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Summary. It is shown that some properties of partial congruences (= congruences which do
not satisfy the axiom of reflexivity) are definable by Mal’cev conditions.
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1. BASIC CONCEPTS

Binary relations which need not be reflexive on the whole base set were studied
by O. Boriivka [1], I. Chajda [2], H. Dra3kovitova [4], B. M. Schein [ 7], F. Sik [8],
and others. From [7] we adopt the following

Definition 1. Let ¢ be a binary relation in a set 4. We say that g is partly reflexive
in A whenever the implication {a, b) € ¢ = {a, a) € ¢ and (b, b) € ¢ holds for any
a,be A.

Lemma 1. Let 3 be a symmetric and transitive binary relation in a set A. Then 3
is partly reflexive in A.

Proof. Immediate.
With the aid of Lemma 1 we introduce

Defipnition 2. Let A be a set. A symmetric and transitive binary relation in A4 is
called a partial equivalence in A.

A partly reflexive and symmetric binary relation in A is called a partial tolerance
in A. '

Definition 3. Let 2 = (A, F) be an algebra. A partial equivalence in A which is
compatible with the set of all fundamental operations F is called a partial con-
gruence in 2.

A partly reflexive, symmetric and compatible binary relation in 2 is called a partial
compatible tolerance in .
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Lemma 2. Let ¢ be a partly reflexive binary relation in a set A. Then

(a) o™ < o" holds for any integers m < n;

(b) U o* is the transitive closure of 9.

k<o

Proof. (a) Let {x, ¥) €¢" and m < n. Then {u, y) € ¢ for some element « € A.
Hence <{),y>eo and so <{y,)>€o"™" This yields {(x,y>egmoo"™ "
required.

(b) Evident.

n—m

= 0", as

2. COMPACT PARTIAL CONGRUENCES

One can easily verify that partial congruences as well as partial compatible
tolerances in a given algebra 2 form algebraic lattices. As usual, compact elements
of these two lattices play the crucial role. The least partial congruence (partial
compatible tolerance) containing a subset S = A x A is denoted by ¥(S) («(S),
respectively). Further, the symbol Sgyy(S) stands for the subalgebra of W x A
generated by S.

Lemma 3. Let a, b be elements of an algebra . Then 1(a, b) = Sguxul<a, b,
(b, ay, <a,a), {b. b))

Proof. For the sake of brevity denote ¢ = Sgyxu(<a, b), (b, a), a, a), <b, b)).
Then clearly o = {{p(a, b, a, b), p(b, a, a, b)); p is a quaternary term of A}. We
want to prove that o is a partial compatible tolerance containing the pair {a, b):

(i) Choosing p = e (the symbol eg denotes the trivial operation eg(xo, X, X5, X3) =
= Xo) we infer that {a, b) € a.

(ii) Partial reflexivity: Let {x, ') € 0. This means that x = p(a, b, a, b) and y =
= p(b, a, a, b) for some quaternary term p. Let us introduce a quaternary term ¢
via g(xo. Xy, X3, X3) = p(X3, X3, X5, X3). Then g¢(a, b, a, b) = p(a, b,a, b) = x and
g(b.a,a, b) = pla, b.a, b) = x which means that {x,x)eo. Analogously we
obtain {y, y> €ao.

(iii) Symmetry: Suppose that (x, y> €. Thus x = p(a, b,a, b) and y =
= p(b, a, a, b) for some quaternary term p.

Define another quaternary term r by the rule r(xo, Xy, X2, x3) = p(xl, X0 X35 X3).
Then r(a, b, a, b) = p(b, a, a, b) = y and r(b, a, a, b) = p(a, b, a, b) = x or, equi-
valently, (). x) €a.

(iv) Compatibility of o follows directly from the definition of o.

Now the inclusion ¢ 2 t(a, b) is a consequence of the properties (i), ..., (iv). The
opposite inclusion is trivial.

Lemma 4. Let a, b be elements of an algebra . Then 3(a, b) = \ t'(a, b).

n<w
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Proof. Evidently <{a, b) € U t"(a, b). Further, one can easily verify that the set-

n<w

union U r"(a, b) is a symmetric, transitive and compatible binary relation in 2,
n<w

see Lemma 2. Consequently $(a, b) = U t'(q, b).

n<w

On the other hand, the inclusion 1(a, b) < %(a, b) holds. Since 3(a, b) is transitive
we have also 1'(a, b) < ¥(a, b) for any n < w. Hence the remaining inclusion
U t'(a, b) = ¥(a, b) follows.

n<w

Lemma 5. (Mal’cev lemma for principal partial congruences). Let x, y.a, b be
elements of an algebra . The following conditions are equivalent:

(1) <x, y> e Ha, b):
(2) there exist an integer n and quaternary terms qy. ..., q, such that
x = q,(a, b,a, b),
gi(b,a,a,b) = q;14(a,b,a,b), 1 Zi<n,
y =gq,b,a,a,b).
Proof. (1) = (2). By Lemma 4 we have %(a, b) = U t"(a, b). Then the assumption

n<m

{x, y> € Ya, b) yields (x, y) € t"(a, b) for some n < w. This means that x = c,,
{Ciy Cinr) er(a, b), 1 <isn, and ¢,4y =y for some elements ¢y, ..., Cpyq €2
Applying Lemma 3 we get ¢; = g,(a, b, a, b) and ¢;,; = g{b,a,a,b), 1 £i < n,
for suitable quaternary terms q,, ..., ¢,. The equalities (2) follow.

(2) = (1). Since<a, b),<b, a),<a, a),<b, b) € ¥a, b) we have also {g,(a, b, a, b),
q(b, a, a, b)» € ¥a, b) for any 1 < i < n. Now the transitivity of 3(a, b) together
with the equations (2) give the required result {x, ) € (a, b). The proof is complete.

3. APPLICATIONS: MAL’CEV CONDITIONS FOR PARTIAL CONGRUENCES

In this section we show that some properties of partial congruences in algebras
from a variety are definable by Mal’cev conditions. In particular, we give here
identities characterizing the partial principality and partial regularity.

Varieties with principal compact congruences were investigated in [10]; for partial
congruences we introduce

Definition 4. An algebra U has principal compact partial congruences whenever
any compact partial congruence in ¥ is of the form (p, q) for some elements p, g € 2.

A variety V has principal compact partial congruences whenever each V-algebra
has this property.
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Theorem 1. For a variety V the following conditions are equivalent:
(1) ¥ has principal compact partial congruences;

(2) there exist integers m, n and quaternary terms p, q. Sy, ... Sy by, ..., t, such
that the identities

p(x, x, u, u) = g(x, x,u, u),
x = sy(p(x, y, u, v), g{x, y, u, v), p(x, y, u, v), g(x, y, u, v)),
si(a(x, y, u, v), p(x, y, u, v), p(x, y, u, v), ¢(x, y, u, v)) =

= s;44(p(x, v, u, v), q(x, y,u, ), p(x, y, u,v), q(x, y, u,v)),
I<i<m,

I

su(a(x, y, u, v), p(x, y, u, v), p(x, y, u,v), q(x, v, u,v)),
u = t,(p(x, y, u, v), q(x, y, u,v), p(x, y, u,v), q(x, y, u, v)),
t{q(x, y, u,v), p(x, y,u,v), p(x, y, u,v), q(x, y, u,v)) =

= t;.4(p(x, ¥, u, v), g(x, y, u, v), p(x, y, u, v), q(x, y, u,v)),
1Z5i<n,

v

v = t,(q(x, ¥, u, v). p(x, y,u,v), p(x, y, u,v), g(x, y, u,v)),
hold in V.

Proof. (1) = (2). Let % = Fy(x, y, u, v) be the V-free algebra with free generators
x, y,u, v. Then 3(x, y) v 3(u, v) = (p(x, y, u, v), g(x, y, u, v)), by hypothesis. The
identity p(x, x, u, u) = ¢(x, x, u, u) follows directly from the inclusion 9(x, y) v
v 9(u, v) 2 (p(x, y,u,v), g(x, y, u, v)). Further, {x, y> € Hp(x, y, u, v), g(x, y, u, v))
yields

x = s,(p(x, y, u, v), q(x, y,u, v), p(x, y, u,v), g(x, y, u, v)),
si(g(x, y, u,v), p(x, y, u, v), p(x, y, u, v), q(x, y, u, v)) =

= s;01(p(x, y, u, v), q(x, y, u,v), p(x, y, u,v), q(x, y, u, v)),
1Zi<m,
y = s,(q(x, y, u, v), p(x, y, u,v), p(x, y, u,v), q(x, y, u, v))

for some quaternary terms sy, ..., §,,, se¢ Lemma 5.
Finally, applying Lemma 5 to the relation

Cu, vy € Y(p(x, y, u, v), q(x, y, u, v)
we get the remaining identities
u = t,(p(x, y, u, v), q(x, y, u,v), p(x, y, u,v), q(x, y, u, v)),
tq(x, y, u, v), p(x, y, u, v), p(x, y, u, v), q(x, y, u,v)) =
= t;4,(p(x, y, u, v), q(x, y, u,v), p(x, y, u,v), q(x, y, u, v)),
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IIA

i<n,

v

t(q(x, v, u,v), p(x, y, u,v), p(x. y,u,v), g(x, y,u,v).

(2) = (1). Let 2 be an arbitrary V-algebra with elements x, y, u, v. We want to
prove the equality 3(x, y) v 3(u,v) = 9(p(x, y, u, v), g(x, y, u, v)).

Since evidently <{x. > € 9(x,y) v $(u,v) and <{u,v)> € 9(x, y) v (u, v) we have
also <x, x> € ¥(x,y) v (u, v) and <u,u) € Y(x, y) v 9(u, v), see Lemma 1. Then
compatibility implies

<p(x, x,u,u), p(x, y,u,0)>ed(x,y) v $u,v) and
{q(x, x,u,u), g(x, y,u,v)>eIx,y) v 3u,v).

The hypothesis p(x, x, u, u) = ¢(x, x, u, u) and the transitivity of partial congruences
yield {p(x, y, u, v), g(x, y, u, v)> € §(x. ») v Hu, v), which means that 9(p(x, v. u, v),
g(x, y,u, v))< Yx,») v Hu, v).

Conversely, <p(x, v, u,v), g(x, y, u, v)> € 3(p(x, y, u, v), g(x, y, u, v)) gives
{q(x, y,u,v), p(x, r,u,v)> e 3(p(x, y, u, v), g(x, y, u, v)), by symmetry, and
<p(x, y,u, v), p(x, v, u,v)> € p(x, y, u, v), q(x, y, u, v)), {q(x, y, u, v), q(x, y, u, v)>e
€ p(x, y, u, v), g(x, y,u,v)), by Lemma 1. Now applying the quaternary terms
S, ..., 8, we find that

sip(xa you, v), g(x, y,u, ), p(x, v, u, v), q(x, y,u,v)),
si(g(x, y. u.v), p(x, y,u,v), p(x, y,u, v), g(x, y, u,v))>e
e 9(p(x, y,u.v), g(x, y,u,v)), 1<i<m.

Using the identities from (2) and the transitivity of the partial congruence
3(p(x, v, u, v), g(x, y, u,v)) we conclude that {x,y) e 3(p(x, y, u, v), q(x, y, u, v)).
The relation Cu, vy € H(p(x, y, u, v), g(x, y, u, v)) can be verified in a similar way.
Altogether we have 9(x, y) v (u, v) = 9(p{x, y, u, v), ¢(x, y, u,v)) which was to
be proved.

Mal’cev classes of congruence regular varieties were studied by B. Csakany [3],
G. Gritzer [5] and R. Wille [9]. Analogously we introduce the concept of regular
partial congruences.

Definition 5. An algebra 2 has regular partial congruences whenever any partial
congruence in ¥ is uniquely determined by any of its blocks.
A variety V has regular partial congruences whenever every V-algebra has this

property.

Theorem 2. For a variety V the following conditions are equivalent:
(l) V has regular partial congruences;

(2) there exist an integer n, ternary terms p,,...,p,, and quaternary terms
ry, ..., ¥, such that the identities
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x = n(zpi(x, y. 2). 5, pa(x, . 2)) 5
r(pix, ¥, 2). z, z, pi(x, ¥, 2)) =
= Fii(z, piea(x, 3, 2) 2o pisa(x, ¥, 2)), 1 Si<n,
y = 0px.y.2). 2, 2. p(x, 3. 2)) 5
z =pix,x,z), 1<i<n,

hold inV.

Proof. (1) = (2). Let 2% = y(x, y, z) be the P-free algebra over the free generating
set {x, y, z}. Denote by y the partial congruence ¥({<x, y), <z, z>}). Then [z]y is
nonvoid. We claim that the partial congruence 9([z] y x [z] y) has the same z-block
as the original partial congruence y:

(i) [z] 7 =2 [z] 9([z] » x [£] ») is a consequence of y 2 ([z] y x [z] ) ;

(i) [z]y = [z]1 9([z] » x [z]y) follows from the inclusion [z]y x [z]y <
s ¥[z]y x [=] »).
By hypothesis the equality of blocks implies the equality of partial congruences
3{<x, ¥>, <z, z)}) = 9([z] y x [z] 7). Since the partial congruence on the left-hand
side is compact we have H({<x, y>, (z, z>}) = 8({<z, 1), ..., {Z, Pnp}) for some
Pi> - Pm € W = Fy(x, p, z). This fact immediately gives the identities z = p(x, x, z),
Il Zism.

Further, from <x, y> € }({<z, p1), ..., {z, Pny}) we find
x = ry(z, pi(x, ¥, 2), 2, py(x, 3, 2)) ,
rpx, v, 2), z, 2, pix, y, 2)) =
= rig (2, Pivi(x, 2. 2), 2, Pisa(x, 9, 2)), 1Zi<n,
y = r(px, ¥, 2). 2, 2, pfx, ¥, 2))

where ry, ..., r, are suitable quaternary terms and {py, ..., P,} = {P1, ...» Pm}-

(2) = (1). Let « be a partial congruence in an algebra A e ¥ and let <a, a) € a.
We want to prove that the block [a] o determines the original partial congruence a.
To do this it suffices to verify the equality 3([a] « x [a] a) = «

The inclusion §([a] « x [a] &) = a being trivial we take <x, y) € a. Then {x, x},
{x, ¥),<a,a) ea and so <a,p(x, y,a)yea, 1 £i = n, by compatibility and (2).
Consequently <a, p{x, y,a)> € [a] a x [a] « and, further, <a,pix,y, a))e
eY[a] o x [a] ) for 1 =i < n. Since also <a,a) e ¥[a]x x [a] &) and
pix, . a), pi(x, v.a)> e H[a] o x [a]a), 1 =i=<n, the identities (2) imply
<x, > € Y[a] « x [a] «). The inclusion o = ([a] « x [a] &) follows. The proof is
complete.
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Souhrn

VETY MAL’CEVOVA TYPU PRO PARCIALNI KONGRUENCE V ALGEBRACH

JAROMIR DUDA

Jsou odvozeny dvé Mal’cevovy podminky charakterizujici vlastnosti parcialnich kongruenci
v algebrach tvoricich varietu.
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