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ON KNESER - TYPE SOLUTIONS OF SUBLINEAR
ORDINARY DIFFERENTIAL EQUATIONS

GI0rGI KVINIKADZE, Tbilisi
(Received November 25, 1987)

Summary. A nontrivial solution u: [a, +0[— R of an ordinary differential equation of n-th
order is called a Kneser-type solution (KS) if (—1)! «'¥(1)= 0 for t=a (i=0,...,n— 1).
A KS is called degenerate (singular) if it is constant (zero) in some neighbourhood of + oo, and
nondegenerate otherwise. In the paper a class of equations admitting sufficiently many singular
KS-s is introduced and studied. For the equations from this class a sufficient condition for the
existence of a nondegenerate KS with a prescribed limit at 4 oo is established. Two-sided a priori
asymptotic estimates of such solutions are obtained.
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INTRODUCTION

Let n be a natural number and f € K;,o(R+ X R"; R)'). Consider the equation
(0.1) u® = f(t,u, v, ..., u®" V),

We say that a nontrivial solution u:[«, +oo[ = R of (0.1) is a Kneser-type
solution if

(0.2) (—1) )20 for t=za (i=0,...n—1).

This definition is motivated by the fact that the problem of finding a solution of (0.1)
satisfying (0.2) together with the additional condition u(a) = 4o > 0 was for the
first time considered by A. Kneser [1] in the case n = 2. Later this problem was
studied in [2]—[4] for the case n = 2 and in [5]—[8] for the general case.
It is proved in [6] that if
(0.3) f(t,0,...,00 =0, (=1)"f(t,xs,...,x,) Z O
for 120, (-1)"'x;,20 (i=1,...,n)

then the equation (0.1) has a one-parameter family of Kneser-type solutions. In

1) For the notation see Section 1.
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what follows we assume that the conditions (0.3) are fulfilled. At the end of the paper
we shortly discuss the case when f(. 0, ..., 0) % 0.

We say that a Kneser-type solution is degenerate if it is constant in some neigh-
bourhood of + o0, and nondegenerate otherwise. We call a Kneser-type solution
singular if it is identically zero in some neighbourhood of + oo. Throughout the
paper for the sake of brevity we denote a Kneser-type solution by KS, a nondegenerate
Kneser-type solution by NKS and a singular Kneser-type solution by SKS. It is
clear that any NKS u: [a, +oo[ — R of (0.1) satisfies

(=)' u®(t)>0 for t=2a (i=0,...,n— 1),

and for any SKS u: [a. 4+ oo[ — R of (0.1) there exists a point b > a, which we call
its singular point, such that

(=D uP(1)>0 for a<t<b(i=0,...,n—1),
u(t) =0 for t2=b.

In this paper sufficient conditions are given for the equation (0.1) to have a SKS
with a prescribed singular point. For a class of equations these conditions turn out
to be necessary as well. The problems of existence and two-sided a priori estimates
of NKS-s are also studied in the case when the equation (0.1) admits sufficiently
many SKS-s (see Definition 2.1). In this sense (the solution of (0.1) with zero initial
conditions is not unique) the case considered here may be treated as sublinear (see
also (2.3) and (2.19)). Similar problems were considered in [9], [10] in the case
when f is bounded with respect to x,, ..., X,,.

1. NOTATION AND AUXILIARY STATEMENTS

Throughout the paper we use the following notation.

R=]-o,+o[, Ry =[0,+o[, R*=Rx...xR,
[ ————
n times

R. =R, x ... x R, ,

n times
R = {(x1y 00 X)) R (=1) 715,20 (i=1,..,n)};

if I, J < Rareintervals and I' = R" then Ly (I; J) is the set of all functions p: I — J
which are Lebesgue integrable on every compact subinterval of I; C(I'; J) is the set
of all continuous functions h: I' —» J; Kj(I x I'; J) is the set of all functions
fiJ x I' > J satisfying the local Carathéodory conditions, i.e. f(t, *)e C(I'; J)
for almost all eI and sup {lf(-, x)|: x € Iy} € Lyo(I; J) for any compact I', < T

By a solution of the equation (0.1) defined on I we mean a function u:I — R
which is absolutely continuous on each compact subinterval of I along with its
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derivatives up to and including the order n — 1 and satisfies (0.1) almost everywhere
in 1.

Now we present some known results which we will use later.

Lemma 1.1. ([6; p. 1388]) Let u:[a, +o[ - R be a KS of (0.1). Then
lim fuD(r)=0(@(=1,....,n - 1)

t—*+o0

Let > 0and c;eR (i =0,...,n — 1). Consider the initial value problem for
(0.1)
(1.1) udPB)=c¢; (i=0,...,n—=1).

Lemma 1.2. Let the function
(t, xl, xl, ceey X,,_) [ d (‘_1)"f(t, xl, —Xz, s (_1)"""1 x,;)

be nondecreasing in x,, ..., x, and let u: Ja, B] - R be any solution of (0.1), (1.1).
Then for any n — | times continuously differentiable function v:7«, f] - R
satisfying the inequalities

(—D)'vPB) = (=1)'¢; (i=0,....0-2),
(=1 1o () > (=1 ey — 1 f(x, o(z), —0'(n), ...

v (=) D(r)dr for x <t S B
we have

(=1 v9(t) > (1) ud(t) for a<t<B (i=0....n—1).

This lemma is a special case of a general statement concerning systems of ordinary
differential equations (see e.g. [7; Lemma 4.6]).

2. ON SINGULAR KNESER-TYPE SOLUTIONS

Theorem 2.1. Let b > 0 and let there exist a€[0,b[, me{1,...,n} and ¢ > 0
such that

(2.1) (=1 £t xg5 .0 %) 2 p(2) (|x,0]- ..
0= (-1)"'x;Z¢ (i=1,...,n)
where pe L([a, b]; R4),

(22) 5p(t)dt >0 for a<t<b,

X,|) for aft=<bh,

he C(RY ™ '; R,) is nondecreasing in each of its variables, h(x, ..., x) > 0 for
x>0 and

(2.3) " "h(y, ..., y)] "M ™*Ddy < +0 for x>0.
Then the equation (0.1) has a SKS with b as the singular point.
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Proof. Let u, be an arbitrary solution of (0.1) with initial conditions
(24) Wb =0 (=0, un = 2), W) = (=1,

It is not difficult to see that there exists aq € [a, b[ such that for any ¢ € ]0, ¢/2] the
maximal left-hand interval of existence of u, contains [a,. b] and

(2.5) 0< (=1 uPit)<o for ag<t<b (i=0,...n—1).

By (2.5) the solutions (#,)o <. <,/ of (0.1) are uniformly bounded and equicontinu-
ous on [a,. b] along with their derivatives up to and including the order n — 1.
Therefore. one can choose such a sequence {&};%, that lim ¢ = 0 and

k= o

(2.6) limulX(t) = ud(1) for ap=t<b (i=0,...n—1)

ke
where u, is a solution of (0.1). It obviously satisfies
(2.7) uP(b) =0, 0= (=) ul(t)<eo for ag <1 =b
(i=0,....n—1).
Let ¢ € 0, /2] be fixed. From the obvious inequalities

1

b
|u£""1)(t)l _ (T _ t)i—l lu("‘“")(r)| dr <
(i - ])! t
< (i.—_:_rl |u("‘+""”(t)| (i=1,....,n—m)
il
we get
(2.8) lu" ()| = it b (1) for ag £t =b (i=0,...,n—m)-

So (2.1). (2.5) and the monotonicity of h imply
(= 1y ul(1) = p(1) ﬁ(lug'"_l)(t)l) for ap <t Db

where
h(x) = h(x, b7 'x, ..., (I = I ") for x=20, I=n—m+1.

According to Lemma 1.2 this inequality together with (2.4) implies
(2.9) (=1 " ul" V(1) > vt) for ap<t<b
where v, is any solution of the problem

(2.10) o = (=1)" p(t) h(v) ,
(2.11) oP(b) =0 (i=0,...,0=2), () =(=1)"""¢2

with | = n — m + 1. Clearly
(2.12) (=) (1) >0 for ap<t<b (i=0....01-1).
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Without loss of generality we can assume that p(t) < 1fora £t £ b. Using this
along with (2.11), (2.12) and the monotonicity of & we have from (2.10) (supposing
first that [ > 1) -

(2.13) [o{' D] = (g2)* + 2 [} h(v(z)) [0~ V(z)| dr <
< (g/2)* + 2h(v (1) |0~ 2(1)| for ag < t<b.
Due to Lemma 9.2’ in [7] the inequality
| =2(0)] < [(1 = 1)]"07 D [ (] V4D o= (r)|0-22a=D
sholds for a, < t £ b, which together with (2.13) implies (since (/2)? < (g/2)/¢ 1.

. [vc(t)](hZ)/(l-l))

(2.18) [0 < ¢f2 + o(vr)) for ag <t <b
where
(2.15) w(x) = 2Ix"""[h(x)]*" D" for x=0.

(2.14) is obviously true for I = 1.
Now take an arbitrary t, € Ja,, b[. Noting that v,(t) = [2(1 — 1)!] "' ¢(b — 1)'!
for ay <t < b we get from (2.10) and (2.11)
[8D()] = €2 + v + [ p(z) A(v(r))dr for ay <t <t
where
y =[5 p(r) A([2(1 — )]t e(b — 7)'"")dr > 0.
This inequality together with (2.14) implies
(2.16) o(v(t)) > v + [° p(z) h*(w(vr))dr for ay < ¢
where
(2.17) h*(x) = h(w™*(x)) for x =0

-1

IIA

and o™’ is the function inverse to .
By the (2.15), (2.17) and the well-known properties of the Riemann-Stieltjes
integral we have

e [l o5 -] -
— 21— 1) [——l(i] + 2 I " j ] dz

h(w™!(x)) 0= 1(y)
for x>y>0.

On the other hand, using the monotonicity of i we conclude

[ s [l Sl
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hence (2.3) yields

(2.19) lim = = 0.
y—=0+ h(_\')

Therefore, (2.18) implies

H(X)EJ‘. de < +4+w for x=0.
o h*(&)

The function
x(t) = H"'(H(y) + [ p(r)dt) for a<t<t.
where H™1 is the function inverse to H, is the solution of the problem
‘;_j = —p() 1*(x), x(te) = 7.
Therefore, according to Lemma 1.2, (2.16) implies
o(v(t)) > x(t) > H ([ p(r)dt) for ag <t =<ty
Hence for t, tending to b we get
(2:20) v(t) Z 0 (H™ (4 p(r)d1)) for ag<t=<b.
(2.2). (2.6), (2.9) and (2.20) imply that the function

_Juo(t) for ag=t<b
u(r) = {0 for t=b

is the SKS of (0.1) with b as the singular point. This completes the proof.

Remark. One can formally consider A in (2.1) to depend on more thann — m + 1
variables, so in (2.3) one can take m smaller. However, taking into consideration
(2.9) it is easy to see that (2.3) implies its own validity with m larger and the example
of the function h(x,,x,) = .\'zlln x2|3/2 shows that the inverse is not true. In some
cases, however, as in the corollary below, the value of m is not important.

Corollary. Let b > 0 and let there exist ae[0,b[, me{l,...,n} and ¢ >0
such that

(2.21) (=1 £t x1s oo Xa) = p(8) x| o |
0 (-1)'x;<0 (i=1,....,n)

An
for a<t=<b,

with 2; 20 (i=m,...,n), 0 <Y A; <1 and pel([a, b]; R,) satisfying (2.2).

Then the conclusion of Theorem 2.1 is valid.
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Theorem 2.2. Let [ 2 |, b > a 2 0, pe L, ([a, + =<[; R4). let he C(R4; R,) be
nondecreasing, h(0) =0 and h(x) > 0 for x > 0. Then the condition (2.2) is
necessary for the equation (2.10) to have a SKS with b as the singular point. If, in
addition, (2.22) vraimax {p(t): ap £ t £ b} = ¢ < + % for some a, € [a, b[ then
the condition
(2.23) st h(»)] V'dy < 4 for x>0
is necessary as well.

Proof. The necessity of (2.2) is obvious. Let now (2.22) hold and let
v: [0g, + [ = R be a SKS with b as the singular point. Without loss of generality
we may assume that ¢ = 1, for otherwise we can consider v, = ¢~ !v instead of v.
Quite analogously to (2.15) we can get (notation is from the proof of Theorem 2.1)

o(v(t)) > |2 p(t) h*(w(v(r))dt = x(1) for ay <t <b.
We have
x'(t) > —p(t) h*(x(1)) for a, <t <b,

"(""’ﬁ_: _ b x’(t)dt b -
L () J h*(x(t))éf..f’(”d“ T

Hence by (2.18) we get (2.23). The theorem is thus proved.

SO

Definition 2.1. We say that the equation (0.1) has the property S provided for any
t, = 0 there exists a SKS of this equation with the singular point b > ¢,.
Theorem 2.1 and its corollary immediately imply the following results.

Theorem 2.3. Let there exist a =2 0, me {1, ..., n} and a nonincreasing function
o0: [a, + 0[=] 0, +oo[ such that
(2.24) (=1 f(t, xy5 . x) = (1, Ix,,,', ey lx,,l) for t=a,
0 (=1)"tx;Ze(t) (i=1,....n)
with ¢ € Kiol([a, + o[ x R*™™*1; R,) satisfying one of the following two con-
ditions:

1) ¢ does not increase in the first variable, does not decrease in the lastn — m + 1
variables

(2.25) o(t,x,...x) >0, [s" "ot y,...»)] "™V dy +oo
for tza, x>0;

2) @(t, Xpps -5 Xu) = P(t) h(Xp, .., X,) with h satisfying the conditions of Theorem
2.1 and pe L([a, + o[ » R,) satisfying

(226)° mes{t>t:p(z) >0} >0 for t=a.
Then the equation (0.1) has the property S.

124



Corollary. Let there exist a = 0, me {1, ..., n} and a nonincreasing function
0: [a. + o[ » 0, + [ such that the inequality (2.21) holds for t 2 a, 0 <

S(=1)"'x; o) with 4,20 (i=m,...n), 0<Y i, <1, and pe

€ Ly ([a, +o[; R,) satisfying (2.26). Then the equation (0.1) has the property S.

3. SUFFICIENT CONDITIONS FOR THE EXISTENCE
OF NONDEGENERATE KNESER-TYPE SOLUTIONS

Foranya > 0,r >0, r, > 0 put

Dya,r,ro) = {(t. x4y ..., x,) € [a, + o] x R™

|x,-| Srott™ (i=2,..,n)}.

Xll _S_r)

Theorem 3.1. Let there exist a > 0, r > 0, ry > 0 such that

.1 oty [xq]s oo |xa]) S (=11t x4, .0 x,) S 9(1)

on D(a,r, ry) where ¢ € Ky ([a, + o[ x R%; R,) does not decrease in the last n
variables, the equation

(32) o™ = (=1)" o1, |v|, e |v(""”|)
has the property S. g € Li,([a. +[; R,) and
(3.3) fa= e lg(r)dr < +».

Then for any c € [0. [ the equation (0.1) has a NKS u such that
(3.4) limu(r) =c.

t—=+ o
Proof. For any ¢ > 0 put

0 for x<0
n(o,x) =<¢x for 0<x=<p
o for x> 9

and let
J(t, xgs ooooxy) = f(t, 1, x1), =al(rot™", —x3), oo (=171
cnrot' T (1)1 x,))
Bt xy. .o x,) = o(t, n(r, x,), n(rot ™", X,), ..oy nlret* 77, X,)) .

It is not difficult to see that f € K, ([a, + o[ x R"; R), @ € K\oo([a, + o[ X R%; R,),
¢ does not decrease in the last n variables, the equation

(3.5) v = (=1 ¢(t. [ol, ... [o77])
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has the property S and by (3.1)

(3.6) (,T)(t,‘lxll, ceos |Xa]) £ (—J)"f(t, Xy, e X,) < g(0)
for (¢, xy,...,x,)€[a, +oo[ x R".

Xn

Since the equation (3.5) has the property S, there exists a sequence {v;}e%, of its
SKS-s, the singular points t, (k = 1, 2, ...) of which satisfy
tk+1>tk>a(k=l,2,...). llmtk=+<73.
k=
In view of (3.6) we may assume that all v,-s are defined on [a, + =[.
Let k be fixed and let u, be a solution of

37 . u”=j(t,u,....u"")

with initial conditions

(9w =, W) =0 (= Lown=2). W)= (<) s
where

(3.9) & =()<1Tn it{i v 1ig(r)dr} .

By (3.6) u;, may be assumed to be defined on [a, 1,]. Clearly ¢ > 0 because the con-
trary would contradict the property S of the equation (3.2). Since, in addition,
(=" 1o P(t) > 0 = (= 1" o~ I(1,), Lemma 1.2 yields

G10) 0 (=1 o) < (=120, (=110 < (= 1) U0
for a<t<t (i=0,...,n—1).

Besides, we have by (3.6) and (3.9)

Gy ] = e+ 8231‘:?:)_"_1')—! - il— 1)!,[:,‘(T A

A wlz), o ul (@) de S o + J. i g(r)dr +

ti
i . + oo .
+J r""“g(r)dr=c,-+"‘ "7 "l g(r)dr
t t

for a

IIA

t__<__‘tk (i=0,...,n_l)

with ¢ =¢, ¢; =0 (i=1,...,n —1).

It follows from (3.11) that for any compact interval I < [a, + oc[ the sequence
{w,}i% is eventually defined, uniformly bounded and equicontinuous on I along
with its derivatives up to and including the order n — 1. So without loss of generality
we can assume that it converges to a solution u: [a, +«[ - R of (3.7). By (3.10)
and (3.11) u is a NKS and satisfies (3.4).
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According to (3.4) and Lemma 1.1 there exists aq = « such that (¢, u(r), ...

o u (1)) e D,(a, 7, 1) for t = a,. Therefore, by definition of f, the restriction
of u to [a,, + oo[ is a solution of (0.1). This completes the proof.

Remark. From the proof it is clear that if we suppose that instead of (3.1)

(12) (=1 S(t 10 ) < 6(0)

holds on D,(a, r, ro) where g satisfies (3.3), only the existence of a KS with the pro-
perty (3.4) is guaranteed. This result generalizes Theorem 5 of the paper [5] of
M. Svec. The example of the equation u” = —t~3u’ all the KS-s of which are constant
shows that in general one cannot claim more, and the necessary conditions for the
existence of a NKS of (0.1) given in Section 4 imply that (3.3) cannot be omitted,
either.

According to Theorem 2.3 and its corollary, Theorem 3.1 implies

Corollary. Let there exista > 0,r > 0,ry, > 0and me {1, ....n} such that

@t X oo [Xal) S (=1 £t x4, .00 x,) S 9(8)

on D,(a,r,ro) with ¢ satisfying one of the two conditions of Theorem 2.3 and
geLy([a, +[; R,) satisfying (3.3). Then the conclusion of Theorem 3.1 is
valid. This is the case, in particular, if (p(t, Xppo o ovn Xy) = p(t) Xt xIn with

L n

with 2, 20 (i =m,...,n), 0 < Y A <1 and p satisfying (2.26).

i=m

4. NECESSARY CONDITIONS FOR THE EXISTENCE OF
A NONDEGENERATE KNESER-TYPE SOLUTION. ESTIMATES

Let [ be natural and letI = ]O, + oo[ be an interval. For any function ¢: I x RY —
— R which is continuous in the last [ variables put

if I>1,

¢y(t,x) = ¢(t,x) for tel, x=0.

Theorem 4.1. Let there exist a > 0, r >0, r, > 0 and me{l, ..., n} such that
the inequality (2.24) holds on D,(a,r,1,) where ¢ € K, ([a, + o[ x RYT™ ' R})
neither increases in the first variable nor decreases in the last n — m + 1 variables,
o(t,x,...,x) > 0 for x > 0 and

X dy

—_— 0
0 Pu—m+ l(t" y)

< 4w for t=Za, x

v

42) o, x) = '[
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where @,_ 4, is defined by (4.1). Then the condition

(4.3) limm~1y(1) =0
t—=+o0”
is necessary for existence of a NKS u of (0.1) with lim u(t) € [0, r[ where
t—++ 0
(4.4) YWt) = sup {P (s, s — t): s = t}

and @71, *), t 2 a, is the function inverse to @(t, +). Moreover, any NKS u of
(0.1) satisfies

(4.5) |ut™ (1) —'ljm u™ = "(1)] = (1)

+ o0

for large t.

Proof. Let l =n —m+ 1, 0(t) = (—1)""" u~"(1). By (4.1) and Lemma 1.1 a
may be assumed to be so large that the inequality
(4.6) (=1)' v(1) 2 o(t, [o(t)], ..., [0 1(t)]) for t=a

holds.
Let s > a be fixed. Put

1=1 1.0, Y
v(t) = o(t) = ) ik O) (Gl for a<t=<s.
j=0 j!
Since u is a NKS,
4.7) 0 < (=17 e(t) <(=1)'v®(F) for ast<s (i=0,...,01—1).

Besides, since v{’(s) =0 (i = 0,...,1 — 1), quite analogously to (2.8) we obtain
that

(4.8) |u£”(l)| 2ils7toft) for a<t<s (i=0,...,1-1).

(4.6)—(4.8) together with the monotonicity of ¢ imply

S!—l

(=)' (1) = (p(S, us(t),v—sg—t—) v (_l_—___l)'v,@) for a<t<s.

Multiply both sides of this inequality by |v;(t)| and integrate from te [a, s] to s.
Integrating by parts and taking into consideration (4.7) we obtain

oy os() , I - 1)
oz [ L)

0

for a <t

A
IIA

S.
Suppose first that I > 1 and apply this procedure for I — 2 more times. We get

—v(1) 2 @s, v(t)) for a<t<5s.
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This inequality is obviously true for I = 1. Hence we have
v(t) 2 ¢ (s,s — 1) for a<t=<s.

Since s > a was fixed quite arbitrarily, from this inequality we easily get (4.5) which
together with Lemma 1.1 implies the necessity of (4.3). The theorem is thus proved.

Remark 1. It is easy to see that if m > 1 then the estimates
. . 1 two .
lu(‘)(t) — lim u(')(t)l 2 — (=0 2y(r)de
t—+ (m —-i- 2)! t
(i=0,....m=2)
hold for large t. Hence we have the necessary condition
frem=2y(t)dt < + o0

which, in general, is stronger than (4.3).

Corollary. Let there exist a > 0, r > 0, ry > 0 and me {1, ..., n} such that the
inequality (2.21) holds on D,(a, r, r,) with

4iz0(i=m,...n), 0<A=Y A<, and

p:[a, + oo = ]0, + o[
nonincreasing. Then the condition

(4.9) lim ("h27 DA ) =0 if m =1,

t—=+ o

[re 2 po()]V P dt < 400 if m > 1

where po(t) = sup {s™*m*1 7T "MAn pi5) (s — t)* "™+ 15 >t} is necessary for the
equation (0.1) to have a NKS u with lim u(t) € [0, r[. Moreover, any NKS u of (0.1)
satisfies ¥

|u('"'”(t) — lim u(""”(t)| 2 pu[po(r)]/t-»
t>+w
for large t where
p=[n—=m+ 1) (1 =)D (4 0) .
(A n = m)]He D
For the proof it suffices to notice that if

O(15 X <ees X,) = p(t)x:"" ce XD
then
(1, x) = p[t™Am T T An () xnomE I U =D
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Remark 2. Since

- X [ — 1) X\
oty x) = x¢ ””[q) (f, X = (—7"‘>] .

(4.2) implies (2.25). Besides, if ¢ is formally considered as depending on 1+2
variables then

Prea(t, X) = U‘x[%(u )’ dy]”('mé 1. x) [__*“__}”““’,

@t x)

so (4.2) implies its own validity with m larger (sec (2.19)). The example of the function
(1, X1, X3) = X,|In x,|¥? shows that the inverse is not true. As to the role of m
in the necessary conditions, consider the equation u” = *"?*(InIn 1)~" |u’|* with
0 < 2 < I. The condition (4.9) with n = 2, m = 1 is obviously fulfilled. Take now
m = 2. It can be checked that then [po(£)]'/"' ™ ~ ct™'(InInt)™" as t » + o0, so
(4.9) does not hold and we are able to conclude that the equation under consideration
has no NKS at all.

Remark 3. A necessary condition for the existence of NKS of u® = (—1)".
. p(1) Iu tsignu where 0 < 2 <1, p(t) 2 0 and p need not be monotone was
obtained by N. A, Izobov in [I1].

Theorem 4.2. Let there exist a > 0, r > 0, ro > 0 and me {1, ..., n} such that

(4.10) (= 1" £t Xgs oo X0) S (8 x5 s [xa])

on D,(a,r, ro) where Y € K, ([a, + o[ x Ry™ ' R,) does not decrease in the
last n — m + | variables and is such that the function Y, _,+: [a, + o[ > Ry
is correctly defined by the equalities

(4.11) Yolty Xpps « v X,) = |//(1,’x,,,, e X))
Yily Xpps o s X)) = sup {x 2 0:x < [F7 ¥y y(t. Xy oo X,mp x) dT)
(i=1l..,n—m+1).

Then any NKS u of (0.1) .with lim u(t) € [0, r[ satisfies

t=+ o

(4.12) [ D) = 1im w=0(1)] £ Yoo (1)

t—+ o0

for large t.

Proof. According to (4.10) and Lemma 1.1 a may be assumed to be so large that
the inequality

(=) u™(1) = (1, |u("‘_')(t)|, lu("'”(t)|) for t=a
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holds. Integrating from 1 to + oo and using (4.11) and the monotonicity of y we get
(=) a1 < (s, |u('"'”(t)|, e |u""2)(t)|) for t=a.

Continuing in this way we get (4.12). The theorem is thus proved.

Corollary. Let there exista > 0,r > 0,r, > 0 and me {1, ..., n} such that

(4.13) (=0 £t x40 -0 x,) < q(1) |x,

on D,(a,r,ry) where

Am An

s,

Aiz0(i=m,..,n), 0<Y A <1,

i=m

and q € Ly ([a, +o[; R,) is such that the function q,_,.:[a, +oo[ - R, is
correctly defined by the equalities

qc(t) = 4q(1) .
l]i(t) — ( t+oo qi~1(‘f) dT)(1~An-s+z—-..—ln)/(1—1,.-“1—...-An)
(i=1L..,n—=—m+1).

Then any NKS u of (0.1) satisfies

[u™0) = lim w00 = g1
t—+ o

for large t.

5. AN EXAMPLE. SOME REMARKS ON THE CASE WHEN f(1,0,...,0) £ 0

Consider, as an example, the equation

1) = (0l e

with

(52) 1;20(i=1,...,n), 0<}_=Z,{l<], ceR.
i=1

The results obtained above imply

Theorem 5.1. Let the conditions (5.2) hold. Then the equation (5.1) has the pro-
perty S. The condition w =n + 6 — 1, — ... — (n — 1) 4, < 0 is necessary and
sufficient for a NKS of (5.1) to exist. Moreover, if it is fulfilled then any NKS u of
(0.1) satisfies

eyt ™D < u(t) — lim u(f) < *ee/CH
t=>+ o0
for large t where ¢y and c* are positive numbers depending only on n, ¢ and 4;
(i=1,...,n).
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Note that under the condition @ < 0 (5.1) has the exact solution ¢t®/(' =%

Finally, let us make some remarks on the condition f(¢, 0, ..., 0) = 0. If there is
no neighbourhood of + oo where this condition holds then for every ¢ > 0 small
enough

mes{t = 1:f(t)>0} >0 for t=0

where f(1) = inf {|f(1, x,, ...,
see that if

0= (=1)""'x;<e(i=1,..,n)}. Itiseasy to

[feer ' f(dt = +

then the equation (0.1) has no KS u such that lim u(t) € [0, e[. If this integral con-
t—= + o0

verges and (3.12) holds on D,(a, ¢, &) with g satisfying (3.3) then for any c e [0, e[

(0.1) has a NKS u satisfying (3.4). The proof is quite analogous to that of Theorem

3.1. Indeed, the consequence of the property S which is crucial there — the existence

of solutions v,: [a, tk] — R, satisfying #, 1 + o0, v;”(t,) = 0, (—=1)" v{”(t) > 0 for

St<t(i=0,..,n—1; k=1,2,...) is trivially true for the equation v™ =

(l)f(
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Sdhrn

O KNESEROVSKYCH RIESENIACH SUBLINEARNYCH OBYCAJNYCH
DIFERENCIALNYCH ROVNIC

GIORGI KVINIKADZE

Netrivialne rieSenie u: [@, +oo[— R obycajnej diferencialnej rovnice n-tého radu sa nazyva
kneserovskym rie§enim (KR) ak (—1)!u)(t)= 0 pre t=a (i=0,...,n— 1). KR sa nazyva
degenerovanym (singularnym), ak je konStantné (nulové) v nejakém okoli -}- ¢ a nedegenerova-
nym inak. V €lanku sa Studuje trieda rovnic, ktoré maji dostatoCny pocet singularnych KR.
Pre rovnice z tejto triedy je dokazana postadujuca podmienka pre existenciu nedegenerovaného
KR s predpisanou limitou pre t— +400. Su odvodené dvojstranné apriorne odhady takych
rieSeni.

Pe3ome

O KHE3EPOBCKMX PEMIEHUSX CYBJIMHEMHBIX OBBIKHOBEHHBIX
JUPPEPEHIIABJIHBIX VPABHEHUA

GI0RGI KVINIKADZE

HertpuBuanbHoe peuiehue u: [a, +o0[— R 0ObikHOBEHHOro AuddepeHLnanbHOro ypaBHEHHUS
n-ro nopsaka Ha3spiBaeTcsi Kneseposckum pewennem (KP), ecnn (—'l)iu("’(t)g Onpu t=a
(i=0,...,n— 1). KP Ha3biBaeTCs BBIPOXIEHHbIM (CHHTYJISPHBIM), €CJIH OHO TOXAECTBEHHO
pPaBHO TOCTOSIHHOM (HY/1I0) B HEKOTOPOI OKPCTHOCTH - 0O, U HEBBLIPOXKAEHHBIM B INPOTHBHOM
caydae. B cratbe paccMaTpuBaeTCsi OOMH KJ1acC ypaBHEHHHM, UMEIOLUX AOCTATOYHO MHOIO CHH-
ryasapHbix KP. 115 ypaBHEHHS M3 3TOTO KJjacca YCTaHOBJIEHO IOCTATOYHOE YCNIOBUE CYLIECTBOBAHUA
HesbipoxaenHoro KP ¢ Hamepen 3amaHnbiM npenenom npu t— + 0. ITpuBeaeHbl ABYCTOPOHHME
anpHOPHbIE OLIEHKM TAKUX PELLEHHIA.
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