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115(1990) ČASOPIS PRO PĚSTOVÁNÍ MATEMATIKY No. 2, 134-141 

ON DILATIONS AND CONTRACTIONS IN RIESZ GROUPS 

M I L A N JASEM, Bratislava 

(Received January 23, 1988) 

Summary. In the paper the notion of an (m, ^-transposit ion in a partially ordered group is 
introduced (m and n are positive integers). If m < n (m > n), then an (m, ^-transposit ion in an 
isolated partially ordered group is called a dilation (contraction). The main result establishes the 
relations between the (m, ^-transposit ions in an isolated abelian Riesz group G and the direct 
decompositions of G. Further, it is shown that (m, ^-transpositions in G preserve certain convex 
subsets of G. 

Keywords: (m, n)-transposition, dilation, contraction, isornetry, Riesz group. 

A M S classification: 06 F. 

In [8] K. L. N. Swarny introduced the notion of an intrinsic metric in an abelian 
lattice ordered group H by putting d(x, y) = \x — y\ for any x, y in H. In [9], [10] 
K. L. N. Swamy studied isometries in an abelian lattice ordered group H, i.e. 
bijections / : H -> H preserving the intrinsic metric of H. Isometries in non-abelian 
lattice ordered groups have been studied by J. Jakubik [3], [4]. J. Jakubik proved 
that for every isornetry / in a lattice ordered group H such that /(0) = 0 there exists 
a uniquely determined direct decomposition H = A x B of H such that /(x) = 
= x(A) — x(B) is valid for each x e H (x(A) and x(B) are the components of x 
in the direct factors A and B, respectively). W. Ch, Holland [2] showed that the only 
intrinsic metrics in lattice ordered groups are the multiples n\x — y\ of the metric 
|x — y\. Isometries in Riesz spaces and/-rings have been studied by J. T. Pairo [1 1], 
[13]. In [5] J, Jakubik and M. Kolibiar extended the results on the relations between 
isometries and direct decompositions to abelian distributive multilattice groups. 
J. Rachunek [7] generalized the notion of an intrinsic metric and an isornetry to any 
partially ordered group and showed that every 2-isolated abelian Riesz group G is 
metrized by d{a, b) = \a — b\ for each a, b e G (where |x| = U(x, — x)for any x 
in G). Analogously (using the relation n\a\ = \na\) it can be proved that in an isolated 
abelian Riesz group G the multiples n|x — y\ of the metric |x — y\ are intrinsic 
metrics in G, too. In an /-ring A with a central superunity u (central subunity s) 
J. T. Pairo [12] studied the mappings F: A -» A satisfying |F(x) — F(y)| = u|x — y\ 
(|F(x) — F(y)| = s\x — y\) for each x, y e A and called them u-dilations (s-contrac-
tions) because |F(x) - F(>>)| = |x - y\ (|F(x) - F(y)\ = |x - y\) holds for each 
x, y e A. 
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First we recall some notions and notation used in the paper. The set of all positive 
integers will be denoted by N. Let H be a partially ordered group (notation po-group). 
The group operation will be written additively. We denote H+ = }.v e f/; x ^ 0}. 
If A _ H, we denote by U(A) and L(A) the set of all upper bounds and the set of all 
lower bounds of A in H, respectively. For A = {</.,..., an} we shall write U(a , tíи •» i. j , . . . , u „ j w t J i i a n w i i i c KJ yu j , 

(L(Oi, ..., c/„)) instead of U({a{ a,,}) (_({</,,...,</..])). For each O e G, |O| = 
-U(a, -a). If Aj,...,A;, _ H. then A! + ... + A„ = {rtj + ... + c/„; Oj e 
e A j , ..., an e A,,}. If A j = ... = A„ = A, then we set t/A = Aj + ... + A„. 

If m, n e N, then a bijection f: H -> H is called an (m, ^-transposition in H if 
m|f(x) — f(y)| = n\x — y| for each x, y e H. (V 1 ^transposition is an isometry 
in H. A mappingf: H -> H is said to be a dilation (contraction) in H if |f(x) — f(y)| =" 

-"- |* ~ y| ( |/U) ~ f(y)| - |A~ - y|) T o r e a c n *•> y e H- ^ a G H' t n e n t n e mapping 
f , : H -» H defined by fa(x) = x + O for each xef/ is called a right translation 
in H. Every right translation in H is an isometry. A mapping f: H -» H is called 
homogeneous if f(0) = 0. 

We say that a po-group H is isolated if a e H and m/ ^ 0 for some /ie/V imply 
a ^ 0. A po-group H is called directed if U(x, y) = 0 and L(x, y) + 0 for each 
x, y e H. k Riesz group is any po-group H which is directed and has the Riesz 
interpolation property, i.e. for each ah bj e H (/, j = I, 2) such that a{ S bj (i,j = 
= 1,2) there exists c e H such that at _ c _ b,- (/,j = 1,2). See [ l ] . 

1. Lemma. Let G be an isolated po-group, a, b e G, m, neN. Let m\a\ = n|b|, 
m > n. Then |b | _ |c/|. 

Proof. Let x e | b | . Then r/xe/?|b| = m\a\. Thus nx = yi + ... + ym, where 
yt, ..., ym e \a\. Since G is isolated, |c/| _ U(0). Then >>,- _ 0 for / = 1, ..., m. From 
the relations yx = a, ) \ ^ — O, ...,}'„ _ tf, yn _ — a, yn + l _ 0, . . . , y w _ 0 for 
the element nx = yt + ... + ym we obtain nx _ tiO, nx J_ — na. Since G is isolated, 
we have x e \a\. 

2. Corollary. Let G be an isolated po-group and let f be an (m, n)-transposition 

in G. 

(i) If m > n, then f is a contraction. 

(ii) if m < n, then f is a dilation. 

If m > n (m < n), then an (m, n)-transposition in an isolated po-group is called 

an (m, n)-contraction ((m, n)-dilation). 

3. Theorem. Lelf be an (m, n)-transposition in a po-group H. Then there exists 
a uniquely determined homogeneous (m, n)-transposition h in H such that f(x) = 
= h(x) + f(0) for each x e H. 

Proof. If we put h(x) = f(x) — f(0) for each x e H, then h is clearly the required 
homogeneous (m, ^-transposition. 
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So every (m, u)-transposition can be uniquely represented as a composition of 
a homogeneous (m, ^-transposition and a right translation. 

4. Theorem. The set of all transpositions in a po-group H is a group withrespect 
to the composition of mappings. 

Proof. It is easy to verify that the composition of an (ml, nj-transposition and 
an (m2, u2)-transposition ls a n (m1m2, n1u2)-transposition. The inverse of an 
(m, ^-transposition is an (n, m)-transposition. 

5. Lemma. Let H be a po-group, A, Bx, ..., Bn c H and let A = Bx + ... + Bn. 
An element ueH is the least element of A if and only if u = ut + ... + u„, 
where u,- is the least element of B tfor i = 1, ..., n. 

Proof, a) Let u be the least element of A and let A = Bt + ... + Bn. Then 
u = ux + ... + u„, where ute B, for / = 1, ..., n. Assume that ut is not the least 
element of Bt for some / e {1, ..., n}. Then there exists u\ e Bt such that either u{ = ut 

or u\ || ut. 
If u\ = uh then I*! + ... + u,_1 + u- + ul+1 + ... + un = ux + ... + u„ = u, 

which contradicts the assumption that u is the least element of A. 
If u- || uh then ut + ... + «,_! + u\ + ui + i + ... + u„ || u, a contradiction. 
Thus ut is the least element of Bt for i = 1,..., n. 
b) Let uj be the least element of Bt for i = 1, ..., n. Let v be an arbitrary element 

of A. Then v = vx + ... + v„, where vte Bt for i = 1, ..., n. Since v; ^ uf for 
i = 1,..., u, we have v = vx + ... + v„ ^ uv + ... + u„. Thus u = u{ + ... + u„ 
is the least element of A. 

6. Theorem. Let F be an isolated po-group, m, n e N and let f: F -> F be a map­
ping such that m|f(;\) — f(y)| = n\x — y|fOr each x, y e F. Then f is an injection. 

Proof. Let x, y e F and let f(x) = f(y). Then n\x — y\ = m|f(x) — f(y)| = 
= m|0| = m U(0) = U(0). By 5, 0 = nb, where b is the least element of \x — y\. 
Since F is isolated, we have b = 0. Then the relations 0 = x — y, 0 = y — x yield 
x = y. 

7. Lemma. Let f be a homogeneous (m, n)-transposition in an isolated abelian 
directed group F. Then 

(i) for each c e F there exists only one element de F such that mc = nd, 
(ii) for each c' e F there exists only one element d' e F such that nc' = md'. 

Proof, (i) Let b e F+ and let a = f~\b). Then n\a\ = m\f(a)\ = m\b\ = 
= mU(b) = U(mb). Since mb is the least element of U(mb), 5 implies that mb = naly 

where ax is the least element of \a\. 
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Let c e F. Since F is a directed group, c = cx — c2 for some cx, c2e F+ (cf. [ l ] , 
Chap. II, Proposition 1). Then mc = mcx — mc2. Further, there exist elements 
c\, c2e F such that mcx = nc\, mc2 = nc2. Thus mc = n(c\ — c2). 

Let mc = ndx and mc = nd2 for some dx, d2e F. Then fi(tl. — c/2) = 0. Since F 
is isolated, we have dx = d2. (ii) Since the mapping f _ 1 is an (/7, m)-transposition, 
the assertion (ii) follows from (i). 

Let G be a po-group, a e G. For m, n e N let there exist only one element b e G 
such that ma = nb. Then b will be denoted by ma\n. 

If G is an isolated Riesz group, then the relation n\a\ = \na\ is valid for each a e G, 
neN (cf. [ l ] , p . 114). 

The following example shows that in a non-isolated abelian Riesz group G the 
following relations can be valid: 

(i) m\a\ =j= |ma| for some m e N, a e G, 

(ii) n\b\ = n\c\ and |b | =1= |c| for some neN, b,ceG. 

Example . Let Gx be the additive group of all real numbers with the natural 
order and let G2 be the additive group of residue classes modulo 4 with the trivial 
order. Let G = Gx . G2 be the lexicografic product of the po-groups Gx, G2. Then G 
is a non-isolated abelian Riesz group. 

Let a = (0, T). Then - a = (0, 3), |a| = {(x, y)eG; x > 0}, 2|a| = |a|, 2a = 
= - 2 a = ( 0 , 2 ) , |2a| = U((0, 2)). Since 2a = (0, 2) e |2a|, 2a<£2|a|, we have 
2\a\ 4= \2a\. 

Let b = (0, 0), c = (0, 2). Then \b\ = U((0, 0)), |c| = U((0, 2)), 2|b| = U((0, 0)), 
2|c| = U((0, 0)). Thus 2|b| = 2|c|, but |b | * |c|. 

Throughout the rest of this paper let G be an isolated abelian Riesz group. 

8. Lemma. Let a, b e G, n e N. If n\a\ = n\b\, then \a\ = \b\. 

Proof. Let a, b e G, n e N and let n\a\ = n\b\. If x e \a\, then nx e n\a\ = n\b\ = 
= \nb\. From this we obtain nx = nb, nx ^ — nb. Since G is isolated, we get x ^ b, 
x = —b. Thus xe \b\. Therefore |a| .= |b|. 

Analogously, |b | ^ |a|. 

9. Lemma. Let f be a homogeneous (m, n)-transposition in G. For each x e G 
define g(x) = m f(x)\n. Then g is a homogeneous isometry in G. 

Proof. From 7 it follows that the mapping g is well defined. Let x, y e G and let 
g(x) = g(y). Then mf(x)\n = mf(y)\n. Thus m(f(x) — f(y)) = 0. Since G is 
isolated, we havef(x) = f(y). Hence x = y. Let z e G. By 7, there exists nz\m in G. 
Let u = f~~l(nz\m). Then g(u) = z. Hence a is a bijection. Clearly g(0) = 0. Further 
we have n\g(x) - g(y)| = n\m f(x)\n - m f(y)\n\ = \n(mf(x)\n - mf(y)\n)\ = 

m(f(x) - f(v))| = m\f(x) - f(y)| = n\x - y[ By 8, we obtain \g(x) - g(y)\ = 
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The isometry defined in Lemma 8 is called the isometry associated with the given 
homogeneous (m, n)-transposition. 

If C = A x Bis a direct decomposition of a po-group C, then for x e C we denote 
by x(A) and x(B) the components of x in the direct factors A and B, respectively. 

10. Theorem. Let G be an isolated abelian Riesz group. 
(i) Let f be a homogeneous (m, n)-transposition in G. Then there exists a direct 

decomposition G = A x B of G such that f(x) = nx(A)\m — nx(B)\m for each 
x e G. 

(ii) Let m, n e N and for each x e G let the element nx\m in G exist. Let G = 
= P x Q be a direct decomposition of G. If we put g(x) = nx(P)\m — nx(Q)\m 

for each x e G, then g is a homogeneous (m, n)-transposition in G. 

Proof, (i) This is a consequence of 9 and Theorem 18 [6]. (ii) Clearly, g is a bijec-
tion and g(0) = 0. It is easy to verify that \z\ = |z(P)| + |Z(S)| for each zeG. 
Let x, y e G. Then m|#(x) — g(y)\ = m|nx(P)/m — nx(Q)\m — ny(P)\m + 
+ ny(Q)jm\ = n\(x(P) - x(Q)) - (y(P) - y(Q))\ = n(\x(P) - y(P)\ + \-(x(Q) -
- y(Q))\) = «(|(* - y)(P)\ + \(x - y)(Q)\) = n\x - y\. 

11. Lemma. Let f be a homogeneous isometry in G, m, n e N. For each x e G let 
nx/min Gexist. If we put g(x) = nf(x)\mfor each xeG, then g is a homogeneous 
(m, n)-transposition in G. 

Proof. This is a consequence of Theorem 10. 

12. Theorem. Let f be an (m, n)-transposition in G. Then f(U(L(x, y)) n 
n L(U(x, y))) = U(L(f(x),f(y))) n L(U(f(x),f(y))) for each x,yeG. 

Proof. If / is a translation, the assertion obviously holds. In view of 3 it suffices 
to consider the case when / i s a homogeneous (m, ^-transposition in G. 

Let g be the isometry associated with f. Then g(z) = mf(z)\n for each zeG. 
Let x,yeG. Let a e U(L(x, y)) n L(U(x, y)), u' e L(f(x),f(y)), v'eU(f(x),f(y)). 
By 7, the elements u = mu'\n, v = mv'\n in G exist. Since G is isolated, we have 
v e U(g(x), g(y)), u e L(g(x), g(y)). By Theorem 22 [6], g(U(L(x, y)) n L(U(x, y))) = 
= U(L(g(x), g(y))) n L(U(g(x), g(y))). Thus u ^ g(a) = v. From this we obtain 
u' = nu\m = ng(a)\m = f(a) ^ nv\m = v'. Therefore f(a)e U(L(f(x), /(y))) n 
nL(U(f(x),f(y))). 

If we consider / * instead off we can prove that U(L(f(x),f(y))) n L(U(f(x)9 

f(y)))^f(U(L(X,y))nL(U(x,y))). 

13. Theorem. Let f be a homogeneous (m, n)-transposition in G and let H ^ G. 
Then H is a directed convex subset of G if and only if f(H) is a directed convex 
subset of G. 

138 



Proof . Let H be a directed convex subset of G. Let f(x) ś Д y ) = f(z) for some x, 
zeH, yeG.Ђyl, ťhe elements mf(x)\n, mf(y)\n, mf(z)\n in G exist. Let ø be the 
isometrу associated with / Since G is isolated, we have g(x) = g(y) = g(z). Bу 
Lemma 26 [6], g(H) is a directed convexsubset of G. Then g(y) € g(#). From this 
we get y e H. Thus f(y) є / ( # ) . Hence/(#) is a convex subset of G. 

Let f(a),f(b)ef(H). Then the elements mf(a)\n = g(a), mf(b)\n = g(b) in G 
exist. Since g(#) is a directed subset of G, there exist elements u, v eH such that 
#(v) є U(g(я), g(Ь)), g(u) є L(ø(a), g(b)). Since G is isolated, we ha e f(v) e U(f(a), 
f(b)),f(u)eL(f(a),f(b)). Thus Д # ) is a directed subset of G. 

If we consider/ - 1 , we can prove the sufficiencу of the condition. 

14. Lemma. Let f be a homogeneous (m, n)-transposition in G and let g be the 
isometry associated with f. Let C be a directed convex subgroup of G. Then 

f(c) = g(c). 

Proof. Let C be a directed convex subgroup of G. Bу 10,/and g are group homo-
morphisms. From this and from 13 it follows that /(C), g(C) are directed convex 
subgroups of G. Let z є g(C). Then there exist elements u, v e g(C) such that v e 
e U(0, z), u e L(0, Z). Bу 7, the elements mv\n, mz\n, mu\n in G exist. Since G is 
isolated, we have mujn = mz\n _ mv\n. From the relations 0 ^ mv\n = mv, 
mu = mu\n _ 0 and from the convexitу of g(C) we obtain that mvjn, mu\n e g(C). 
Hence mźjn e g(C). Let z' = g~l(mz\n). Then z' e C,f(z') = n g(z')\m = z ef(C). 
Thus g(C) _ f(C). 

Analogouslу we can prove can prove that ДC) _ g(C). 

15. Theoгem. Let f be a homogeneous (m, n)-transposition in G and let C be 
a directed convex subgroup of G. Then f(C) = C. 

Proof. Let g be the isometrу associated wi th/ Let xeC. Then there exist u, v e C 
such that u e L(x, 0), v e U(x, 0). Bу 10, there exists a direct decomposition G = 
= A x B of G such that g(z) = z(A) - z(B) for each zeG. Then we have v(A) = 

= x(A), v(B) = x(B), v(A) = 0, v(Б) = 0, u(A) = x(A), u(B) = x(B), u(A) = 0, 
u(B) = 0. This implies v = x(A) = w, v = x(B) = u. Bу the con exitу of C, x(AL), 
x(Б) є C. Since x(A) - x(B) e C and g(x(Л) - x(B)) = x, we have C _ g(C). 

Let y' є g(C). Then j ; ' = g(y) for some у є С . Since y(A), y(B) e C, we obtain 
y = j;(л) - y(B) e C. Thus g(C) _ C. 

Therefore g(C) = C. In view of 14 we obtainДC) = C. 

16. Theoгem. L e í / be aи (m, n)-transposition in an isolated abelian po-groupF, 
4JL, c e F, a = c. 

(i) Iff(a) йf(c), thenf([a,c]) = [/(a),/(c)]. 

(ii) Iff{a) ^ / ( c ) , řhen/([a, c]) = [/(c),/(a)]. 
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Proof, (i) From the assumption we have c - a _ 0, f(c) - f(a) _ 0. Since 
n\a - c\ = m\f(a) - f(c)\ we have nU(c - a) = mU(f(c) - f(a)). Thus n(c - a) = 
= m(f(c) - f(fl)) . Hence -mf(c) + nc = -mf(a) + na. 

Let b e [a, c]. Since b - a _ 0, from n\b - a\ = m\f(b) - f(a)\ we get 
n(b - a) = d, + ... + dw, where dx,..., dm e \f(b) - f(a)\. Then dt _ f(b) - f(a) 
for i = l , . . . , m. Thus n(b - a) _ m(f(b) — f(a)). This implies -mf(b) + nb _ 
_ —mf(a) + na = —mf(c) + nc. Hence m(f(c) — f(b)) _ n(c — b) _ 0. Since F 
is isolated, we havef(c) ^ f(b). The relations c — b _ 0, n|c — b| = m|f(c) — f(b)| 
imply that AI(C — b) = m(f(c) — f(b)). Hence — mf(b) + nb = —mf(c) + nc = 
= -mf(a) + na. Thus 0 _ n(b - a) = m(f(b) - f(a)). Hencef(b) _ f(a). There­
fore f( [a, c]) _ [f(a),f(c)]. 

Let b; e [f(a)J(c)], b =f~l(b'). Since f(b) - f(a) _ 0, the relation n\b - a\ = 
= rn\f(b) - f(a)\ yields m(f(b) - f(a)) = nb - na. Then - m f ( b ) + nb _ 
_ —mf(a) + na = —mf(c) + nc. From this we get 0 _ mf(c) — mf(b) _ 
^ nc — nb. Since F is isolated, we have c _ b. Analogously we can prove that 
a _ b. Hence b e [a, c]. Therefore [f(a),f(c)] <= f(([<i, c]). 

The assertion (ii) can be proved analogously. 

17. Theorem. Let f be a homogeneous (m, n)-transposition in G, m > V n > \. 
Let g be the isometry associated with f and for each x e G let xjn or x\m in G 
exist. Then there exist a homogeneous (1, n)-dilation f, and a homogeneous 
(m, \)-contraction f2 such that f(x) = f2(fi(g(x))) for each x E G. 

Proof. Let y e G. From 7 it follows that y\m exists in G if and only if y\n exists 
in G. Put fi(x) = nx and f2(x) = x\m for each x e G. Since the identical mapping 
is a homogeneous isometry, 11 implies thatfx is a homogeneous (V n)-dilation andf2 

is a homogeneous (m, l)-contraction in G. Finally, we have f2(fi(g(x))) = 
= / 2 ( "gW) = ng(x)\m = f(x). 
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Súhrn 

ON DILATIONS AND CONTRACTIONS IN RIESZ GROUPS 

MILAN JASEM 

V článku je zavedený pojem (m, n)-transpozície v čiastočne usporiadanej grupě (m, n sú 
kladné celé čísla). Pre n > m (n < m) je (m, n)-transpozícia v izolovanej čiastočne usporiadanej 
grupe dilatáciou (kontrakciou). 

Hlavný výsledok stanovuje vztahy rnedzi (m, n)-transpozíciarni v izolovanej abelovskej 
Rieszovej grupe G a priarnyrni rozkladrni G. Ďalej je ukázané, že (m, n)-transpozície v G zacho­
vávají, určité konvexné podmnožiny G. 

Peзюмe 

O ДИЛATAЦИЯX И CЖATИЯX B ГPУППAX PИCCA 

MlLAN JASEM 

B cтaтьe ввoдитcя пoнятиe (m, n)-тpaнcпoзиции в чacтичнo yпopядoчeннoй гpyппe (mиn— 
iioлoжитeльныe цeлыe чиcлa). Ecли n > m (m > n), тo (m, n)-тpaнcпoзиция в изoлиpoвaннoй 
чacтичнo yпopядoчeннoй гpyппe являeтcя дилaтaциeй (cжaтиeм). 

Глaвный peзyльтaт ycтaнaвливaeт cooтнoшeния мeждy (m, n)-тpaнcпoзициями в изoлиpo-
вaннoй aбeлeвoй гpyппe Pиcca G и пpямыми paзлoжeниями G. poмe тoгo пoкaзaнo, чтo 
тpaнcпoзиции в G coxpaняют нeкoтopыe выпyклыe пoдмнoжecтвa в G. 
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