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HEREDITARY RADICAL CLASSES OF LINEARLY 
ORDERED GROUPS 

MARIA JAKUB[KOVA, KoSice 

(Received December 7, 1981) 

The study of radical classes and semisimple classes of linearly ordered groups 
was begun by Chehata and Wiegandt [1]. The basic properties of the lattice 0t of 
all radical classes of linearly ordered groups were described in [3]; for analogous 
questions concerning semisimple classes cf. [4]. In the papers [5], [7] and [8] radical 
classes and semisimple classes of abelian linearly ordered groups were dealt with. 

In [3] and [4] it was proved that the lattice 0t has no atoms, no antiatoms and 
fails to be modular. 

A radical class X e 0t is said to be hereditary if, whenever GeX and H is a convex 
subgroup of G, then H e X. The collection of all hereditary radical classes will be 
denoted by 0th. 

In this note it will be shown that 0th (partially ordered by inclusion) is a complete 
distributive lattice. In fact, Mh fulfils the infinite distributive law 

A A(\/B)^\/(AABi)9 

hence 0th is a Brouwer lattice. The corresponding dual infinite distributive law does 
not hold in 0th. Further, it will be proved that 0th has infinitely many atoms and that 
the collection 0* of all prime intervals of the lattice 0th is a proper collection. Thus 
some properties of the lattice 0th are analogous to those of the lattice of all radical 
classes of /-groups [2] or the lattice of all torsion classes of /-groups (cf. Martinez 

M). 
The collection of all principal elements of 0th will be denoted by 0thp. It will be 

shown that if X e 3th, Ye @hp and X ^ Y, then X e 0thr If / 4= 0 is a set and {Xt} ieI cz 
c 0thp, then \ZieIXi belongs to 0thp as well. (Let us remark that analogous results 
do not hold for principal elements of the lattice of all radical classes of abelian linearly 
ordered groups; cf. [5].) 

1. BASIC NOTIONS 

A collection X will be said to be propre if there exists a one-to-one mapping of the 
class of all cardinals into X. 
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The group operation in a linearly oidered group will be denoted by + ; the com-
mutativity of this operation is not assumed. We recall some definitions; cf. [1]. 

Let ^ be the class of all linearly ordered groups. When considering a subclass X 
of ^ we always suppose that X is closed with respect to isomorphisms and that the 
zero linearly ordered group {0} belongs to X. 

A subclass X of & is said to be closed with respect to transfinite extensions if, 
whenever G e ^ and 

. {0} = G1<^G2^ . . . £ Ga c ... (a < <5) 

is an ascending chain of convex normal subgroups of G such that 

Gfij\Jy<pGyeX for each fi < 3 , 

then \Ja<d Ga belongs to X. 

We also say that the linearly ordered group \JaL<dG0L is a transfinite extension of 
linearly ordered groups G^(b < <5), where G'p is isomorphic to Gpj\Jy<p Gy for each 
P < 6. 

1.1. Definition. A class X of linearly ordered groups is called a radical class, if 

(a) X is closed under homomorphisms, and 

(b) X is closed with respect to transfinite extensions. 

We denote by 0t the collection of all radical classes. Further, let 0th be the collection 
of all hereditary radical classes. Both 0t and 0th are partially ordered by inclusion. 
Then ^ is the greatest element in both 3% and 0th, the trivial variety R0 containing all 
one-element Z-groups is the least element in both 0! and 0th. 

If {Ai}ieJ is a non-empty collection of hereditary radical classes, then C\ieI At 

also is a hereditary radical class. Thus 0th is a complete lattice. The lattice operations 
in 0th will be denoted by A and v . The operation A in 0th coincides with the inter­
section of classes. 

Let 7 c ^ and G e f . The intersection of all hereditary radical classes X with 
t c l will be denoted by Th(X). Similarly, the intersection of all hereditary radical 
classes Z with G e Z is denoted by Th(G); the hereditary radical class Th(G) is said 
to be principal. We denote by 0thp the collection of all principal hereditary radical 
classes. 

2. THE OPERATION v IN THE LATTICE 0th 

Let X be a subclass of ^ . We denote by 

H o m l — the class of all homomorphic images of linearly ordered groups belonging 
toX ; 

Sub X — the class of all convex subgroups of linearly ordered groups belonging 
to X; 
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Ext X - the class of all transfinite extensions of linearly ordered groups belonging 
toX . 

Now we define for each ordinal K the class Extx X by induction as follows. We put 
Extx X = Ext X; if K > 1, then we set 

ExtxX = ExtUt<*Ext t K . 

Next we denote 
ext X = Ux E*tx X , 

where K runs over the class of all ordinals. 

2.1. Theorem. Let X be a subclass of &. Then Th(X) = ext Horn Sub X. 

Proof. Denote ext Horn SubK = Z. Clearly Z c Th(X) and X s Z. Hence it 
suffices to prove that Z is a hereditary radical class. Thus we have to verify that Z 
fulfils the following conditions: (i) Ext Z c Z, (ii) Sub Z c Z; (iii) Horn Z c Z. 

For each subclass Z r of ^ we have Ext ext Z1 = ext Zl9 hence (i) is valid. In [3] 
(Lemma 2.1) it was proved that for each subclass Z2 of ^ the relation 

Horn ext Horn Z2 = ext Horn Z2 

holds; therefore (iii) holds as well. 

Let G e Z and let H be a convex subgroup of G with H a G. Hence there is an 
ordinal x such that G e Extx Horn Sub X. Thus it suffices to verify that for each 
ordinal x we have 

(1) Sub Extx Horn Sub X c Extx Horn Sub X . 

a) Let K = 1. There is an ascending chain of convex normal subgroups 

(2) {0} = G 1 c z G 2 e z . . . £ G a c - . . . (X<S) 

of G such that 

(3) U.<a Ga = G 

and for each P < S, Gfil\Jy<p Gy e Horn Sub X. Let X be the first ordinal with X < 5 
and GA 2 H. Denote Ha = H n Ga for each a < 5. Then {Ha} (a < d) is an ascending 
chain of convex normal subgroups of H and \Ja<dHa = H.If ft < X, then 

*• 
GfilUy<fi Gy = Hfil(Jy<p Hy ; 

if j? > X, then H^\Jy<^ Hy = {0}. In the case /? = X we have 

Htf/U^/, # y
 e S u b {GplUy<p Gy} s Sub Horn Sub Z = Horn Sub X , 

thus for K = 1 the relation (1) holds. (We use the well-known relation Sub Horn Y £ 
c Horn Sub 7 which is valid for each Y s ^.) 
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b) Assume that x > 1 and that (1) holds foi each ordinal less than x. Then there is 
an ascending chain of convex normal subgroups (2) of G such that (3) is valid and 
for each /? < 5 there is an ordinal T(/>) < x having the property 

Gfil(Jy<p Gy e Extt(/0 Horn Sub X . 

Let X and Ha (a < y) be as in part a). The cases b < X and b > X are analogous as 
in a). Let b = X. Then 

Hp\\Jy<fi Hy e Sub {Gpj\Jy<p Gy) <= Sub Extt(/0 Horn Sub X = 

= Extrr/?) Horn Sub X , 

hence (1) is valid for each ordinal x, which completes the proof. 

2.2. Theorem. Let I be a nonempty class and for each i e I let Xt be a hereditary 
radical class. Then Vie/-** = ext (JieI X(. 

Proof. From 2.1 it follows immediately that the relation 

Vie/ Xi = e X t H ° m S u b Uiel %i 

is valid. Since Xt are hereditary radical classes, we have Horn Sub Xt = Xh therefore 
VieiXi = ext\JieIX, 

From 2.2 and [3] (Thm. 2.3) we obtain: 

2.2.1. Corollary. Rh is a closed sublattice of the complete lattice 0t. 

2.3. Theorem. Let A e @h, {B^ieI £ mh. Then 

AA(VieiBi) = Viel(AABi). 

Proof. It suffices to verify that A A (VieiBt) -S Viei(A A Bt). Let GeA A 
A (VieiBt). Hence G eA and GeVieiBt. In view of 2.2, Geext \JieIBt. Thus G 

is constructed by the operation ext from certain lineally ordered gioups G{j (iel, 
j e Kt) such that Gt belongs to Bt for each i e I and each j e Kt. 

According to the definition of ext, for each GtJ there exists a noimal convex 
subgroup HtJ of G and a homomorphic image G[7 of Htj such that Gf

u is somorphic 
to GtJ. Because A is hereditary the linearly ordered group Htj belongs to A and hence 
Gij e A. Thus Gu e A A Bt for each j e I and each j e Kt. Therefore G e ext (JieI. 
.(A ABi) = Viei(A A>Bt). 

The following example shows that the relation 

A V (AielBi) = Aiei(A v Bt) 

does not hold in general in the lattice 0tn. (The symbols rj6, Gj and Gx 0 G2 denote 
lexicographic products of linearly ordered groups; cf., e.g., [5].) 
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2.4. Example. Let N be the set of all positive integers with the natural linear 
order. Let J be the linearly ordered set dual to N and for each j e J let Gj be an archi-
medean linearly ordered group, G, 4= {0}, such that Gi(1) and GjW fail to be iso­
morphic whenever j(\) and j(2) are distinct elements of J. For each j e J let Jj = 
= {ke J : k ^j} (with the induced linear order). Put 

c = rjeJ Gj, 

G0) = rfc6j, Gfc for each j 6 J , 

-4 =VjuTJLG,)9 

Bj = T/,(G(i)) for each j e J . 

Then we have G $ A, /\JeJ Bj = K0, hence 

-̂  v(A i e JB,) = A 

and thus G £ A v (Ay6j -3y). 

On the other hand, Ge A v B} for each j e J, hence 

GeA, e , (A vB,) 

and therefore A v (A,w #,) * A;eJ (-4 v £,). 

2.5. Lemma. Let X <=, <$, He Th(X), H 4= {0}. Then there exists a convex sub-
group Hx of H with Hi + {0} such that Hx e Horn SubX. 

Proof. In view of 2.1 we have H eext Horn SubK, hence there is an ordinal T 
such that H e Extt Horn Sub X. Thus there is an ordinal x < T having the property 
that there exists a convex subgroup H' of H with H' =j= {0} such that H' e 
6 Ext„ Horn Sub X. 

Now let x be the first ordinal having the property that there is a convex subgroup Hn 

of H with H" 4= {0} such that H" e Ext, Horn Sub K. Assume that % > 1. Then there 
is x' < X s u ch that there exists a convex subgroup H* 4= {0} of H" w'th if* e 
e Extz Horn Sub X. Since H* is a convex subgroup of H, we have arrived at a contra­
diction. Hence x = 1- Therefore there is a convex subgroup Hx 4= {0} of .fiT such 
that Hx e Horn Sub X, which completes the proof. 

3. ATOMS IN mh 

3.1. Proposition. Let Ge&, G 4= {0}. Assume that G is archimedean. Then 
Th(G) is an atom in the lattice 0th. 

Proof. We have R0 < Th(G). Let AeMh, RQ < A ^ Th(G). There exists He A 
with H 4= {0}. In view of 2.1 we have TA(G) -= ext Horn Sub {G}. Since G is archi­
medean, Horn Sub {G} is the class of all linearly ordered groups G' such that either 
G' = {0} or G' is isomorphic to G. Hence H can be constructed by the operation ext 
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from a system of linearly ordered groups Gt (i e I) such that each Gt is isomorphic 
to G. Let i e I be fixed. There exists a normal convex subgroup H{ of G and a homo-
morphic image G\ of Ht such that GJ is isomorphic to Gt. Since A is hereditary, we 
have Hte A and thus GJ e A. Therefore Ge A and hence A = Th(G). 

Because there is an infinite set of mutually nonisomorphic archimedean linearly 
ordered groups, 3A implies: 

3.2. Corollary. The class of all atoms of the lattice 0th is infinite. 

3.3. Proposition. Let X e 0th, X =j= R0. Then there exists an archimedean linearly 
ordered group H 4= {0} such that Th(H) = X. 

Proof. There exists GeX such that G 4= {0}. Choose g e G, g > 0 and let jf = 
= {HJfe/ be the set of all convex subgroups of G not containing the element g. 
Let H{ be the convex subgroup of G generated by g. Because the set Jtf is linearly 
ordered, 3tf has a unique maximal element H2. Then H2 is the largest proper convex 
subgroup of Ht. Hence H2 is a normal subgroup in Hv Therefore H = Hi/H2 is 
o-simple and thus it is archimedean. Clearly H 4= {0}. Now we have Th(H) = 
= T^ff./tfj) = Th(G) = Th(X). 

From 3.1 and 3.3 we infer: 

3.4. Theorem. LetXe0th. Then the following conditions are equivalent: 
(i) X covers R0 in the lattice 0th. 

(ii) There is an archimedean linearly ordered group H 4= {0} such that X = 
= Th(G). 

Let A0 be a set of non-zero archimedean linearly ordered groups such that (a) if Gx 

and G2 are distinct elements of A0, then Gx is not isomorphic to G2, and (b) for each 
non-zero archimedean linearly ordered group G there is G' in A 0 such that G is iso­
morphic to G\ Put 

X0 = VGeAoTh(G). 

A collection X will be said to be small if there exists a set Y and a mapping of Y 
onto X. 

3.5. Proposition. Let ^x = [K0, X0] (the interval taken in 0lh). Then 
(i) ^ x is a small collection; 
(ii) ^ ! is a complete atomic Boolean algebra; the collection of atoms of $x is 

{Th(G)}GeAo. 

Proof. ^ . is obviously a complete lattice and in view of 2.3, ^ is distributive. 
From 3.4 it follows that A'0 = {Th(G)}GeAo is the collection of all atoms of # t . Let 
J i o ^ e ? , and let X' = {Th(G) :GeA0nX}. Then 

X = XAX0 = XA (VGeAo Th(G)) = VCe^0 (X A Th(G)) = 

= Vc*Aonx(X A T„(G)) = SUp X'. 
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Moreover, if X" s A0 and sup X" = X, then 2.3 implies that X' = X". Hence 0X 

is isomorphic to the Boolean algebra of all subsets of the set A0. 

3.6. Lemma. Let Xe<Su X #= JR0. Let I be a linearly ordered set isomorphic 

to the set of all negative integers (with the natural linear order). Let G = TieI Gh 

where each Gt belongs to A0 nX. Assume thaVfor each G' e A0 n X and each 

j el there is iel with i < j such that G' is isomorphic to G{. Then 

(i) Th(G) covers X, 

(ii) Th(G) does not belong to &l9 

(iii) Th(G) A Th(G') = R0 whenever G' e A0 and G' $ X. 

Proof. We apply the same notations as in the proof of 3.5. For each G' e A0 nX 
we have Th(G

f) = Th(G)9 hence X = VG>eAonX Tk(C) = Th(G). In view of 2.5, Th(G) 
does not be long ' to^ and thus X < Th(G). Let YeMh9 X < 7 = T/G). There exists 
He Y\X. Hence He Th(G). According to Thm. 2.1, H can be constructed from 
a subset S of the class Horn Sub {G} by the operation ext. Because H does not belong 
to X, the set S must contain a linearly ordered group isomorphic to rieIi<j Gt 

for some j e I. Then we have G e 7, whence Y = Th(G) and so (i) is valid, (iii) is 
a consequence of 2.1 and 2.3. 

For each X e Rh we denote by a(X) the collection of all Ye fflh such that Ycovers X 
in the lattice 9th. 

From 3.6 we immediately obtain: 

3.7. Corollary. Let X e <£u X 4= JR0. Then there exists Ye a(X) n &hp such that 

The proof of the following proposition will be omitted (it can be established by 
using similar arguments as in the proof of 3.6). 

3.8. Proposition. Let Xe9l9 X =1= R0. Let I be as in 3.6 and let G = Ti6lGh 

where each Gf belongs to A0 nX. Then the following conditions are equivalent: 

(i) Th(G) covers X; 

(ii) for each Gf e A0 n X and each jel there is iel such that i <j and G' 
is isomorphic to Gt. 

4. PRINCIPAL ELEMENTS OF 0th 

4.1. Proposition. Let Xy Ye0th, X ^ Y. Assume thatY is a principal element 
of 0th. Then X is principal as well. 

Proof. Let 7 = Th(G). In view of 2.1, 7 = ext Horn Sub {G}. There exists a set 
5 = {Ht}iei of linearly ordered groups such that S c Horn Sub {G} and lor each 
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Gxe Horn Sub {G} there is iel such that Gt is isomorphic to Ht. Hence 7 = 
= ext {Hi}ieI and X e ext {H,}te/. Thus there is 0 4= J c I such that X = ext {Hji€j. 
We can assume that J is well-ordered (by using the Axiom of Choice). Put H = 
= TI6j Ht. Then HteTh(H) holds for each i e J, hence K = ext {.ffjtej = 
= \Zi€jTh(Hij^ Th(H). On the other hand, H e Ext {#,},,, and so Tfc(ff) = 

= T,({HJfeJ) = X. Thus K = fh(H) e 0thp. 

4.2. Proposition. Let I be a nonempty set and for each iel let Xt be a principal 
element of 0th. Then X = VieIXi is a principal element of 0th as well. 

Proof. There are Gt e % such that Xt = Th(G^). We clearly have X = TA({Gjte/) = 
= ext Horn Sub {Gj,^. There is a set S = {H ,}^ <-= ^ such that (i) S c 
c Horn Sub {Gf}i€/, and (ii) for each Gt e Horn Sub {Gt}ieI there is j e J having 
the property that Gx is isomorphic to Hy Again, we can assume that[J is well-ordered. 
Put H = YjeJ Hy It is easy to verify that X = Th(H)9 hence X is principal. 

Let a be a cardinal. We denote by l(<x) the first ordinal having the property that the 
set of all ordinals less than I(a) has the cardinality a. Let J(a) be the linearly ordered 
set dual to 1(a). 

Let G e ^ , G 4= {0}. We put 

^(a) = ^jeJ(a) &j > 

where each Gj is isomorphic to G. 

4.3. Lemma. Let G e <#, G * {0}, a > card G. Then Th(G) < Th(Gia)). 

Proof. We have GeHom{Gr^}, hence Th(G) = Th(Gia,). In view of 2.5, Gia) $ 
# Th(G). Hence Th(G) < Th(Gia)). 

4.4. Corollary. The class ffihp has no maximal element. In particular, <$ does not 
belong to 0thp. 

Let G e ̂ , G 4= {0}. In view of 4.3 there is a least cardinal p = /3(G) such that 
Th(G) < Th(G(fi(G))). 

The following proposition shows that there are many prime intervals in the 
lattice 9th. 

4.5. Proposition. Let Ge<$, G 4= {0}. Then Th(G) is covered by Th(Gm)) in the 
lattice 0th. 

Proof. We have Th(G) < Th(G(HG))). Let X e 0th9 Th(G) < X = Th(Gip(G))). There 
exists GteX\Th(G). Then Gx e ext Horn Sub {G(/J(G))}. Hence there exists a set 
S c Horn Sub {GifiiG))} such that Gx can be constructed by means of ext from the 
set S. In view of Gx £ Th(G) there is H e S such that H does not belong to Horn Sub . 
. {G}. Therefore, from -the construction of G(PiG)) it follows that there is a convex 
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subgroup H! of H such that Hx is isomorphic to G(fi(G)). Since Hx eX we obtain 
G(p(G))eX, implying X = Th(G(fi(G))). 

From 4.5 and 3A we infer: 

4.6. Corollary. Le* G e #Ajr Then «(7i(G)) n Sthp * 0. 
Let ^ be the class of all prime intervals of the lattice Rh. From 4,5 and 4.2 we obtain: 

4.7. Proposition. & is a proper collection. 
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