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Summary. In the paper the notion of an (m, n)-transposition in a partially ordered group is
introduced (m and n are positive integers). If m << n (m > n), then an (m, n)-transposition in an
isolated partially ordered group is called a dilation (contraction). The main result establishes the
relations between the (m, n)-transpositions in an isolated abelian Riesz group G and the direct
decompositions of G. Further, it is shown that (m, n)-transpositions in G preserve certain convex
subsets of G.
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In [8] K. L. N. Swamy introduced the notion of an intrinsic metric in an abelian
lattice ordered group H by putting d(x, y) = |x — y| for any x, y in H. In [9], [10]
K. L. N. Swamy studied isometries in an abelian lattice ordered group H, i.e.
bijections f: H — H preserving the intrinsic metric of H. Isometries in non-abelian
lattice ordered groups have bzen studied by J. Jakubik [3], [4]. J. Jakubik proved
that for every isometry f in a lattice ordered group H such that f(0) = 0 there exists
a uniquely determined direct decomposition H = A x B of H such that f(x) =
= x(A) — x(B) is valid for each x € H (x(4) and x(B) are the components of x
in the direct factors A4 and B, respectively). W. Ch. Holland [2] showed that the only
intrinsic metrics in lattice ordered groups are the multiples nlx - y| of the metric
|x - ‘| Isometries in Riesz spaces and f-rings have been studied by J. T. Pairé [11],
[13]. In [5] J. Jakubik and M. Kolibiar extended the results on the relations between
isometries and direct decompositions to abelian distributive multilattice groups.
J. Rachiinek [7] generalized the notion of an intrinsic metric and an isometry to any
partially ordered group and showed that every 2-isolated abelian Riesz group G is
metrized by d(a, b) = Ia - b| for each a, be G (where |x| = U(x, —x)for any x
in G). Analogously (using the relation n|a| = na|) it can be proved that in an isolated
abelian Riesz group G the multiples nlx - yl of the metric Ix - y| are intrinsic
metrics in G, too. In an f-ring A with a central superunity u (central subunity s)
J. T. Pair6 [12] studied the mappings F: 4 — A satisfying |F(x) — F(y)| = u|x — y|
(|F(x) = F(y)| = s|x — y|) for each x, y € A and called them u-dilations (s-contrac-
tions) because |F(x) — F(y)| = |x — y| (|F(x) — F(y)| £ |x — »|) holds for each
x,yeA.
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First we recall some notions and notation used in the paper. The sct of all positive
integers will be denoted by N. Let H be a partially ordered group (notation po-group).
The group operation will be written additively. We denote H* = {xe H: x = 0}.
If A = H, we denote by U(A4) and L(A) the set of all upper bounds and the set of all

lower bounds of A in H.respectively. For 4 = {a. ..., a,} we shall write U(a,. ....a,)
(L{a,.....a,)) instead of U({a,.....q,}) (L{{a,.....q,})). For each a€G, {al =
=Ula, —a). Il A,.....A, = H. then A + ..+ A, ={a,+...+4a,. a,€
€A .. €A} A = ... =A4,=A then weset nA = A, + ... + A,

Il m.neN, then a bijection f: H — H is called an (m, n)-transposition in H if
m|f(x} - f(y)l = n[x — ,\'| for each x, ye H. (1, 1)-transposition is an isometry
in H. A mapping f/: H — H is said to be a dilation (contraction) in H if if(x) ~f(y)| <
c l,\' - y\ (]f('x) - f(» =2 l.\‘ - yl) for cach x. ve H. If a € H, then the mapping
f.oH — H defined by f,(x) = x + «a for each xe H is called a right translation
in H. Every right translation in H is an isometry. A mapping f: H — H is called
homogeneous if £(0) = 0.

We say that a po-group H is isolated if ¢« € H and na = 0 for some ne N imply
a = 0. A po-group H is called directed if U(x,y) =0 and L(x, y) & @ for each
x,y€e H. A Riesz group is any po-group H which is directed and has the Riesz
interpolation property. i.e. for each a;. b;e H (i, j = 1,2) such that a; £ b; (i.j =

= 1, 2) there exists ¢ € H such that a; < ¢ = b; (i,j = 1, 2). See [1].

1. Lemma. Let G be an isolated po-group, a, be G, m, ne€ N. Let mlu‘ = n‘bi.
m > n. Then lbl c lul.

Proof. Let xe |b| Then nxenfb] = mla[. Thus nx =y, + ... + y,. where
Yis oo Ym € ]a‘ Since G is isolated, 'a' < U(0). Then y; = O fori = I,..., m. From
the relations y; 2 u, ¥, = —d, .., ), 24, Y, = —a, Vo1 20,...,9, =0 for
the element nx = y, + ... + y,, we obtain nx = na, nx = —na. Since G is isolated.
we have x € lal.

2. Corollary. Let G be un isolated po-group and let f be an (m, n)-transposition
in G.

(i) If m > n, then f is a contraction.

(ii) If m < n, then f is a dilation.

If m > n(m < n), then an (m, n)-transposition in an isolated po-group is called
an (m, n)-contraction ((m, n)-dilation).

3. Theorem. Let f be an (m, n)-transposition in a po-group H. Then there exists
a uniquely determined homogeneous (m, n)-transposition h in H such that f(x) =
= h(x) + f(0) for each xe H.

Proof. If we put i(x) = f(x) — f(0) for each x € H, then h is clearly the required
homogeneous (m, n)-transposition.
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So every (m, n)-transposition can be uniquely represented as a composition of
a homogeneous (m, n)-transposition and a right translation.

4. Theorem. The set of all transpositions in a po-group H is a group with respect
to the composition of mappings.

Proof. It is easy to verify that the composition of an (m,, n,)-transposition and
an (m,, n,)-transposition is an (m,m,, nyn,)-transposition. The inverse of an
(m, n)-transposition is an (n, m)-transposition.

5. Lemma. Let H be a po-group, A,B,,...,B, < H and let A =B, + ... + B,.
An element ue H is the least element of A if and only if u=u, + ... + u,,
where u; is the least element of B, for i = 1, ..., n.

Proof. a) Let u be the least element of 4 and let A = B, + ... + B,. Then

u=uy + ...+ u, where u,e B; for i = 1,..., n. Assume that u; is not the least
element of B; for some i € {1, .... n}. Then there exists u} € B; such that either u} < u;
or uj || u;.

If u;Zu;, then u, + ... +u;_y +ui+u;py +...+u, Suy + ... +u, =u,
which contradicts the assumption that u is the least element of A.
Ifuj | u,thenuy + ...+ u;_y + uj 4+ uyyq + ... + u, | u, a contradiction.

Thus u; is the least element of B; fori = 1, ..., n.

b) Let u; be the least element of B, for i = 1, ..., n. Let v be an arbitrary element
of A. Then v =vy + ... + v,, where v;,e B, for i = 1,...,n. Since v; = u; for
i=1,...n,wehavev=v,+...+0v,2u; +...+u, Thusu =u, +... + u,

is the least element of A.

6. Theorem. Let F be an isolated po-group, m,ne N and let f: F - F be a map-
ping such that mlf(x) - f(y)\ = nlx - y\for each x, ye F. Then f is an injection.

Proof. Let x,yeF and let f(x) = f(y). Then n|x — y| = m|f(x) —f(y)| =
= m|0| = m U(0) = U(0). By 5, 0 = nb, where b is the least element of |x — y|.
Since F is isolated, we have b = 0. Then the relations 0 = x — y, 0 = y — x yield
X =y

7. Lemma. Let f be a homogeneous (m, n)-transposition in an isolated abelian
directed group F. Then

(i) for each c € F there exists only one element d € F such that mc = nd,

(ii) for each ¢’ € F there exists only one element d' € F such that nc’ = md'.

Proof. (i) Let be F* and let a = f~'(b). Then n}a| = m|f(a)| = m|b| =
= m U(b) = U(mb). Since mb is the least element of U(mb), 5 implies that mb = na,,
where a, is the least element of |a|.
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Let ¢ € F. Since F is a directed group, ¢ = ¢, — ¢, for some ¢;, ¢, € F* (cf. [1].
Chap. II, Proposition 1). Then mc = mec; — mc,. Further, there exist elements
¢y, ¢y € F such that me, = ncy, me, = nch. Thus me = n(c| — ¢}).

Let me = nd, and mc = nd, for some d,, d, € F. Then n(d, — d,) = 0. Since F
is isolated, we have d, = d,. (ii) Since the mapping f ~' is an (n, m)-transposition,
the assertion (ii) follows from (i).

Let G be a po-group, a € G. For m, ne N let there exist only one element be G
such that ma = nb. Then b will be denoted by mal/n.

If G is an isolated Riesz group. then the relation n|a| = lna‘ is valid for each a € G,
neN (cf. [1], p. 114).

The following example shows that in a non-isolated abelian Riesz group G the
following relations can be valid:

(i) m|a| + Ima\ for some meN, acegG,

(ii) nlbl = nlcl and \bl + lcl for some neN, b, ceG.

Example. Let G, be the additive group of all real numbers with the natural
order and let G, be the additive group of residue classes modulo 4 with the trivial

order. Let G = G, . G, be the lexicografic product of the po-groups G,, G,. Then G
is a non-isolated abelian Riesz group.

Let a = (0, T). Then —a = (0.3). |a| = {(x. y)eG x > 0}, 2|a| = |a|, 2a =
= —2a =(0,2), |2a] = U((0,2)). Since 2a = )€ |24, 2a¢2| |. we have
2|a| #+ |2a|

Let b = (0,0), ¢ = (0,2). Then |b| = U((0,0)), || = U((0. 2)), 2|b| = U((0,0)).

2|c‘ = U((0, 0)). Thus 2lb\ = 2|C|, but \b\ + |c|
Throughout the rest of this paper let G be an isolated abelian Riesz group.

8. Lemma. Let a,be G, ne N. If nlal = nlbl, then \a] = ‘b‘

Proof. Let a, be G, ne N and let n\al = n|b|. If xe lal then nx e n]a\ = nlb] =
= |nb|. From this we obtain nx = nb, nx 2 —nb. Since G is isolated, we get x 2 b,
x = —b. Thus x € Ib\ Therefore iai < |b|

Analogously, |b| | l

9. Lemma. Let f be a homogeneous (m, n)-transposition in G. For each x€ G
define g(x) = m f(x)[n. Then g is a homogeneous isometry in G.

Proof. From 7 it follows that the mapping g is well defined. Let x, y € G and let
g(x) = g(y). Then mf(x)[n = mf(y)/n. Thus m(f(x) — f(y)) = 0. Since G is
isolated, we have f(x) = f(y). Hence x = y. Let z € G. By 7, there exists nz/m in G.
Let u = f~'(nz/m). Then g(u) = z. Hence g is a bijection. Clearly g(0) = 0. Further
we have nIg(x) - g(y)] = n|mf(x)/n - mf(y)/n| = ln(mf(x)/n - mf(y)/n)| =
= |m(f(x) = f(»))| = m|f(x) = f(¥)] = n|x — y|. By 8. we obtain |g(x) — g(y)| =
= |x — y|.
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The isometry defined in Lemma 8 is called the isometry associated with the given
homogeneous (m, n)-transposition.

If C = A x Bis a direct decomposition of a po-group C, then for x € C we denote
by x(A4) and x(B) the components of x in the direct factors A and B, respectively.

10. Theorem. Let G be an isolated abelian Riesz group.

(i) Let f be a homogeneous (m, n)-transposition in G. Then there exists a direct
decomposition G = A x B of G such that f(x) = nx(A)/m — nx(B)[m for each
xeG.

(i) Let m,ne N and for each x € G let the element nx/m in G exist. Let G =
= P x Q be a direct decomposition of G. If we put g(x) = nx(P)[m — nx(Q)/m
for each x € G, then g is a homogeneous (m, n)-transposition in G.

Proof. (i) This is a consequence of 9 and Theorem 18 [6]. (ii) Clearly, g is a bijec-
tion and g(0) = 0. It is easy to verify that |z| = |z(P)| + |z(Q)| for each z e G.
Let x,yeG. Then mlg(x) — g(y)| = m|nx(P)/m — nx(Q)fm — ny(P)[m +
+ ny(Q)m| = n|(x(P) — x(Q)) — (W(P) = (Q))| = n(|x(P) — ¥(P)| + [-(x(Q) —
= W) = n(|(x = ») (P)] + |(x = ) (Q)) = n|x - ]

11. Lemma. Let f be a homogeneous isometry in G, m, ne N. For each x € G let
nx[min G exist. If we put g(x) = n f(x)[m for each x € G, then g is a homogeneous
(m, n)-transposition in G.

Proof. This is a consequence of Theorem 10.

12. Theorem. Let f be an (m, n)-transposition in G. Then f(U(L(x, y)) N
A LU, ) = U S(0) o LU S () for each x, ye G,

Proof. If f is a translation, the assertion obviously holds. In view of 3 it suffices
to consider the case when f is a homogeneous (m, n)-transposition in G.

Let g be the isometry associated with f. Then g(z) = m f(z)/n for each z€G.
Let x,ye G. Let ae U(L(x, y)) n L(U(x, ), u' € L(f(x),f(»)), v" € U(f(x),f(¥))-
By 7, the elements u = mu’/n, v = mv’/n in G exist. Since G is isolated, we have
ve U(g(x), 9(»)), u € L(g(x), g(y))- By Theorem 22 [6], g(U(L(x, y)) n L{U(x, y))) =
= U(L(g(x), g(»))) » L(U(g(x), g(»)))- Thus u < g(a) < v. From this we obtain
u' = nu/m < ng(a)/m = f(a) < nv/m = v'. Therefore f(a)e U(L(f(x), f(¥)) 0
NLUGEID)).

If we consider f ™' instead of f, we can prove that U(L(f(x), f(y))) n L(U(f(x),

) € AU, ) o LU, 9)

13. Theorem. Let f be a homogeneous (m, n)-transposition in G and let H < G.
Then H is a directed convex subset of G if and only if f(H) is a directed convex
subset of G.
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Proof. Let H be a directed convex subset of G. Let f(x) £ f(¥) < f(2) for some x,
ze H, y e G. By 7, the elements m f(x)/n, m f(y)[n, m f(z)[n in G exist. Let g be the
isometry associated with f. Since G is isolated, we have g(x) < g(y) < g(z). By
Lemma 26 [6], g(H) is a directed convexsubset of G. Then g(y) € g(H). From this
we get y € H. Thus f(y) € f(H). Hence f(H) is a convex subset of G.

Let f(a), f(b) € f(H). Then the elements m f(a)/n = g(a), mf(b)/n = g(b) in G
exist. Since g(H) is a directed subset of G, there exist elements u, v € H such that
g(v) € U(g(a), g(b)), g(u) € L(g(a). g(b)). Since G is isolated, we have f(v) e U(f(a),
(b)), f(u) € L(f(a), f(b)). Thus f(H) is a directed subset of G.

If we consider f ~!, we can prove the sufficiency of the condition.

14. Lemma. Let f be a homogeneous (m, n)-transposition in G and let g be the
isometry associated with f. Let C be a directed convex subgroup of G. Then

f(€) = 4(C).

Proof. Let C be a directed convex subgroup of G. By 10, f and g are group homo-
morphisms. From this and from 13 it follows that f(C), g(C) are directed convex
subgroups of G. Let z € g(C). Then there exist elements u, v e g(C) such that ve
e U(0, z), u e L(0, z). By 7, the elements muv/n, mz[n, mu[n in G exist. Since G is
isolated, we have mu/n < mz[n < mu[n. From the relations 0 < mv/n £ mo,
mu < mufn £ 0 and from the convexity of g(C) we obtain that mv/n, mu/n € 9(C).
Hence mz[n € g(C). Let z = g~ '(mz[n). Then z’ € C, f(z') = n g(z')|m = z e f(C).
Thus g(C) < f(C).

Analogously we can prove can prove that f(C) < ¢(C).

15. Theorem. Let f be a homogeneous (m, n)-transposition in G and let C be
a directed convex subgroup of G. Then f(C) = C.

Proof. Let g be the isometry associated with f. Let x € C. Then there exist u,ve C
such that u e L(x,0), ve U(x,0). By 10, there exists a direct decomposition G =
= A x B of G such that g(z) = z(4) — z(B) for each z € G. Then we have v(4) =
= x(4), v(B) 2 x(B), v(4) =20, v(B) =0, u(A4) < x(4), w(B) < x(B), u(4) <0,
u(B) < 0. This implies v = x(A4) = u, v = x(B) = u. By the convexity of C, x(4),
x(B) € C. Since x(A4) — x(B) e C and g(x(A4) — x(B)) = x, we have C < ¢(C).

Let y' € g(C). Then y' = g(y) for some ye C. Since y(A), y(B) e C, we obtain

"= y(A) — y(B)e C. Thus ¢(C) = C.

Therefore g(C) = C. In view of 14 we obtain f(C) = €.

16. Theorem. Let f be an (m, n)-transposition in an isolated abelian po-group F,
a,ceF, a =c.

(i) 1f /() < f(c), then f([a, c]) = [1(a), f(c)]-
(ii) 1f £(a) 2 f(c), then f([a, c]) = [f(c). f(a)]-
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Proof. (i) From the assumption we have ¢ — a 2 0, f(c) — f(a) = 0. Since
nla — ¢| = m|f(a) = f(c)| we have nU(c — a) = mU(f(c) — f(a)). Thus n(c — a) =
= m(f(c) — f(a)). Hence —mf(c) + nc = —mf(a) + na.

Let be[a,c]. Since b —a 20, from n|b — a| = m|f(b) — f(a)] we get
n(b—a)=d; + ...+ d,, where d,, ...,dmelf(b) —f(a)l. Then d; = f(b) — f(a)
for i = ,...,m. Thus n(b — a) = m(f(b) — f(a)). This implies —m f(b) + nb =
> —mf(a) + na = —mf(c) + nc. Hence m(f(c) — f(b)) = n(c — b) = 0. Since F
is isolated, we have f(c) Z f(b). The relations ¢ — b = 0, n|c — b| = m|f(c) — f(b)|
imply that n(c — b) = m(f(c) — f(b)). Hence —m f(b) + nb = —m f(c) + nc =
= —mf(a) + na. Thus 0 £ n(b — a) = m(f(b) — f(a)). Hence f(b) = f(a). There-
fore /([a, ) € [/(a). /(0]
Let b’ e [f(a), f(c)], b = f~'(b’). Since f(b) — f(a) = 0, the relation n|b - al =
m|f(b) — f(a)| yields m(f(b) — f(a)) = nb — na. Then —mf(b) + nb <
—mf(a) + na = —mf(c) + nc. From this we get 0 < mf(c) — mf(b) <
< nc — nb. Since F is isolated, we have ¢ = b. Analogously we can prove that
a £ b. Hence b € [a, c]. Therefore [ f(a), f(c)] < f(([a. <]).

The assertion (ii) can be proved analogously.

IIA 1l

17. Theorem. Let f be a homogeneous (m, n)-transposition in G, m > 1, n > 1.
Let g be the isometry associated with f and for each xe G let x[n or x/m in G
exist. Then there exist a homogeneous (1, n)-dilation f, and a homogeneous
(m, 1)-contraction f, such that f(x) = f,(f1(g9(x))) for each x e G.

Proof. Let y € G. From 7 it follows that y/m exists in G if and only if y/n exists
in G. Put fy(x) = nx and f,(x) = x/m for each x € G. Since the identical mapping
is a homogeneous isometry, 11 implies that f, is a homogeneous (1, n)-dilation and f,
is a homogeneous (m, l)-contraction in G. Finally, we have f,(f,(g9(x))) =

= fang(x)) = ng(x)/m = f(x).
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Suhrn

ON DILATIONS AND CONTRACTIONS IN RIESZ GROUPS

MILAN JASEM

V &lanku je zavedeny pojem (m, n)-transpozicie v Ciastofne usporiadanej grupe (m, n sa

kladné celé Cisla). Pre n > m (n << m) je (m, n)-transpozicia v izolovanej iasto€ne usporiadanej
grupe dilataciou (kontrakciou).

Hlavny vysledok stanovuje vztahy medzi (m, n)-transpoziciami v izolovanej abelovskej

Rieszovej grupe G a priamymi rozkladmi G. Dalej je ukazané, Ze (m, n)-transpozicie v G zacho-
vavaju ur€ité konvexné podmnoziny G.

Pe3rome

O JUJIIATALMAX U CKATUAX B I'PVITITAX PUCCA

MILAN JASEM

B craTbe BBOAUTCS NIOHATHE (M, n)-TPAHCIIO3ULIMM B HYACTUYHO YIIOPSAOYEHHOM rpymnne (mu n—
110JI0XXUTENIbHBIE Henble yucna). Ecam n > m (m > n), T0 (m, n)-Tpancno3uuusi B u30JIMPOBAHHOM
YaCTUYHO YIOPSAAOUYCHHOM IpyMne SABASETCA NuiaTauuein (CxaTuem).

['1aBHBIN pe3ynbTaT YyCTAHABIMBAET COOTHOLUEHUS MEXAY (m, n)-TPAHCHO3ULKSAMH B U30JMPO-
BaHHO# abeneBoit rpynne Pucca G u npsambiMu paszioxenusimMu G. Kpome TOro mokasaHo, 4TO
TPaAHCIO3WLUKUHU B G COXPaHAIOT HEKOTOPLIE BbIMYKJIbie IOAMHOXeECTBA B G.
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