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HEREDITARY RADICAL CLASSES OF LINEARLY
ORDERED GROUPS

MARIA JakuBikovA, KoSice
(Received December 7, 1981)

The study of radical classes and semisimple classes of linearly ordered groups
was begun by Chehata and Wiegandt [1]. The basic properties of the lattice 2 of
all radical classes of linearly ordered groups were described in [3]; for analogous
questions concerning semisimple classes cf. [4]. In the papers [5],[7] and [8] radical
classes and semisimple classes of abelian linearly ordered groups were dealt with.

In [3] and [4] it was proved that the lattice # has no atoms, no antiatoms and
fails to be modular.

A radical class X € £ is said to be hereditary if, whenever G € X and H is a convex
subgroup of G, then H € X. The collection of all hereditary radical classes will be
denoted by %,. .

In this note it will be shown that %, (partially ordered by inclusibn) is a complete
distributive lattice. In fact, £, fulfils the infinite distributive law

AA(VB)=V(4 A By,

hence £, is a Brouwer lattice. The corresponding dual infinite distributive law does
not hold in &,. Further, it will be proved that £, has infinitely many atoms and that
the collection £ of all prime intervals of the lattice £, is a proper collection. Thus
some properties of the lattice &, are analogous to those of the lattice of all radical
classes of I-groups [2] or the lattice of all torsion classes of I-groups (cf. Martinez
[6])

The collection of all principal elements of %, will be denoted by %,,. It will be
shown thatif X e #,, Ye #j,and X < Y,thenX € &,,. If I + Qisasetand {X;},; =
< Ry, then Vi X; belongs to &, as well. (Let us remark that analogous results
do not hold for principal elements of the lattice of all radical classes of abelian linearly
ordered groups; cf. [5].)

1. BASIC NOTIONS

A collection X will be said to be propre if there exists a one-to-one mapping of the
class of all cardinals into X.
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The group operation in a linearly ordered group will be denoted by +; the com-
mutativity of this operation is not assumed. We recall some definitions; cf. [1].

Let 4 be the class of all lincarly ordered groups. When considering a subclass X
of ¥ we always suppose that X is closed with respect to isomorphisms and that the
zero linearly ordered group {0} belongs to X.

A subclass X of ¢ is said to be closed with respect to transfinite extensions if,
whenever G € ¥ and

{0} =G, =G,c...€G, ... (¢<))
is an ascending chain of convex normal subgroups of G such that
G4/U,<5 G, € X foreach B <3,

then U, <; G, belongs to X.

We also say that the linearly ordered group U,<; G, is a transfinite extension of
linearly ordered groups Gy(b < &), where Gy is isomorphic to G,4/U, <, G, for each
p <.

1.1. Definition. A class X of linearly ordered groups is called a radical class, if
(a) X is closed under homomorphisms, and
(b) X is closed with respect to transfinite extensions.

We denote by £ the collection of all radical classes. Further, let £, be the collection
of all hereditary radical classes. Both # and £, are partially ordered by inclusion.
Then ¥ is the greatest element in both # and £,; the trivial variety R, containing all
one-element I-groups is the least element in both # and %,.

If {A4;};r is a non-empty collection of hereditary radical classes, then (Y 4;
also is a hereditary radical class. Thus £, is a complete lattice. The lattice operations
in &, will be denoted by A and v. The operation A in £, coincides with the inter-
section of classes. :

Let Y<S % and G € 9. The intersection of all hereditary radical classes X with
Y = X will be denoted by T;(X). Similarly, the intersection of all hereditary radical
classes Z with G € Z is denoted by T,(G); the hereditary radical class T,(G) is said
to be principal. We denote by #,, the collection of all principal hereditary radical
classes.

2. THE OPERATION v IN THE LATTICE £,

Let X be a subclass of 4. We denote by

Hom X — the class of allhomomorphic images of linearly ordered groups belonging
to X; :

Sub X — the class of all convex subgroups of linearly ordered groups belonging
to X;
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Ext X — the class of all transfinite extensions of linearly ordered groups belonging
to X.

Now we define for each ordinal x the class Ext, X by induction as follows. We put
Ext, X = Ext X;if x > 1, then we set

Ext, X = Ext U,<, Ext, X .
Next we denote
extX = U, Ext, X,

where » runs over the class of all ordinals.

2.1. Theorem. Let X be a subclass of 4. Then T,(X) = ext Hom Sub X.

Proof. Denote ext Hom SubX = Z. Clearly Z < T,(X) and X < Z. Hence it
suffices to prove that Z is a hereditary radical class. Thus we have to verify that Z
fulfils the following conditions: (i) Ext Z < Z, (ii) Sub Z < Z; (iii) Hom Z < Z.

For each subclass Z, of ¢ we have Ext ext Z, = ext Z,, hence (i) is valid. In [3]
(Lemma 2.1) it was proved that for each subclass Z, of ¢ the relation

Hom ext Hom Z, = ext Hom Z,

holds; therefore (iii) holds as well.

‘Let G e Z and let H be a convex subgroup of G with H = G. Hence there is an
ordinal x such that G e Ext, Hom Sub X. Thus it suffices to verify that for each
ordinal » we have

(1) Sub Ext, Hom Sub X < Ext, Hom Sub X .

a) Let % = 1. There is an ascending chain of convex normal subgroups
(2 {0}=6G,=G,c...cG, ... (x<9)

of G such that '

) Ui<s G, = G

and for each f < 0, G,,/Uy<,, G, € Hom Sub X. Let 4 be the first ordiﬁal with A < ¢
and G, =2 H.Denote H, = H n G, foreacha < 6. Then {H,} (« < 6)is an ascending
chain of convex normal subgroups of H and ,<; H, = H. If < A, then

Gp[Uy<p G, = HplU, <, H, ;
if B > 4, then Hy[U, <, H, = {0}. In the case § = 1 we have
Hg|U,<; H, € Sub {G4/U,<; G,} = SubHom Sub X = Hom Sub X,

d

thus for x = 1 the relation (1) holds. (We use the well-known relation Sub Hom Y <
€ Hom Sub Y which is valid for cach Y < 9.)
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b) Assume that x > 1 and that (1) holds for each ordinal less than ». Then there is
an ascending chain of convex normal subgroups (2) of G such that (3) is valid and
for each f < § there is an ordinal 1(f) < x having the property

‘ Gy/U,<p G, € Ext ;y Hom Sub X .

Let A and H, (x < y) be as in part a). The cases b < A and b > 4 are analogous as
in a). Let b = A. Then
Hg/U,<s H, € Sub {G;/U,<5 G,} < Sub Ext,; Hom Sub X =
= Ext,(p) Hom Sub X ’

hence (1) is valid for each ordinal », which completes the proof.

2.2. Theorem. Let I be a nonempty class and for each i€l let X; be a hereditary
radical class. Then V ; X; = ext Ui X ;-

Proof. From 2.1 it follows immediately that the relation
Vier X; = ext Hom Sub U X;

is valid. Since X are hereditary radical classes, we have Hom Sub X; = X, therefore
Vier Xi = ext Uiy X
From 2.2 and [3] (Thm. 2.3) we obtain:

2.2.1. Corollary. R, is a closed sublattice of the complete lattice X.

2.3. Theorem. Let A€ R, {B;}ic; S #)- Then

A A (Viel B;) = VieI (A A Bl) .

Proof. It suffices to verify that A A (Vi B;) £ Vit (A A B;). Let Ge A A
A (Vier B;). Hence Ge A and G eV B;. In view of 2.2, Geext U;y B;- Thus G
is constructed by the operation ext from certain lineaily ordered gtoups G;; (i€,
Jj € K;) such that G; belongs to B, for each i € I and each j € K.

According to the definition of ext, for each G;; there exists a notmal convex
subgroup H;, of G and a homomorphic image G; ; of H;; such that G;; is somorphic
to G;;. Because 4 is hereditary the linearly ordered group H;; belongs to 4 and hence
G;je A. Thus G;;€ A A B; for each i€l and each je K. Therefore Geext U, .
(A AB)=Via(4 A.B).

The following example shows that the relation

AV (Aier B) = Aicx (4 v By)

does not hold in general in the lattice #,. (The symbols I';.; G, and G, - G, denote
lexicographic products of linearly ordered groups; cf., e.g., [5].)
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2.4. Example. Let N be the set of all positive integers with the natural linear
order. Let J be the linearly ordered sct dual to N and for each j € J let G; be an archi-
medean linearly ordered group, G, # {0}, such that G, and G,,, fail to be iso-
morphic whenever j(1) and j(2) are distinct elements of J. For each je J let J, =
= {ke J:k < j} (with the induced linear order). Put

G =T,,G;,

G = Iies, Gy foreach jeJ,
A = VjEJ 7;‘(G.l) ’

B, T,(G,) foreach jelJ.

J
Then we have G ¢ 4, Ajs B; = Ro, hence
AV (AjuB)=4

and thus G¢ A v (A;s B
On the other hand, Ge A v B, for each j € J, hence

GeAjs (A v B))
and therefore A v (Ajy B;) + Ajes (A Vv B).

2.5. Lemma. Let X = 9, He T,(X), H =+ {0}. Then there exists a convex sub-
group Hy of H with Hy # {0} such that H; e Hom Sub X.

Proof. In view of 2.1 we have H € ext Hom Sub X, hence there is an ordinal t
such that H € Ext, Hom Sub X. Thus there is an ordinal »¥ < t having the property
that there exists a convex subgroup H’ of H with H' # {0} such that H'e

‘€ Ext, Hom Sub X.

Now let y be the first ordinal having the property that there is a convex subgroup H"
of H with H” % {0} such that H” € Ext, Hom Sub X. Assume that y > 1. Then there
is ' < x such that there exists a convex subgroup H* = {0} of H” with H*e
€ Ext, Hom Sub X. Since H* is a convex subgroup of H, we have arrived at a contra-
diction. Hence x = 1. Therefore there is a convex subgroup H, + {0} of H” such
that H, € Hom Sub X, which completes the proof.

3. ATOMS IN 2,

3.1. Proposition. Let Ge ¥, G + {0}. Assume that G is archimedean. Then
T,(G) is an atom in the lattice R,

Proof. We have Ry < T;(G). Let A€, Rg < A < < T,(G). There exists He A
with H # {0}. In view of 2.1 we have T,(G) = ext Hom Sub {G}. Since G is archi-
medean, Hom Sub {G} is the class of all linearly ordered groups G’ such that either

= {0} or G’ is isomorphic to G. Hence H can be constructed by the operation ext
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from a system of linearly ordered groups G, (i € I) such that each G, is isomorphic
to G. Let i € I be fixed. There exists a normal convex subgroup H; of G and a homo-
morphic image G; of H, such that G; is isomorphic to G;. Since A4 is hereditary, we
have H,; € A and thus Gj e A. Therefore G € A and hence 4 = T,(G).

Because there is an infinite set of mutually nonisomorphic archimedean linearly
ordered groups, 3.1 implies:

3.2. Corollary. The class of all atoms of the lattice &, is infinite.

3.3. Proposition. Let X € #,, X + R,. Then there exists an archimedean linearly
ordered group H = {0} such that T,(H) £ X.

Proof. There exists G € X such that G & {0}. Choose g € G, g > 0 and let # =
= {H,}r be the set of all convex subgroups of G not containing the element g.
Let H, be the convex subgroup of G generated by g. Because the set J# is linearly
ordered, # has a unique maximal element H,. Then H, is the largest proper convex
subgroup of H,. Hence H, is a normal subgroup in H,. Therefore H = H,[H, is
o-simple and thus it is archimedean. Clearly H + {0}. Now we have T,(H) =
= T(H,/H;) < T,(G) £ Ty(X).

From 3.1 and 3.3 we infer:

3.4. Theorem. Let X € &,. Then the following conditions are equivalent:

(i) X covers Ry, in the lattice R,.

(ii) There is an archimedean linearly ordered group H # {0} such that X =
= T,(G).

Let A, be a set of non-zero archimedean linearly ordered groups such that (a) if G,
and G, are distinct elements of A, then G, is not isomorphic to G,, and (b) for each
non-zero archimedean linearly ordered group G there is G'in A, such that G is iso-
morphic to G'. Put

Xo = VGer Th(G) .

A collection X will be said to be small if there exists a set Y and a mapping of Y
onto X.

3.5. Proposition. Let 4, = [Ry, X,] (the interval taken in &,). Then
(i) 9, is a small collection;
(ii) %, is a complete atomic Boolean algebra; the collection of atoms of 9, is

{Th(G)} GeAo®

Proof. 4, is obviously a complete lattice and in view of 2.3, %, is distributive.
From 3.4 it follows that Ay = {T;(G)}¢e4, is the collection of all atoms of ¥,. Let
Ry + Xe€ %, and let X' = {T,(G) : Ge 4o n X}. Then

X=XAXo=XA (VGer 7;.(6)) = Vieso (X A Th(G)) =
= Voeonx (X A T,(G)) = sup X'
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Moreover, if X” = Ay and sup X” = X, then 2.3 implies that X' = X”. Hence ¥,
is isomorphic to the Boolean algebra of all subsets of the set Ag.

3.6. Lemma. Let X€%,, X + R,. Let I be a linearly ordered set isomorphic
to the set of all negative integers (with the natural linear order). Let G = T, G,,
where each G; belongs to Aq N X. Assume that for each G' € Ay N X and each
Jj€l thereis iel with i < j such that G’ is isomorphic to G;. Then

(i) T(G) covers X,
(ii) T,(G) does not belong to %,
(i) T,(G) A T,(G') = Ry whenever G' € A, and G’ ¢ X.

Proof. We apply the same notations as in the proof of 3.5. For each G'e 4o n X
we have T,(G') £ T(G), hence X = Vgreaonx Ti(G') £ T;(G). In view of 2.5, T,(G)
does not belong'to 4, and thus X < T;(G). Let Ye #,, X < Y £ T,(G). There exists
He Y\ X. Hence H e T;(G). According to Thm. 2.1, H can be constructed from
a subset S of the class Hom Sub {G} by the operation ext. Because H does not belong
to X, the set S must contain a linearly ordered group isomorphic to I'y; ;<; G;
for some j eI. Then we have G € ¥, whence Y = T,(G) and so (i) is valid. (iii) is
a consequence of 2.1 and 2.3.

For each X € R, we denote by a(X) the collection of all Y € £, such that Y covers X
in the lattice £,.

From 3.6 we immediately obtain:

3.7. Corollary. Let X € 9y, X # R,. Then there exists Ye a(X) n Ry, such that
Y¢9,.

The proof of the following proposition will be omitted (it can be established by
using similar arguments as in the proof of 3.6).

3.8. Proposition. Let X e€%,, X + R,. Let I be as in 3.6 and let G =T, G,
where each G; belongs to Aq N X. Then the following conditions are equivalent:

(i) T(G) covers X;
(ii) for each G'e Ay n X and each jel there is i€l such that i <] and G’
is lsomorphlc to G,;.

4. PRINCIPAL ELEMENTS OF £,

4.1. Proposition. Let X, Ye R,, X £ Y. Assume that-Y is a principal element
of R,. Then X is principal as well.

Proof. Let Y = T,(G). In view of 2.1, Y = ext Hom Sub {G}. There exists a set

= {H,} .1 of linearly ordered groups such that S « Hom Sub {G} and tor each
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G, € Hom Sub {G} there is i€l such that G, is isomorphic to H; Hence Y =

= ext {H;};;and X < ext {H,};. Thus thereis® & J < I'such that X = ext {H },.

We can assume that J is well-ordered (by using the Axiom of Choice). Put H =

=Ty H. Then H,e T(H) holds for each ieJ, hence X = ext {H;};y =
= Vi T;,(H,) < T,(H). On the other hand, H e Ext {H;},,and so T,,(H) <
< T({H}is) = X. Thus X = T,(H) € A,

4.2. Proposition. Let I be a nonempty set and for each i€ I let X; be a principal
element of R,. Then X = V. X; is a principal element of &, as well.

Proof. There are G, € 4 such that X; = T,(G,). We clearly have X = T,({G,},;) =
= ext Hom Sub {G; },e, There is a set S = {H,};, = ¢ such that (i) S <
< Hom Sub {G},;, and (ii) for each G; € Hom Sub {G},; there is j e J having
the property that G, is isomorphic to H,. Again, we canassume that:J is well-ordered.
Put H = T, H,. It is easy to verify that X = T,(H), hence X is principal.

Let « be a cardinal. We denote by I(«) the first ordinal having the property that the
set of all ordinals less than I(«) has the cardinality «. Let J(«) be the linearly ordered
set dual to I(x).

Let Ge¥%, G + {0}. We put
Gey = Tyes G

where each G; is isomorphic to G.

4.3. Lemma. Let Ge 9, G * {0}, a > card G. Then T,(G) < Ty(G(y)-

Proof. We have G € Hom {G,}, hence T;(G) £ T,(G(,). In view of 2.5, G, ¢
¢ T,(G). Hence T,(G) < T,(Gy)-

4.4. Corollary. The class &), has no maximal element. In particular, 4 does not
belong to #,,.

Let Ge 9, G * {0}. In view of 4.3 there is a least cardinal B = B(G) such that
TG) < Ty(Gipay)-

The following proposition shows that there are many prime intervals in the
lattice Z,,.

4.5. Proposition. Let Ge ¥, G + {0}. Then T,(G) is covered by T,(Gy,) in the
lattice &,

Proof. We have T,(G) < Ty(Gig))- Let X € &y, T(G) < X < T(Gggy))- There
exists G; € X\ T,(G). Then G, € ext Hom Sub {G s} Hence there exists a set
S = Hom Sub {Gy )} such that G, can be constructed by means of ext from the
set S. In view of G, ¢ T,(G) there is H € S siich that H does not belong to Hom Sub .
. {G}. Therefore, from-the construction of Gy gy, it follows that there is a convex
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subgroup H; of H such that H, is isomorphic to G Since H; € X we obtain
From 4.5 and 3.1 we infer:

4.6. Corollary. Let G € R,,. Then a(T,(G)) N &,, + 0.
Let 2 be the class of all prime intervals of the lattice R,. From 4,5 and 4.2 we obtain:

4.7. Propositien. 2 is a proper collection.
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