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Summary. Let G be a connected graph. If u, ve V(G), then we denote by (u, v)¥ the set of all
we V(G) such that either (i) w == « or (ii) there exists w* e V(G) such that ww* € E(G), w*
belongs to a shortest w — u path but does not belong to any shortest w — v path. If w, w, € V(G),
then we define (w;, w,)" = (wi . w,)¥ N (wy, w))* and (wy. wy)Y = (wy, wy)¥ U (wy, w))¥.
Using functions (...,...)" and (..., ...)"Y we characterize some classes of connected graphs.
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Let F be a graph (in the sense of [1], for example); we denote by V(F), E(F)
and F the vertex set of F, the edge set of F and the complement of F, respectively;
if u € V(F), then we denote by N (u) the set of all vertices adjacent to u in F;if v, w e
€ V(F). then we denote by dxv, w) the distance between v and w in F. If G is a graph,
then instead of V(G). E(G), Ng(u) and dg(v, w) we shall write V, E, N(u) and d(v, w),
respectively. If F, and F, are graphs, then the expression F; + F, will denote the
join of the graphs Fy and F, in the sense of [1].

Let G be a connected graph. If u,, u, € V, then — similarly as in [2] — by the
interval I(u,, u,) we mean the set

{uge Vs d(uy, ug) + d(ug, uy) = d(uy, u,)} .

Let u. ve V. We denote by (u, v)is the set of all we V with the property that either
w=u or

N(w) n (I(w,u) — I(w,v)) += 0.
In other words, (u, v)* is the set of all we V such that either (i) w = u or (ii) there
exists w* € V such that ww* € E, w* belongs to a shortest w — u path but does not
belong to any shortest w — v path. Since I(u, v) = (u, v)*, we may say that (u, v)* is
a certain extension of I(u, v).
The following two propositions can be easily derived from the definition.

Proposition 1. Let G be a connected graph, and let u, v, we V. Then

(u, w)* = (u.v)* U (v, W)*.

171



Proposition 2. Let G be a nontrivial connected graph. Then

(a) G is a tree if and only if (u, v)* = {u, v} for any adjacent u,veV, and
(b) G is a complete if and only if (u, v}* = V for any adjacent u,ve V.
Let G be a connected graph, and let u, v e V. We define

(u, 0)° = (u,0)* " (v, u)* and (u,v)” = (u,v)* U (v, u)*.
Since I(u, v) < (u, v)” < (u, v)”, we may assume that (u, v)" and (u, v)” are also
extensions of I(u, v).

Let G be a connected graph, and let k be a positive integer. We shall say that G
fulfils condition €y if

(u,v)" =1I(u,v) forany wu,veV suchthat d(u,v)=k.
Similarly, we say that G fulfils condition €, if
(u,v)” =V forany u,veV suchthat d(u,v)=k.

Proposition 3. Let G be a nontrivial connected graph. Then G fulfils C{ and only
if G is bipartite.

Proof. (I) Assume that G is not bipartite. It is not difficult to see that there exists
an odd cycle C in G such that

d(r,s) = d(r,s) forany r,seV(C).

Consider u,ve V(C) such that uve E(C). Then there exists we V(C) such that
d(u, w) = d(v, w). This means that u £ w # v. There exist u,, vg € V(C) such that
ugw, vow € E(C) and

d(u, ug) = d(u, w) — 1 = d(v, vo) .

It is clear that d(ue, v) = d(u, w). Similarly, d(vy, u) = d(v, w). Hence uq ¢ I(v, w)
and v, ¢ I(u, w). This means that w € (u, v)", and therefore, G does not fulfil 7.

(H) Assume that G does not fulfil €7. There exist u, v. w € V such that uve E,
u+ w0, and we(u,v)”. Without loss of generality. let d(u, w) < d(v, w). If
d(u, w) < d(v, w), then d(u, v) = d(v, w) — 1, and thus w ¢ (u, v)*, which is a contra-
diction. Let d(u, v) = d(v, w). Since uv € E, it is easy to see that G contains an odd
cycle. Thus, G is not bipartite, which completes the proof of the proposition.

Remark 1. If G is an even cycle of length =6, then G fulfils 47 and does not
fulfil 5. If G is isomorphic to K,, + K,, where m = 2. n = 1, then G fulfils 7
and does not fulfil €7.

In the present paper we shall characterize the connected graphs which fulfil €7
and %5, and the connected graphs which fulfil 5 and %5.

If n is a positive integer, then we denote by P, a path with exactly n vertices. This
implies that K, + P; is a connected graph which has exactly two blocks: a triangle
and a bridge.
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Lemma 1. Let G be a connected graph. Assume that G fulfils €3. Then G contains
no induced K, + Pj.

Proof. To the contrary, assume that G contains an induced K, + P;. Then there
exist distinct wy, u,, u3, uy € Vsuch that u,u,, u,uj, uuy, usuy € E and u us, uuy ¢
¢ E. Obviously. u, ¢ I(u,, u3) and uy € (uy, u3)", which is a contradiction. Thus, the
lemma is proved.

Lemma 2. Let G be a connected graph. Assume that G fulfils €5 and at least
one of the conditions €7 and €5. Then G contains no induced P,.-

Proof. To the contrary, we assume that G contains an induced P,. Then there
exist distinct u,, u,, u3, u, € Vsuch that

Ugly, Uply, Uzt € E and  wquz, u g, usuy ¢ E.

Obviously, 2 < d(u,. uy) < 3.

First, let d(u,,u,) = 2. Since u,u, ¢ E, it is clear that u, ¢ I(uy, u;). According
to €5, uy ¢ (uy, u3)". Thus u u; € E, which is a contradiction.

Let now d(u,,u,) = 3. Since G fulfils ¥} or %5, we have that u, e (u,, u;)” U
U (u;. u3)”. There exists useV such that ug & us + uy, us & us, ugusek,
d(uy. us) = 2, and

if G does not fulfil €%, then d(u,, us) = 2.

Obviously, u, =+ us. We distinguish two cases:

Case 1. Assume that u,us ¢ E. If ujus e E, then the subgraph of G induced by
{uy. us. uy, us} is isomorphic to K, + P,, and thus — according to Lemma 1 —
G does not fulfil €7, which is a contradiction. Let ujus ¢ E. Then the subgraph of G
induced by {u,. u,. us, uy. us} is isomorphic to Ps. Since d(u,, us) = 2, there exists
ug € Vsuch that u; # ug + us and usug, ugu, € E. Since u,us ¢ E, it is clear that
the vertices u,,...,u, are mutually distinct. Since d(u,,u,) = 3, we have that
ugug ¢ E. Then ug ¢ I(u,, uy).

If u,uq € E, then the subgraph of G induced by {u,, u,, us, us} is isomorphic to
K, + P5, which is a contradiction. Let u,uq ¢ E. Since ugq ¢ I(us, uy), it follows
from €75 that ug ¢ (u,, u,)". Hence u,u, € E or u,us e E, which is a contradiction.

Case 2. Assume that u,us € E. Then G fulfils 5. It follows from Lemma 1 that
usus ¢ E. Recall that

Uyly, Usly, Usls, Usly, Ugus € E and  uqus, uuy, ugus,
UyUy, Usls ¢ E .

According to %5, u, € (uy., us)”. There exists ve V such that v¢ {uy, uy, us, us},
uve E, and
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either (a) uypeE and usv¢ E
or (b) uspeE and usv ¢ E.

Obviously, v =& uy. Since d(uy, u,) = 3, we have that u,v ¢ E. Without loss of general-
ity we assume (a). It is clear that us ¢ I(u,, us). According to €%, us ¢ (u,. us)".
This implies that either u,u, € E or usv € E, which is a contradiction.

Thus, we have proved that G contains no induced P4, which completes the proof
of the lemma.

Lemma 3. Let G be a connected graph. Assume that G contains no induced Py and
no induced K, + P5. Then G fulfils €5.

Proof. To the contrary, we assume that there exist u, v, w € V'such that d(u, v) =
=2,wé¢I(u, v) and w € (u, v)". Without loss of generality we assume that d(u. w) <
< d(v, w). Since G contains no induced P,, we have that d(v,w) < 2. If u = w
or vw € E, then w e I(u, v), which is a contradiction. Let u # w and ow ¢ E. Since
d(u, v) = 2, there exists wo e V such that u & w, % v and wuwg, wev € E. Since
vw ¢ E, we have that w £ wy,.

First we assume that uwe E. If ww, ¢ E or ww, € E, then the subgraph of G
induced by {u, v, w, w,} is isomorphic to P, or to K, + P;. respectively, which is
a contradiction.

We now assume that uw ¢ E. Since w e (u, v)”, there exist distinct u,. vy V
such that

Uy, UgW, U0y, VoW € E and  uvgy, ugv ¢ E .

Since the subgraph of G induced by {u. u,, v,, w} is not isomorphic to P4, we have
that u,v, € E. Then the subgraph of G induced by {u. u,, v, v,} is isomorphic to P,
which is a contradiction.

Thus, we have proved that G fulfils 7, which completes the proof of the lemma.

Remark 2. The graph obtained from K(3, 3) by deleting exactly one edge is an
example of a connected graph which contains P, and fulfils €75

Theorem 1. Let G be a nontrivial connected graph. Then the following statements
are equivalent:

(a) G fulfils €Y and €7,

(b) G is a block and contains no induced P, or K| + Pj.

Proof. (I) Let (a) holds. Assume that G is not a block. Then there exist distinct
Uy, Uy, uz € Vsuch that u,u,, u,u; € E, and u, and u; belong to distinct blocks of G.
Obviously, u, is a cut-vertex of G. We can see that uj ¢ (u,, u,)”, which is a con-
tradiction. Thus, G is a block. According to Lemma |, G contains no induced
K, + P;. According to Lemma 2, G contains no induced P,. This implies that (b)
holds.
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(IT) We now wish to show that if (b) holds, then (a) holds. To the contrary, we
assume that (b) holds but (a) does not hold. Since(b) holds, it follows from Lemma 3
that G fulfils 7. Since (a) does not hold, we have that G does not fulfil 7. Then
there exist vy, v,, v3 € Vsuch that v,v, € E and v; ¢ (v, v,)". Without loss of general-
ity we assume that d(vy,v3) < d(v,, v3). If vy = v;, then vy € (vy, vy)7, which is
a contradiction. Let v, =+ v;.

First we assume that v,v; € E. If v,0; € E, then v € (vy, v,)7, which is a contra-
diction. Let v,v3 ¢ E. Since G is a block, there exists an induced v, — v; path in G
which does not contain v,. Since G contains no induced P, and v,v; ¢ E, we have
that there exists v, e V such that vy ¢ {vy, 05, 03}, and v,v4, v3v, € E. Since v,0,.
v,v; € E, we can easily see that v; € (vy, v,)”, which is a contradiction.

We now assume that v,v; ¢ E. Then d(v,, v3) = 2. There exists vy € V such that
vy * vy * vy and vevy, vov3 € E. Since d(vy, v3) < d(v,.v3), it is obvious that
0,03 ¢ E. If vov, € E or v, ¢ E, then the subgraph of G induced by {vg, vy, v, 03]
is isomorphic to K; + P; or to P,, respectively, which is a contradiction.

Thus, (b) implies (a), which completes the proof of the thecorem.

Combining Theorem 1 and Proposition 3 we get the following result:

Corollary 1. Let G be a nontrivial connected graph. Then G fulfils €7, €5 and ¢V
if and only if G is a complete bipartite graph different from a star.

Theorem 2. Let G be a connected graph. Then the following statements are
equivalent:

(a) G fulfils €5 aqd 675;

(b) G contains no induced P,, K, + P, or K(1, 3).

Proof. (l) Let G fulfil 5 and 5. According to Lemma 2, G contains no induced
P,, and according to Lemma 1, G contains no induced K, + Pj;.

Assume that G contains an induced K(1, 3). Then there exist distinct u, u, u,, u3 €
€ V'such that

uuy, u,, uuz € E and  ugu,, usus, uus ¢ E .

Since d(uy, u,) = 2, it follows from 5 that us € (uy. u,). Since d(uy, u;) =2 =
= d(u,, u3), there exists ve V such that v ¢ {u,, u,, us}, uzpeE, and either (i)
u,ve E and u,v ¢ E or (ii) u,v € E and u,v ¢ E. Without loss of generality we assume
that (i). If uve E or uv ¢ E, then the subgraph of G induced by {u,, u,, u, v} is
isomorphic to K; + P; or to P,, respectively, which is a contradiction.

Thus, G contains no induced K(1, 3).

(IT) Let (b) hold. It follows from Lemma 3 that G fulfils 45.

Assume that G does not fulfil 5. Then there exist u, v, w € V such that d(u, v) =2
and w ¢ (u, v)”. Without loss of generality we assume that d(u, w) < d(v, w). If
u=worovwekE, then w e(u, v)”, which is a contradiction. Let u + w and ow ¢ E.
Since G contains no induced Py, it is obvious that d(v, w) = 2.
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First, let uw € E. Since d(v, w) = 2 = d(u, v), we have that w e (u, v)”, which is
a contradiction.

Let now uw ¢ E. Then there exists u, € Vsuch that u # uy + w and uu,, uyw € E.
Obviously, u, = v. Since w ¢ (u, v)”, we have that uyv € E. Then the subgraph of G
induced by {u, ug, v, w} is isomorphic to K(1, 3), which is a contradiction.

Thus, G fulfils €5, which completes the proof of the theorem.

It is obvious that if G is isomorphic to P5, then G fulfils €5 and €5 but does not
fulfil €. From Theorems 1 and 2 the following corollary can be derived:

Corollary 2. Let G be a nontrivial connected graph. Assume that G fulfils €3
and is not isomorphic to Py. Then G fulfils €5 if and only if G fulfils €7 and con-
tains no .induced K(1,3).

Proof. First, let G fulfil €. As follows from Theorem 2, G contains no induced
P, K, + P,, or K(l, 3). First we assume that G is not a block. Since G contains no
induced P, or K(1, 3), we can easily see that G has exactly two blocks. Since G is not
isomorphic to P, at least one of the blocks of G is cyclic. Thus, G contains an induced
K(1,3) or K, + P5, which is a contradiction. We now assume that G is a block.
According to Theorem 1, G fulfils €7.

Conversely, let G fulfil €7 and let it G contain no induced K(l, 2). As follows
from Theorem 1, G contains no induced P, or K; 4+ P;. Thus — according to Theo-
rem 2 — G fulfils €5.

Remark 3. If G is a cycle of length 5 or 6, then G fulfils €5 but does not fulfil 7.
Combining Corollary 2, Theorem 2 and Proposition 3 we get the following result:

Corollary 3. Let G be a connected graph. Then G fulfils €7, €%, €5 and €5 if
and only if G is isomorphic to K, K,, or K(2, 2).

Problems. Characterize the connected graphs which fulfil 7 and €Y. Characterize
the connected graphs which fulfil €7 and %5

Remark 4. The subject of the paper has its origin in the author’s study of mathe-
matical models in semiotics.
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O JISTYCH ROZSiRENICH INTERVALU V GRAFECH

LADISLAV NEBESKY

Necht G je souvisly graf. KdyZ u a v jsou uzly grafu G, tak jako (u, v)* oznaime mnoZinu
viech uzla w grafu G takovych, Ze bud (i) w = u nebo (ii) existuje uzel w* grafu G takovy, Zze ww*
je hrana, w* leZi na n&jaké nejkratdi w — u cest&, ale neleZi na Zadné nejkrat$i w — v cest&. KdyZ
wy a wy jsou uzly grafu G, tak definujeme (wy, wy)™ = (wy, wy)¥ N (wy, w))¥ a (wy, wy)VY =
= (wy, wp)¥ U (w,, wy)¥. S vyuZitim funkci(...,...)" a (..., ...)" jsou v &anku charakterizovany
n&které ttidy souvislych grafu.

Pe3lome

O NMMPOAOJIXKEHUAX MHTEPBAJIOB B TPA®AX

LADISLAV NEBESKY

Iycts G — cBasueli rpad. Jns Bepummn 4 u v rpada G nycts (4, v)* 0603HaUYaeT MHOXECTBO
Bcex BepmuH w rpada G, mis kotopsix nubo (i) w = u, mubo (ii) cymecTByeT Takas BepmIMHA W*
rpada G, 4T0 ww* — pebpo ¥ w* JIEXKHUT Ha HEKOTOPOM KpaT4yeHIIeM W — U TYTH, HO HE JIEXHT HH
Ha KaKOM KpaTyaiimeM w — vy myTd. Jlanee, ans BepwyMH w;, w, rpada G mycts (w;, w,)" =
= (wy, w)¥ N\ (wy, w H) | (wy, wy)¥ = (wy, wy)¥ U (w,, wy)¥. B cTaThe npu nomomu dyskumit
(G.y..)" m(...,...)Y XapaKTepH3yIOTCA HEKOTOPbIE KNIACCHI CBA3HBIX TpadoB.
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