from the definition of subcontinuity that point closed 
subcontinuous relations are point compact ([13] p. 284) and sets fe(n) = {n + 1, 
n + 2,...} for n e N are not compact in the space (N, 9"), we conclude that the 
relation fe is not subcontinuous. 

Proposition 6.JLet y = (X, R, Y) be a finitely parametrizable tgs with X locally 
compact. Then R is subcontinuous. 
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Proof. Suppose R = \J gr (fk) with fk:X -> Y continuous for k = 1, 2, ..., n. 
fc=i 

If K is a compact subset of the space X then R(K) — \Jfk(K) is also compact, thus 

by [8] Theorem 3.4 the relation R is subcontinuous. 
* = i 

Proposition 7. Lef Y be a T4-space (i.e. normal and Tx). The range closure exten­
sion of any u.s.c. relation R a X x y is closed. 

Proof. Suppose R c X x y is u.s.c. The relation # e is also u.s.c. by [5] (5). 
Since Rc is point closed, by [13] Theorem 3.3 we get that Rc is closed. 
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