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INVARIANCE OF THE FREDHOLM RADIUS
OF THE NEUMANN OPERATOR

DAGMAR MEDKOVA, Praha

(Received February 3, 1988)

Summary. One of the classical methods of solving the Dirichlet problem and the Neumann
problem in R™ is the method of integral equations. If we wish to use the Fredholm-Radon theory
to solve the problem, we need to know the Fredholm radius of the Neumann operator. It is
shown in the paper that the Fredholm radius of the Neumann operator does not change under
a deformation of the domain investigated by a diffeomorphism which is conformal (i.e. preserves
angles) on a precisely specified part of the boundary.

Keywords: Neumann operator, interior normal in Federer’s sense, reduced boundary, Fredholm
radius, perimeter, Lipschitz mapping, diffeomorphism, Hausdorff measure.

AMS classification: 31B20.

The present paper follows the paper [ Do|, which proves that the Fredholm radius
of the Neumann operator is invariant with respect to conformal deformations of
the Jordan domain investigated. We have attempted to generalize this result, first
to prove a similar theorem for dimensions of higher order.

If H = R™(m = 2)is an open set whith a compact boundary, we denote by €(0H)
the space of all bounded continuous functions on dH and by ¢’(JH) the space of all
finite signed measures on 0H. For a given function h harmonic on H we define the
weak normal derivative N¥h as a distribution

{@,N"h) = [, grad ¢ . grad h dx,,

for © € @ (= the space of all compactly supported infinitely differentiable functions
in R™). We formulate the Neumann problem for the Laplace equation with a boundary
condition y € €’(0H) as follows: determine a harmonic function i on H for which
N"h = u. We wish to find the function h in the form of the single layer potential

2A(8) = o (0 0

where v e €'(0H),
h(y)=(m—2)"" 47 x — y|2™™ for m > 2,
A"V log |x — y|™! for m=2,

A is the area of the unit sphere in R™. The operator N4 is a bounded linear operator
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on ¢'(0H) if and only if V¥ < oo (see the definition in § 2). Under the assumption
V# < oo we look for a solution of the Dirichlet problem for the Laplace equation
on the set R™ — c} H with the boundary condition g (where cl H is the closure of
the set H) in the form u(x) = <f, N"h,>, where fe (0H). A solution f of the
problem satisfies

Wf(x) = <f,N¥h,> = g(x).

Let w be the distance of the Neumann operator N = 2W — I (where I is the identity
operator) from the space of all linear compact operators on ¢(0H). If w (=2V§I — see
the definition in Section 2) is less then 1 then the Riesz-Schauder theory permits
to apply the Fredholm theorems to the dual equations

+@ew-nlf=2g,
[I + (N" — I)]v = 2u.
Notice that 1/ is the so-called Fredholm radius. As is proved in [KW], [AKK2],

even in the case V¥ > 1/2 we may in several cases utilize the Riesz-Schauder theory
if we replace the maximum norm on %(0H) by the norm

7l = sup {lG)lju); x e om}

where v is a positive lower semicontinuous function on dH, and then prove that
Val, < 1/2 (see the definition in Section 2).

1. PERIMETER

Some auxiliary propositions concerning mappings of sets with a finite perimeter
are proved in this part of the paper. It is possible to omit this section and to prove
the propositions via the results of [DG1], [DG2].

We shall denote by 9 the class of all infinitely differentiable functions with compact
support in R™ (m 2 2). Further, we denote by x, the outer k-dimensional Hausdorff
measure, by U(y; 1) = {x; |x — yl < r} the open ball of radius r and center y,
by A + B = (A U B) — (4 n B) the symmetric difference of sets A and B.

Definition 1. For any Borel set H = R™ put
P(H) = sup {[gdivwdst,; w = (wy,...,w,); w,€eDVj = 1,...,m;

Yowi= 1}.
j=1

This quantity P(H) is called the perimeter of H.

The aim of this section is to deduce the following result, which we shall use in the
sequel.
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Theorem 1. Let D = R™ be an open set, Yy: D - R™ a homeomorphism. Let H
be a bounded Borel set whose closure cl H lies in D. If the mapping \ is Lipschitz
in a neighbourhood of 0H with the Lipschitz constant L then

P(y(H)) < I"~* P(H).

Before proving this theorem we state several well-known auxiliary propositions.

Definition 2. Let H < R™ be an open set. We call H an open polyhedral set if its
boundary 0H is locally a hypersurface (i.e. every point of H has a neighbourhood
in 0H which is homeomorphic to R"™!) and 0H is formed by a finite number of
(m — 1)- dimensional bounded polyhedrons.

Lemma 1. Let H be a bounded open set. Then P(H) < x,,_,(¢H). If H is an
open polyhedral set then P(H) = x,,_,(0H).

Proof. See [0], Theorem 1.6, Theorem 2.5, Theorem 2.6, Theorem 1.3.

Lemma 2. Let H, Hy, H,, ... be Borel sets such that x,(H + H,) = 0 for k — .
Then
liminf P(H,) = P(H).

k=0

Proof. See [0], Theorem 1.5.

Lemma 3. Let H be a nonempty Borel set with a finite perimeter. Then there
exists a sequence {II;} of open polyhedral sets such that oIT, < {x; dist (x, 0H) <
< 1/k} for each k, %,{H =+ IT;) - 0, P(IT;) — P(H) for k — oo, wheredist (x, ¢H) =
= inf{|x — y|; ye oH}.

Proof. See [0], Theorem 1.7.

Proof of Theorem 1. It suffices to suppose that P(H) < o0. According to
Lemma 3 there exists a sequence {If,} of open polyhedral sets such that dIT,
< {x; dist (x, 0H) < 1]k} for each k, P(ITy) —» P(H) and x,(IT, + H) > 0 for
k — oo. Further, there is k, such that y is a Lipschitz mapping on {x; dist (x, 0H) <
< 1/ko} = D with a Lipschitz constant L. We prove that there is k; > k, such that
IT, = {x; dist (x,cl H) < 1]k} and H — Il < {x;dist (x, 0H) < 1/ky} for each
k = k,. Denote M = {x; dist (x,cl H) £ 1/(2k,)}. Since cl H is compact, there
is R >0 such that cl H = U(0; R). Denote by {®;} the components of
U(0; R + 2) — M. Since U(0; R + 1) — {x;dist (x, cl H) < 1]ks} = U(0; R + 2)—
— M =\ {®;;j}, there exists a finite set ®,,..., P, such that clU(0; R + 1) —
— {x;dist (x,cl H) < 1ko} = {@;;j = 1,...,n}. Since x,(IT, + H) - 0, there is
k, > 2k, such that
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(1) ’m(ITy + H) <.=Y11iﬂ *u(P3) 5

(2) #n(ITi + H) < (2ko)™™ #,{U(0; 1))

for each k = k,. If there were k > k, such that IT, — {x; dist (x,cl H) < 1/ko} + 0
then there would exist ye IT, n (cl U(0; R + 1) — {x; dist (x, cl H) < 1/k,}) be-
cause OIT, < {x; dist (x, dH) < 1/k} = U(0; R + 1). Thus there would exist je
€{1,...,n} for which IT, n ®; + 0. Since the set @; is connected and 81T, " ®; =
c Mn ®; =0, we have &; < II,. Hence

*u(ITy, + H) = *m(P)

which contradicts (1).

Now suppose that there are k = k; and xe H — IT, such that dist (x, 6H) =
= 1/ko. If ye o, then dist(y, 0H) < 1]k, and thus dist (x, y) > 1/(2k). Since
dist (x, 8IT,) = 1/(2k,) We have U(x; 1/(2k,)) = H — IT,. Hence

um(IT, + H) 2 2,(U(x; 1/(2ko))) »

which contradicts (2).
Let k = k,. Then y(IT,) is a Borel set and

xm—l(al//(nk)) = xm—l(‘/’(ank)) é Lm—l%m—l(ank) ’
because |y(x) — l//(y)] < L|x — y| for each x, y € 8IT;. According to Lemma 1
P(Y(I1)) £ %p-1(0Y(ITy)) £ L* ', (0IT,) = L*~! P(ITy) < 0.

Since IT, = {x; dist (x,cl H) < 1/k,} we have IT, — H = {x;dist (x, 0H) < 1[k,}.
Since H — IT, = {x; dist (x, 0H) < 1[ko} we have [y(x) = ¥(y)| < L|x - y| for
each x, y e IT, +~ H. Hence

1u(W(ITy) + Y(H)) £ L"%,(IT, + H) >0 for k— 0.
According to Lemma 3

P(y(H)) < liminf P(y(IT,)) < liminf L*~* P(IT,) = I~ * P(H).

2. INVARIANCE OF THE FREDHOLM RADIUS

Notation. Let H = R™ be a Borel set with a compact boundary dH, let g be
a lower semicontinuous function on dH such that 0 < infg < supg < o. For
x € R™, r > 0 we denote

vf(x) = sup { [ grad hy(y) . grad ¢(y) dx,(y); @ € 2, I(pl <supg,
|q)| < g ondH, spt ¢ = U(x; r) — {x}}/g(x),
where g(x) = supg for xe R™ — 0H,
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V2 = sup {u:fg(x); x € 0H} ,
VoH'g L 111;1 K',ig .
For g = 1 we write (x), V. V5'. Instead of vi(x) and V2 we write v"(x) and V¥,
respectively.
It is easily seen that of(x) K™' < v/,(x) < K v/(x), where K = sup ginf g and
thung,g <weVlicy Vi,=0sV =0.

Lemma 4. Let H = R™ pe a Borel set with a compact boundary. If Vo' < o then
P(H) < 0.

Proof. (See [K2] pp. 596—7 and the proof of Theorem 2.12 in [K1]). Since
Ve' = Vo', P(H) = P(M) for M = R™ — H it suffices to suppose that H is a bounded

set. Since V! < oo there is > 0 for which V¥ < oo. Since ¢l H is compact, there
n

are x!,...,x"ecl H such that ¢l H = U U(x'; r[2). Further, there exist «y, ..., a,
1 n

such that 0 < ; < 1, spto; = U(x%; 7/2) for i = 1,...,n and ¥ &; = 1 in a neigh-
bourhood of cl H. Since i=1

d m

P(H) = Sup{ ) .;1511 (31(01,11!) d“m; hl’ ooy hmE@, Z hf é 1}

3

]

j i=1
it suffices to prove
SUP { [ vtz 0/(i0) d%,; 0 €2, |p| <1} <0 for i=1,...,n.
Let us fix i. If the points of U(x'; r[2) n 0H are situated in a single hyperplane then
P(H n U(x%; r[2)) < oo. Therefore
sup {j‘HnU(x‘;r/Z) 6j(ai(p) d%ma P e 9’ I(pl é 1} g
< P(HN U(x;7/2)) < 0.

Now suppose that there are points y*, ..., y"*! € 0H n U(x’; r/2) which are not

situated in a single hyperplane. Denote by L, the hyperplane containing {y*; s + k}.
m+1

Then U (R™ — L,) = R™and'thereexista,e 9 suchthat0 < a; < 1,spta,n L, =
k=1

m+1

and Y a;, = 1in a neighbourhood of ¢l H. Now ¢ € 2 satisfies
k=1

Jravete2) 0(®i0) dx,, = ':i:IH 0(xipay) dxy,
and thus it suffices to prove

sup {Jg 0,(ta0) dx,; 0 €2, || 1} <0 for k=1,...,m+1.
Let us fix k. The vectors x — y, ..., x — y*71, x — y**1  x — y™*1 are linearly
independent for each x € R™ — L,. There are infinitely differentiable functions b,
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on R™ — L, such that

m+1 y
(511"52;" cons Oj) = Z b (x)
s*k

where

Il for r=s

b"=0 for r=+s

is the Kronecker delta. For ¢ € 2, |<p| = 1 we have
[10(0ia,0) dst,,, =

j milb (x) ——"- v . grad (o(x) ay(x) @(x)) dae,(x) =

w||

Il

m+1

ez

—anmm

s¥k l l
m+1

Z Assup |by (x)l v () +

xespt ax

Y | I | . grad (o;(x) a;(x) @(x) by(x)) dx,(x) —

. grad by(x) dx,(x) <

II/\

+ ':2: '[Hlai(x) ak(x)l |y‘ - xll'"‘ Igrad bs(x)l d,(x) .

because grad h(x) = (y — x)/(AIy - x‘"‘). Thus
m+1

sup {J d(;a,0) dot,; @ € 9D, |(p| < 1} Z A sup |b (x)l VE 4+
H

l xespt ay

m+1 .
+ 3 f |oi(x) an(x)] [x — y|* ™ |grad bs(x)| ds,(x) < oo .
s5hdu
The set H has a finite perimeter.

Lemma 5. Let H — R™ be a Borel set with a compact boundary 0H. Then for
every z€ R™ — 0H we have

v¥(z) < A* P(H) [dist (z, 9H)]* ™.
Proof. See [K1], Proposition 2.11, Remark 2.3.

Lemma 6. Let H = R™ be a Borel set with a compact boundary. Then Vi < o
if and only if V¥ < .
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Proof. It suffices to prove that V§ < oo implies V¥ < 0. If V& < oo then there
is r > 0 for which V¥ < oo. Let x € dH. Then there are infinitely differentiable
functions ay, o, such that a; + a; =1 in R", 0 S «; =1 for i = 1,2, spta, <
< U(x;r), spta, = R™ — cl U(x; 7[2). If 9 € D, |<p| =< L. spto = R™ — {x}, then

{ grad o(y) . grad h(y) dx,(y) =

= [y grad (ay(y) @(»)) . grad h(y) dx,(v) +

+ [ugrad (02(y) @()) . grad h(y) dx,(y) < vH(x) + o"7YE2 (y)
By Lemma 5 we have

() < (x) + oI () <

< of(x) + A7'P(H — U(x; 7[2)) (r[2)' ™.
Thus by Lemma 4 we conclude

VA < yvE 4 472" M P(H) + P(U(0: rf2))] < oo

Notation. For a Borel set H < R™, z e R"™ we denote by
dy(z) = lim Uz 7) 0 n‘}i)
r=0.  %,(U(z; 7))

the m-dimensional density of H at the point z (if it exists).

Definition 3. Let H < R™ be a Borel set, y € R™. A unit vector @ is termed the
interior normal of H at y in Federer's sense, if the symmetric difference of H and
the half-space {x € R"; (x — y): @ > 0] has m-dimensional density zero at y. If
there is such a vector @, then it is unique and we shall denote it by n"(y); if there is
no interior normal of H at y in this sense. we denote by n”(y) the zero vector in R™.
The set {y € R™; |n"(y)| > 0} is called the reduced boundary of H and will be denoted
by ¢,H.

Notation. Let D = R™ be an open set, y: D — R* a mapping. If the differential
of i at z e D exists, we denote it by Dy(z).

In the rest of the paper we will consider an open set D = R™, a homeomorphism
¢: D - R™ and a bounded Borel set H such that cl H < D and the mapping ¥ is
a diffeomorphism of class C! in a neighbourhood of ¢H. Further, we will suppose
that g is a lower-semicontinuous function on 0H such that 0 < infg < supg < .

Lemma 7. d(H) = ¥(0,H), and n'"™(y(x)) is normal vector to the surface
Y({z e D; (z — x) - n¥(x) = 0} at Y(x) for each x € 0,H.

Proof. Let x € d,H. Since ¥ belongs to the class C' in a neighbourhood of x,
the surface y({z e D; (z — x) - n"(x) = 0}) has a unit normal n at y(x). We choose
the normal n oriented to the set Y({ze€ D; (z — x) - n"(x) > 0}). We prove that

nO(y(x)) = n.
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Denote Y = {ze D; (z — x) - n"(x) < 0}, Z = {ze R™; (z — Y(x)) - n < 0}. Then

(4) d(z+|gu'))(‘p(x)) =0.
Now we prove
() degyan +pern(¥(x)) = 0.

There are positive constants L = 1, ¢ such that  is a Lipschitz mapping on U(x; )
with the constant L and y ™! is a Lipschitz mapping on U(y/(x); ¢) with the constant L.
If0 < r < g then Yy~ '(U(y(x); ) = U(x; rL) and thus

(U (x); 1) 0 (W(H) + Y(Y)) e U((x); 7)) <

= 1 Y(U(x; rL) A (H + Y)))[#(U(x; 7)) .

Therefore

dyqany =y (W(x)) S L'dyy(x) = 0
and thus

7y (¥(%)) £ dzsyon(¥(x)) + dyry+pan(¥(x)) = 0

and n*™(Y(x)) = n, Y(x) € oY(H). Hence y(9,H) = ,y(H). Similarly,
Y~ (0,¥(H)) = 0,H and thus dy(H) = y(3,H).

Lemma 8. If ye 0,H, u e R" then
n*((y)) - DY(y) u = (u - n¥(y)) (" O(U(y)) - DY(y) n(y)) -

Proof. By virtue of the lincarity of the operator Dy(y) it suffices to suppose
u % (u- n"(y)) n¥(y). Since ¥ belongs to the class C! in a neighbourhood of y, there
are positive constants L, r such that |y(x) — y(y)| £ Ljx - y| for each x € U(y; 7).
Since n"(y) [u — (u - n"(y)) n¥(y)] = 0, n*™(y(y)) is a normal vector of the surface
Y({ze D; (z — y)- n"(y) = 0}) at y(y) by Lemma 7, and

0 = lim n*(y(y)) - Wy + ffu — (u- 1) n")]) — ¥(y) _

Wy + ([ = (u - ")) n"0)]) — ¥ 0)|
= lim n* W+ tu = (u- n"(y) nB)]) = ¥() _
_tL0+ w( W(y) Lt|u —(u- nH(y)) nH(y)I

_ mOW() - DY(y) [u — (u - n"(y)) n"()]
Llu — (u - n(y)) n"(y)|
The linearity of Dy(y) implies
n*@Y(y)) - DY(y) u = n*®(Y(y)) - DY(y) [(u - n"(y)) n(y)] -

Lemma 9. Let x € R™, let B = R™ be a Borel set, C a positive constant such that
%n-1(BN U(x; 7)) £ Cr"~! for each positive r. Then for every a >0, re(0,1)
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we have
C 2m— 1

1-27¢

ra

J‘ |x - yl"“‘"‘ dx,-4(y) =
BnU(x;r)

An elementary Proof. Since r < 1 there is a natural number i such that 27/ < r <
< 277*! Calculation yields

at+1l—m d%.—]()’) é

IBnU(x;r)[x -r
< Y @ (B (U 2794 — U 27))) <
j=1

ks m=—1
é CZ(2—j)1+l—m(2—j+l)m—l é C2 rz'
j=1

1 -2"*

Lemma 10. Let B = R™ be a Borel set with a compact boundary, ze R™, r > 0.
Then
#m-1(U(z;7) " 8,B) < Am(m + 2)" (3 + V®) L.
Proof. See [K1], Corollary 2.17 and Remark 2.3.

In the rest of the paper we will suppose that y is a diffeomorphism of class C'**
in a neighbourhood of 0H, where a € (0, 1.

Lemma 11. Let V¥ < oo. Then there are positive numbers r,, C,, C,, Lsuch that
for every xe D, re(0,r,)

ol - (Y(x) £ Cyop, (%) + Cor*.

Proof. There are r; € (0, 1) and a positive constant L such that for every x, y e
€ {z; dist(z, 0H) < r} we have ||p(x) - w(y)| < le - yl, [Dy(x)| = L, [Dy(x) —
— Dy(y)| < L|x — y|* and for every x,ye{z;dist(z, y(6H)) < r,} we have
|¥~*(x) = ¥~*(y)| £ L|x — y|, where |Dy(x)| denotes the norm of the operator
Dy(x). Since V" < o0, we have P(H) < oo by virtue of Lemma 4. Theorem 1
implies P(Y(H)) < 0. According to [K1], Lemma 2.15, Proposition 2.5, Definition
2.2, Remark 2.3 we have for every x € 0H, ze dy(H) and r > 0

Orig(%) = fomavcen [n(v) - grad hx(y)l 9(y) dxm-1(y)/9(x) ,
09 w-(2) = fawannven [1Y0(y) - grad h,(y)l g(v'(y) -
- ditp- 1 ()90~ (2)) -

Nowlet ye 9,H,xe D — {y},|x — y[ < ry/L. We wish to estimate Igrad by (W(y)) -
. n¥(y(y))| in terms of |grad h(y) - n"(y)|:

|erad fyo(¥(y)) - ”* P (WU(y))| =

=41 M.n H) <
=4 V) = Vo) YEW))| =
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< A7 x =y [P EO() [o DY(y + 1(x = ) (x = y)de| <

< LA™ |x = y| 7" " E(U(y)) DY(y) (x — )| +

+ LA x = |7 5 DYy + o(x = 3)) (x = ») = DU(y) (x — y)| dr-
Lemma 8 yields

|grad hyo(¥(v)) - " PY())| <
< 127 = 3| [#G0) - DY) )] 100) (e = )] +
+ A7 x — y| 7" o Llx — y| |t(x — y)]dr £
< L"'“lgrad h(y) - n”(y)l + L"'“A'1|x - y|"“"".
Thus if xe D, ye 0,H — {x}, Ix - y| < ry/L then
(6) |arad hyo(¥(v)) R0 (y)| <
< L"'“Igrad h(y)- n”(y)l + L’”+‘A"|x — yl’“"".

Put ry = ry[[*. Let xe D, r € (0, ry). From Lemma 7 and (6) we obtain
oy gy (Y(x)) =
= Jawmynvwmm |1 (2) - grad hy(2)| g(¥ ™ (2)) dxp-1(2)[9(x) <
< Jy@ ULy [Lm+l|”u(‘p_l(z)) - grad hx(‘l’—l(z))l +
I A — )] g7 ) e (a() S
S I o mauesrn [Lm+1|"H(y) - grad hx(y)| +
LA™ x =yt ] g(y) dtm—1(9)[g(x) £ PmoF, (x) +
+ ™ m(m + 2)"(1/2 + V™) 271 — 27571 ¥*[inf g

by virtue of Lemma 10 and Lemma 9.

Theorem 2. V') < o0 <« V¥ < op.

Proof. Let V¥ < co. We may assume that « < 1. Lemma 11 yields
VM < vl < .

Thus V¥ < oo by Lemima 6. Since ™! has the same character as the function
Y, VW < oo implies V? < 0.

Theorem 3. If VY = 0 then VY = 0.

Proof. Since Vg =0 we have V¥ < oo by Lemma 6. Lemma 11 implies 0 <
= V(')I’(H) = CIV(;{ =0.

156



Lemma 12. Let B = R™ be a Borel set with a compact boundary. Then for every
zeR"

VBz) S v+ 1)2.

Proof. See [K1], Theorem 2.16, Remark 2.3.

Lemma 13. Let B = R™ be a Borel set. If z!,...,z""1 € R™ are not situated in
.a single hyperplane and
m+1

Y o¥(z)) < o0,
i=1
then P(B) < 0.
Proof. See [K1]., Theorem 2.12, Remark 2.3.
Notation. Let B = R™ be a Borel set with a compact boundary. We denote
15 = {z € ¢B; 30 > 0: lim {sup v}(y); ye€ U(z; @) n 0B} = 0} .
r-+04

Lemma 14. 7,,, = ¥(tp).

Proof. We may suppose « < 1. Let z € 7. Then there is ¢ > 0 such that

7) K = sup {v¥(y); ye U(z; 50) n 0H} < o0,
(3) lim sup {v}(»); y € U(z; 5¢) n 0H} = 0.
r—04

‘We prove V¥"VE9 < o6 1f 9H n U(z; @) lies in a single hyperplane then VZ"VG0 <
< oc. Suppose that ¢H n U(z; ¢) does not lie in a single hyperplane. If x e dH N
A ¢l U(z; 3¢) then

(9) anU(Z;e)(x’) < U?L,(-\’) + UU(Z;a)(x) <K+1,
(10) WEOTH) S K + 1.

Since 0H n U(z; ¢) does not lie in a single hyperplane, the set H n U(z; ¢) has
a finite perimeter. If x € ¢U(z; ¢) n int H then

anU(z;p)(x) § 1 + UU(z;g)—H(x) )
Let p € 2, \(pl < 1. Then the function
y - IU(Z;Q,_,, grad ¢ . grad h, dx,,

is continuous in R™and harmonic in U(z; 3¢) n int H. If y € dU(z; 3¢) then Lemma 5
yields

§ UU(z:a) —H(y) <

”U(z;o)—-H grad ¢ . grad h, dx,,
< A7'[P(U(z; 0)) + P(H 0 U(z; 0))] (20)' ™.
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If y € 9H n U(z; 3p) then [K1], Proposition 2.5, Remark 2.3 and (10) imply

|Joceior-u grad @ . grad hy, da,| < 1+ "E07H()) S K + 2.
Since x €int H;'\ U(z, 30), we have

|§uczior-n 81ad @ . grad b, dx,,| <

< max (2 + K, A7'[P(U(z; @)) + P(H n U(z; 9))] (20)' ™)
due to the maximum principle. Hence

V1VED(x) < | + 05O H(x) <

<1+ max (2 + K, A7'[P(U(z; @) + P(H n U(z; 0)) (20)' ™) .
This inequality and the relation (9) yield

yHoYED < 4 max (2 + K, A7'[P(U(z; 0)) +

+ P(HN U(z;0))](20)' ™) < ..

According to Lemma 11 there are numbers r,, Cy, C,, Lsuch that for every x € 0H,
re (0, ro) we have

vf(HnU(z;o))(lp(x)) é ClvfrnU(z;a)(x) + Czrl .

Since y is a homeomorphism, there is R € (0, min(ro, ¢/(2L))) such that U(y(z); 2R) =
< ¥(U(z; 0/2)). If y e U(Y(x); R) N y(0H) then there is x € 0H n U(z; 0/2) such
that y = y(x). If r € (0, R) then :

Ug/(H)(y) — U’W(HnU(z;e))(l/l(x)) < Clvf,(x) + Cyr*.
Therefore

lim sup {v?""(y); y e dy(H) n U(y(z); R)} <

r—04

< lim [Cy sup {v}(x); x€ 0H n U(z; @)} + C,r*] = 0.

r-04
Thus Y(z) € ;). Therefore Y(ty) = Ty Since Y~ ' has the same character as V¥,
we have ¥~ '(tym) = T4 Hence Y(ty) = tym).
Lemma 15. Let B = R™ be a Borel set with a compact boundary. Then
VE=0<1=0B.
Proof. If V¢ = 0 then
lim sup {v}(y); y€dB} =0

r—04

and thus 75 = 0B. Now let 73 = 0B. Let ¢ > 0. Then for every z € dB there are
positive numbers ¢(z), 7(z) such that v}, (y) <& for each yedBn U(z; o(z)).
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Since 0B is compact there exists a finite set {z', ..., z"} of points of dB such that for
every y € 0B there is i€ {1,...,n} for which |z' — y| < o(z'). If re (0, min {r(z');
i =1,...,n}) then v%(y) < ¢ for each y € dB. Hence Vg = 0.

Definition 4. Let B = R™, ze B. A mapping ¢: B —» R" is called conformal
at the point z if there is 6 > 0 such that U(z; 8) = B, ¢ € ¢'(U(z; 9)) and the angle
of the curves {¢(z + 10;); 0 < t < 6} (j = 1, 2) at the point ¢(z) is the same as the
angle of the curves {z + 10;; 0 < t < 8} (j = 1,2) at the point z for all pairs of
unit vectors @;, @,.

Lemma 16. Let B = R™, let ¢: B - R™ be an injective mapping which is con-
formal at the point z € B. Then ¢~ is conformal at the point ¢(z).

Proof. ¢ is conformal at the point z if and only if there is d > O such that
U(z, 8) = B, ¢ € ¢'(U(z; 6)) and for every two vectors u, v % 0 we have Do(z) u +
#+ 0, Do(z) v + 0 and

(11) Do(z)u De(z)v u v

ID(p(z) u| lD(p(z) vl |u| Ivl
Thus Jo(z) # 0, where Jo(z) is the Jacobian of the mapping ¢ at the point z. Since
the mapping f(x, y) = y — ¢(x) is a mapping of class C' in U(z; ) x R™ and
f(x, ¥) = 0if and only if y € ¢(B), x = ¢~ !(y), the implicit function theorem implies
that ¢! is a mapping of class C' in a neighbourhood of ¢(z). The mapping
D¢~ !(¢(z)) is the inverse mapping to the mapping D¢(z). Thus we obtain from (11)
a similar relation for D¢~ *(¢(z)). Hence the mapping ¢~ ' is conformal at the
point ¢(z).

Lemma 17. Let K be a positive constant. For a positive r put B, = {x € 0H;
v (x) > K}, o(r) = sup {dist (x,0H — t5); x€ B,} when both sets B,, dH — 1
are nonempty. In the opposite case put g(r) = 0. Then ¢(r) \ Oforr — 0,.

Proof. The function g(r) is nondecreasing on the interval (0, ). If the limit
of ¢(r) at the origin were different from zero, there would exist a positive ¢ such that
o(r) > ¢ for each r. Thus there would exist a sequence x, € By, such that
dist (x,, 0H — 1) > &. Since dH is compact there exists a subsequence {x,} of the
sequence {x,} and a point x € 0H such that x, - x for n - c0. Now let 6 > 0.
For every r > 0 there is a natural number n such that x, e U(x; d) n 0H and
1/n < r. Then

sup {v](y); ¥ € U(x; 8) n 0H} 2 v/'(x;) = v} (x;) (min g)/(sup g) =
2 K(inf g)/(sup g) .
Thus for every 6 > 0
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lim sup {v/'(y); y € U(x; ) n 0H} 2 K(inf g)/(sup g) > 0

r—04

and hence x € 9H — ty4. Therefore dist (xf, 0H — t,,) — 0 for n —» o0, a contra-
diction.

Note 1. Let C = R™ be an open set, let ¢: C - R™ be a diffeomorphism of class
C!, let B be a compact subset of C. Then there is a constant K such that |[De~(x)]| <
< K for each x € (p(B), because (p(B) is compact. Since

Dy~ !(o(x)) Do(x) =1,

where I is the identity operator, we have |u| < K|Do(x) u\ for each vector u € R™.
Thus |De(x)| = 1/K for each x € B.

Lemma 18. Let K, L be positive constants. For r positive put B, = {x e 0H;
vl (x) > K}. Let o(r) be the function from Lemma 17, o(r) = [r + o(Lr)]* for
r > 0. Then there are positive constants rq, C such that for every r (0, r,), x € By,

there exists z € (0H — t4) n U(x; o(Lr)) such that for every y € 9,H, 0 < |x - yl <
< r we have

|grad hyo(W(y)) - ,,'//(H)(,/,(y))l <
< |grad h(y) - n¥(y)| ["D(//(z)"

xX—y

x -y

CF { (1 + Co(r)) +

+ C(p(r)] + Clx _ yll+a-—m )

Proof. By the assumption there are positive constants ry, M such that ¥ is a dif-
feomorphism of class C'** on {x; dist (x, dH) < 2r,} < D,y "' is a diffeomorphism
of ciass C'** on {x; dist (x, ¥(6H)) < 2r } = Y(D), for every x, ye{z; dist (z,
Y(0H)) < r,} we have W= i(x) — ¥ 1(y)| £ M|x - y|, for every x, y e {z;dist (z,
0H) < ry} we have |Dy(x) — Dy(y)| £ M|x — y|- First, let 0H = 4. Then V'
= 0 due to Lemma 15 and thus V{', = 0. There is R > 0 for which sup {v] ,(x);
x € 0H} < K and thus B, = 0 for r € (0, R). Now let us assume 0H — 75 + 0. Let
re(0,ry). x e By,. Since H — 1, is compact there exists z e dH — 1y for which
|x = z| < o(Lr). i yed,H, 0 < |x — y| < r then

05 o)) = A7 |00 - = o S
S A7) — 90| I OW) - DUO) (x - )] +

+ A7) =y W)

- Jo (DY(y) = DY(y + t(x — »)) (x — y)de| <

= A7) = 9)| ™ [70) (¢ = )] [n¥ () - D) ()] +
+ A-le+llx _ yl-—m Ix _ y|1+a
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by Lemma 8. Therefore

(12)

|grad hy(¥(y)) - ¥ *(yy))| <
< lgrad h(y) - n¥(y)| |x = y|" |w(x) — ¥(»)| " (|D¥(») — D¥(z)| +
+ [DyY(2)]) + ATIMmx — y|trem,

Now we estimate the expressions in (12):

(13

Further,

[ = " W) = )| " [DY() = DY) < M|z -y <
< M™(r + o(rL))*.

[x = ¥ W(x) = ¥()| " [Du(z)| <
i 1
O e

1 1 ]'"é

W@ - v [P (x - )
1
DV =)

< oy |* - yl'"[
+ ) = w0 IDUE) (x = )| 154 DY) (x — ») dt
— DYy + t(x — ) (x — ¥) dtl]m.

+

According to Note 1 we have

(14)

Ix = y|" [¥(x) = v()| ™ |IDY(z)| <
< Dy ()| [Dy(z) ——2

|x — ¥

L+ MY+ o(rD))]"

Puting C = max (M?, M™*!) we obtain from (12), (13), (14)

|grad hy(¥() - 1" (Y(y))| <
< |erad h(y) - n*(y) {||D./,(z)||

Dy(z) = ’_"' (1 + Co(r)" +
x =l

+ C(p(r)} + Clx — y|t+em.

Theorem 4. If  is conformal on 0H — ty then V3D = V§ , where f = g o y™1.

Proof. We may assume that & < 1. Since by Lemma 14 and Lemma 16 ™! has
the same character as y, it suffices to prove V4D < V{ . If V{, = 0 then V§ =0
and V4™ =0 by Theorem 2 and thus V"’ = 0. Hence it suffices to suppose
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0 < V§, < o. Then V§ < o and V¥ < o according to Lemma 6. Lemma 11
implies that there are positive numbers rq, C,, C,, L such that for every xe D,
re(0, ro)

(15) o} FW(x)) £ Cyv, o(x) + Cor®.

For r > 0 we denote B, = {x € dH; vl (x) > V§ Ci'}. If xedH — B,,, where
r€(0, ro), then (15) yields

(16) (X)) < Vo, + Cor®.

Now we estimate v?{?(y/(x)) on the set By,. By the assumption there are positive
constants ry € (0, 7o), K such that y is a diffeomorphism of class C'** on {x; dist (x.
0H) < 2r,} < D,y 'isadiffeomorphismofclass C'**on {x;dist (x; y(0H)) < 2r,} =
< Y(D), for every x,ye{z;dist(z, 0H) < r,} we have |y(x) — ¥(y)| = K|x — »|.
[Dy(x)| £ K, [Dy(x) — Dy(y)| < K|x — y|*and for all x, y € {z; dist (z,y(0H) <
< ry) we have [y7'(x) — ¢~ (y)| £ K|x — y|, [DYy~(x)| £ K. By Lemma 18
there are positive constantsr, € (0, r,/K), C, such that for every r € (0, r,), x € Bx,
there exists z € (0H — t5) N U(x; ¢(LKr)) such that for every y € 3,H,0 < |x - y| <
< rK we have

(17) |erad hy(¥(y) - i ()] =

< |grad h(y)- nH(y)l [”Dllx(z)" IDlp(z) lj:—:——i—ll—m(l + Cio(Kr))™ +

+ Ca‘P(Kr):l + Calx — y|tHrem

where ¢(r) is the function defined in Lemma 18. Now let r; = min (r,, 1/K),
re(0,r;), xeB,, < B,x. Then there exists ze(0H — ty4) N U(x; o(LKr)) for
which (17) holds for each y € 3,H, 0 < |x — y| < rK. If v, w e U(x; Kr) then

[¥(v) — w(w)| = [Dy(2) (v — w)| +
+ |5 [DY(v + t(w — v)) — DY(z)] (v — w)dt| £
< o — w|[|D¥(2)| + K(rK + o(LKr))].

Note 1 yields

(18) [W(2) — w(w)| = |o = w| [IDU(2)] [t + K*¢(Kr)] .

According to ([Kl], Lcn{ma 2.15, Proposition 2.5, Definition 2.2, Remark 2.3),
Lemma 7 and (17)

”rw.(fm(‘/’(x)) = I@ﬂﬁ(")nU(v[/(x);r) I""'(H)(J’) - grad hw(x)(,V)l g(‘ﬁ_ 1()’))

A, 1(¥)[9(x) = Swraucnky {(grad h(¥™'(y)) - ”H(‘/’_l(ym
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L) o+ Crolkr
[[pro =ty T IoHe @+ st + cuotin] +

+ Cafx — n[z“(y)l”“""} 91 0) ()9 x)

Using the Lipschitz condition (see (18)) we estimate this integral by the expression

“D‘p(z)”m—l [l + K2¢(Kr)]m .[BHnU(xiK") {|grad hx(y) : ”H(y)l .

[IPv1 [ora) =21+ caplkn + Carlhr)] +

e
+ Calx — yl”“*'"} 9(y) dm-1(y)/g(x) -

Since = € 0H — 7y and therefore y is conformal at z, we have |Dy(z) u| = |Dy(z)|| |u]
for each u € R™. Hence
l):l"(fH)((p(x)) é [1 + Kz(p(Kr)]m—l J.a,HnU(x;Kr) grad hx()’) ' n"(y)l
[(L + Csp(Kr))" + C5 [Dy(z)|"* o(Kr)] 9() dn— 1(»)]9(x) +
+ C3[1 + K*(Kr)]""* K™ !(sup g) .
x =y oy (5)]g(x) -
Lemma 10 and Lemma 9 imply
(19) o?PW(x)) < (1 + K2p(Kr))" * [(1 + C3p(Kr))™ +
+ K" 1C30(Kr)] vg, (x) + C4(1 + K2p(Kr))" "' r*,

where  C, = C;K" '**Am(m + 2) (1/2 + v¥)2""'(1 — 27%)7* (sup g)/(inf g).
Since dY(H) = Y(9H), we conclude that VU < v§ .

. Ié‘,HnU(x;Kr)
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Souhrn

INVARIANCE FREDHOLMOVA POLOMERU NEUMANNOVA OPERATORU

DAGMAR MEDKOVA

Jednou z klasickych metod feSeni Dirichletovy a Neumannovy tlohy v R™ je metoda integral-
nich rovnic. Jestlize chceme pouZit pri feSeni Glohy Fredholm-Radonovu teorii, musime znat
Fredholmuv polom&r Neumannova operatoru. V &lanku je ukazano, Ze pfi deformaci zkoumané
oblasti difeomorfnim zobrazenim, které je konformni (tj. zachovava Ghly) na presné specifiko-
vané &asti hranice, se neméni Fredholmiv polom&r Neumannova operatoru,

Pe3ome

NHBAPUAHTHOCTb PAOIUYCA ®PEATIOJILMA OITEPATOPA HEVIMAHA

DAGMAR MEDKOVA

OJHUM U3 KIacCUYeCKUX MeTO0B pelueHus 3anaun Jupuxie u HeiitMana B R™ aBnseTcs METON
MHTETpajbHbIX ypaBHEHUM. [nst TOT0, YTOOBI NPY peLIeHUH 3a4a4H MOXKHO ObINIO BOCTIONIB30BATHCA
Teopueit dpearonsma u Pagona, Heob6xonqumo 3HaTth pagunyc dpearonsma onepatopa Heiimana.
B cratbe nokasaHo, uTo npu gedopMauuu uccienyemoii obnactu aguddeomopdn3MoM, KOTOPHI
ABNAETCH KOHQOPMHBIM (T.€. COXPAHSAET YIJIbl) HA TOYHO ONPEAETIEHHOM YaCTH IrPaHMLbI, paauyc
dpenronbma onepatopa HeitmMana He MeHseTCs.

Author’s address: Matematicky ustav CSAV, Zitna 25, 115 67 Praha 1.
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