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ON CERTAIN EXTENSIONS OF INTERVALS IN GRAPHS 

LADISLAV NEBESKÝ, Praha 

(Received June 9, 1988) 

Summary. Let G be a connected graph. If u, v e V(G), then we denote by (u, v)# the set of all 
we V(G) such that either (i) w— u or (ii) there exists w* e V(G) such that ww* e E(G), w* 
belongs to a shortest w — u path but does not belong to any shortest w — v path. If wt, w 2 e V(G), 
then we define (w 1 ? w 2 ) n = (w1. w2)

# n (w 2, w x ) s and (w j, w 2 ) u = (w 1, w2)
# u (w2, wt)

tf. 
Using functions (..., . . . ) ° and (..., . . . ) u we characterize some classes of connected graphs. 
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Let F be a graph (in the sense of [ l ] , for example); we denote by V(F), E(F) 
and F the vertex set of F, the edge set of F and the complement of F, respectively; 
if u e V(F), then we denote by NF(u) the set of all vertices adjacent to u in F; if v, w e 
e V(F), then we denote by dF(v, w) the distance between v and w in F. If G is a graph, 
then instead of V(G), F(G), NG(u) and dG(v, w) we shall write V, F, N(u) and d(v, w), 
respectively. If Fx and F2 are graphs, then the expression Fx + F2 will denote the 
join of the graphs Fx and F2 in the sense of [1]. 

Let G be a connected graph. If u1? u2 e V, then — similarly as in [2] — by the 
interval l(u^ u2) we mean the set 

{u0 e V; d(ul9 u0) 4- rf(uo5 w2) = d(ui, u2)} . 

Let u, v e V. We denote by (u, v)# the set of all w e V with the property that either 
w -= u or 

N(w) n (I(w, u) - I(w, v)) =4= 0 . 

In other words, (u, v)* is the set of all w e Vsuch that either (i) w = u or (ii) there 
exists w* e V such that u'w* e F, w* belongs to a shortest w — u path but does not 
belong to any shortest w — v path. Since I(u, v) c (^? p)#, we may say that (u, v)* is 
a certain extension of I(u, v). 

The following two propositions can be easily derived from the definition. 

Proposition 1. Let G be a connected graph, and let u, v, w e V. Then 

(u, w)* c (w, v)* u (v, w) # . 
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Proposition 2. Let G be a nontrivial connected graph. Then 
(a) G is a tree if and only if (u, v)# = {w, v} for any adjacent u, v e V, and 
(b) G is a conjiplete if and only if (u, v)* = Vfor any adjacent u, v e V. 
Let G be a connected graph, and let w, v e V We define 

(w, v)n = (w, v)* n (v, w)* and (w, v)u = (w, v)* u (v, w)*. 

Since I(w, v) _ (w, v)n _ (w, v)u, we may assume that (w, v)n and (w, v)u are also 
extensions of l(u, v). 

Let G be a connected graph, and let k be a positive integer. We shall say that G 
fulfils condition ^ if 

(w, v)n = I(w, v) for any u, v e V such that d(u, v) = k . 

Similarly, we say that G fulfils condition ^ if 

(w, v)u = V for any u,veV such that d(u, v) = k . 

Proposition 3. Let G be a nontrivial connected graph. Then G fulfils Cn andvnly 
if G is bipartite. 

Proof. (I) Assume that G is not bipartite. It is not difficult to see that there exists 
an odd cycle C in G such that 

dc(r, s) = d(r, s) for any r, s e V(C). 

Consider u, v e V(C) such that wv e F(C). Then there exists w e V(C) such that 
d(u, w) — d(v, w). This means that w 4= w + v. There exist w0, v0 e V(C) such that 
w0w, v0w e E(C) and 

d(u, u0) = d(u, w) — 1 = d(v, v0) . 

It is clear that d(u0, v) = d(u, w). Similarly, d(v0, u) = d(v, w). Hence w0 $l(v, w) 
and v0 $l(u, w). This means that w e (w, v)n, and therefore, G does not fulfil # n . 

(II) Assume that G does not fulfil ^ n . There exist w, v, w e V such that wv e E, 
u 4= w + v, and w e (u, v)n. Without loss of generality, let d(u, w) _ d(v, w). If 
d(u, w) < d(v, w), then d(u, v) — d(v, w) — 1, and thus w $ (u, v)*, which is a contra­
diction. Let d(u, v) = d(v, w). Since wv e E, it is easy to see that G contains an odd 
cycle. Thus, G is not bipartite, which completes the proof of the proposition. 

Remark 1. If G is an even cycle of length _ 6 , then G fulfils ^ n and does not 
fulfil ^ n . If G is isomorphic to Km + Kn, where m _ 2, /? _ V then G fulfils ^ n 

and does not fulfil ^ n . 
In the present paper we shall characterize the connected graphs which fulfil ^ 

and ^ 2 , and the connected graphs which fulfil ^ and ^ n . 
If n is a positive integer, then we denote by Pn a path with exactly n vertices. This 

implies that Kx + P3 is a connected graph which has exactly two blocks: a triangle 
and a bridge. 
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Lemma 1. Let G be a connected graph. Assume that G fulfils ^2. Then G contains 
no induced Kx + P3. 

Proof. To the contrary, assume that G contains an induced Kx + P3. Then there 
exist distinct u l5 u2, u3, u4 e Vsuch that uxu2, u2u3, u2u4, u3u4 G E and uiu3, utu4 £ 
<£ E. Obviously, u4 ^I(u1, u3) and u4 e (ux, u3)

n, which is a contradiction. Thus, the 
lemma is proved. 

Lemma 2. Let G be a connected graph. Assume that G fulfils ^2 and at least 
one of the conditions ^ and # 2 • Then G contains no induced P4. 

Proof. To the contrary, we assume that G contains an induced P4. Then there 
exist distinct ux, u2, u3,u4e Vsuch that 

uiu2, u2u3, u3u4 e E and uiu3, uiu4, u2u4 <£ E . 

Obviously, 2 = d(u1,u4) ^ 3. 
First, let d(u1,u4) = 2. Since uiu4^E, it is clear that u4$I(u1,u3). According 

to %>2, u4 $ (uj, u3)
n. Thus uiu3 e E, which is a contradiction. 

Let now rf(ui, u4) = 3. Since G fulfils ^ or %>2, we have that u4 e (ut, u2)
U u 

u (uj. u3)
U. There exists u5 e V such that u4 4= u5 4= wl9 u5 =t= u3, u4u5 e E, 

d(ux, u5) = 2, and 

if G does not fulfil <&%, then d(u2, u5) ^ 2 . 

Obviously, ui 4= u5. We distinguish two cases: 

Case 1. Assume that u2u5$E. If u3u5eE, then the subgraph of G induced by 
{u2, u3. u4, u5} is isomorphic to Kx + P3, and thus — according to Lemma 1 — 
G does not fulfil ^'2, which is a contradiction. Let u3u5 <£ E. Then the subgraph of G 
induced by {u^ u2, u3, u4, u5} is isomorphic to P5. Since ^(ui, u5) = 2, there exists 
u6e V such that ui 4= u6 4= u5 and u5u6, u6ui G K. Since u2u5 £ K, it is clear that 
the vertices u1,...,u6 are mutually distinct. Since d(wt, u4) = 3, we have that 
u4u6 $E. Then u6 $I(u2, u4). 

If u2u6 e E, then the subgraph of G induced by {ut, u2, u5, u6} is isomorphic to 
Ki + P3, which is a contradiction. Let u2u6$E. Since u6^I(u2, u4), it follows 
from <&2 t n a t u6 $ (ui* UAT- Hence uxu4 e E or u2u5 e E, which is a contradiction. 

Case 2. Assume that u2u5 G £. Then G fulfils ^ 2 . It follows from Lemma I that 
u3u5 £ E. Recall that 

uiu2, u2u3, u2u5, u3u4, u4u5 G E and uiu3, uxu4, uiu5 , 

u2u4, u3u5 £ E . 

According to # 2 , uxe(u3,u5y. There exists v e V such that v $ [uu u2,u3, u5], 
uiv G E, and 
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either (a) u3veE and u5v$E 

or (b) u5veE and u3v $ E . 

Obviously, v + u4. Since d(u1, u4) = 3, we have that u4v <£ F. Without loss of general­
ity we assume (a). It is clear that u3 £l(ux, u5). According to <?n, u3 $(ui, u5)

n. 
This implies that either u{u4e E or u5v e F, which is a contradiction. 

Thus, we have proved that G contains no induced P4, which completes the proof 
of the lemma. 

Lemma 3. Let G be a connected graph. Assume that G contains no induced P4 and 
no induced Kl + P3. Then G fulfils # J . 

Proof. To the contrary, we assume that there exist u, v, w e Vsuch that t/(u, v) = 
= 2, w <fcl(u, v) and w e (u, v)n. Without loss of generality we assume that J(u, w) _ 
_ c/(v, w). Since G contains no induced P4, we have that d(i\ w) _ 2. If u = w 
or vw e F, then w e I(u, v), which is a contradiction. Let u + w and vw ^ F. Since 
d(u, v) = 2, there exists w0 e V such that u + w0 + v and uw0, w0v e F. Since 
vw ^ F, we have that w + w0. 

First we assume that uw e E. If ww0 $ E or ww0 e F, then the subgraph of G 
induced by {u, v, w, w0} is isomorphic to P4 or to Kt + P3, respectively, which is 
a contradiction. 

We now assume that uw£E. Since w e ( u , v ) n , there exist distinct u0. v0 e V 
such that 

uu0, u0w, vv0, v0w e F and uv0, u0v ^ F . 

Since the subgraph of G induced by {u, u0, v0, w] is not isomorphic to P4, we have 
that u0v0 e F. Then the subgraph of G induced by {u, u0, v, v0] is isomorphic to P4, 
which is a contradiction. 

Thus, we have proved that G fulfils ^ , n , which completes the proof of the lemma. 

Remark 2. The graph obtained from K(3, 3) by deleting exactly one edge is an 
example of a connected graph which contains P4 and fulfils # 2 . 

Theorem 1. Let G be a nontrivial connected graph. Then the following statements 
are equivalent: 

(a) Gfulfils^ and%n; 
(b) G is a block and contains no induced P4 or Kx + P3. 

Proof. (I) Let (a) holds. Assume that G is not a block. Then there exist distinct 
Mi? M2J u3 G Vsuch that u!u2, u2u3 e F, and ux and u3 belong to distinct blocks of G. 
Obviously, u2 is a cut-vertex of G. We can see that u3 $(ut, u2)

U> which is a con­
tradiction. Thus, G is a block. According to Lemma V G contains no induced 
K! + P3. According to Lemma 2, G contains no induced P4. This implies that (b) 
holds. 

174 



(II) We now wish to show that if (b) holds, then (a) holds. To the contrary, we 
assume that (b) holds but (a) does not hold. Since(b) holds, it follows from Lemma 3 
that G fulfils ^2. Since (a) does not hold, we have that G does not fulfil # u . Then 
there exist vx, v2, v3 e Vsuch that vtv2 e E and v3 <£ (vx, v2)

u. Without loss of general­
ity we assume that d(vx,v3) _ d(v2, v3). If vx = v3, then v3 e (vx, v2)

u, which is 
a contradiction. Let vx #= v3. 

First we assume that vxv3 e E. If v2v3 e E, then v3 e (vl5 v2)
u, which is a contra­

diction. Let v2v3 $ E. Since G is a block, there exists an induced v2 — v3 path in G 
which does not contain vx. Since G contains no induced P4 and v2v3 <£ E, we have 
that there exists v4 e V such that v4 <£ {vx, v2, v3], and v2v4, v3v4 e E. Since vxv2, 
vxv3 e E, we can easily see that v3 e (vx, v2)

u, which is a contradiction. 
We now assume that v!v3 ^ E. Then d(vt, v3) = 2. There exists v0 e Vsuch that 

vi + 0̂ + ^3 a n d v0vx, v0v3e E. Since <1(v1? v3) _ d(v2, v3), it is obvious that 
v2v3 ^ E. If v0v2 e E or v0v2 ^ £, then the subgraph of G induced by (v0, vx, v2, v3j 
is isomorphic to Kx + P3 or to P4, respectively, which is a contradiction. 

Thus, (b) implies (a), which completes the proof of the theorem. 
Combining Theorem 1 and Proposition 3 we get the following result: 

Corollary 1. Let G be a nontrivial connected graph. Then G fulfils c€r
x\ ^2 and # u 

if and only if G is a complete bipartite graph different from a star. 

Theorem 2. Let G be a connected graph. Then the following statements are 
equivalent: 

(a) G fulfils ^ aqdVZ; 
(b) G contains no induced P4, Kx + P3, or K(l, 3). 

Proof. (I) Let G fulfil ^ 2 and %2. According to Lemma 2, G contains no induced 
P4, and according to Lemma 1, G contains no induced Kx + P3. 

Assume that G contains an induced K(l, 3). Then there exist distinct u, u,, u2, u3 e 
e V such that 

uux,uu2,uu3e E and uxu2,u2u3,uxu3 £ E . 

Since d(ux, u2) = 2, it follows from ^ 2 that u3 e (ux, u2)
U. Since d(ux, u3) = 2 = 

= d(u2, u3), there exists v e V such that v <£ {u1? u2, u3}, u3ve£, and either (i) 
ujv e £ and u2v $ E or (ii) u2v G £ and ujLv ^ £. Without loss of generality we assume 
that (i). If uv e E or uv$E, then the subgraph of G induced by {ux, u2, u, v) is 
isomorphic to Kx + P3 or to P4, respectively, which is a contradiction. 

Thus, G contains no induced K(l, 3). 
(II) Let (b) hold. It follows from Lemma 3 that G fulfils «£ . 
Assume that G does not fulfil C€K

2
J. Then there exist u, v, w e Vsuch that d(u, v) = 2 

and w £ (u, v)u. Without loss of generality we assume that d(u, w) _ d(v, w). Tf 
u = w or vw e £, then w e (u, v)u, which is a contradiction. Let u + w and vw <£ £. 
Since G contains no induced P4, it is obvious that d(v, w) = 2. 
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First, let uw e E. Since d(v, w) = 2 = d(u, v), we have that vv e (u, v)u, which is 
a contradiction. 

Let now uw $ £. Then there exists u0 e Vsuch that u + u0 =t= w and uu0, u0w e £. 
Obviously, u0 + v. Since w $ (w, v)u, we have that w0v e F. Then the subgraph of G 
induced by {w, u0, v, w] is isomorphic to K(l, 3), which is a contradiction. 

Thus, G fulfils #2 * which completes the proof of the theorem. 
It is obvious that if G is isomorphic to P3, then G fulfils ^£ a n c l ^2 but does not 

fulfil (€\. From Theorems 1 and 2 the following corollary can be derived: 

Corollary 2. Let G be a nontrivial connected graph. Assume that G fulfils ^£ 
and is not isomorphic to P3. Then G fulfils ^ 2 if and only if G fulfils %>^ and con­
tains no induced K(\, 3). 

Proof. First, let G fulfil ^ 2 . As follows from Theorem 2, G contains no induced 
P4, Kj + P3, or K(l, 3). First we assume that G is not a block. Since G contains no 
induced P4 or K(l, 3), we can easily see that G has exactly two blocks. Since G is not 
isomorphic to P3, at least one of the blocks of G is cyclic. Thus, G contains an induced 
K(1, 3) or Kj + P3, which is a contradiction. We now assume that G is a block. 
According to Theorem 1, G fulfils #" . 

Conversely, let G fulfil ^ and let it G contain no induced K(l, 2). As follows 
from Theorem 1, G contains no induced P4 or Ki + P3. Thus — according to Theo­
rem 2 - G fulfils ^ . 

Remark 3. If G is a cycle of length 5 or 6, then G fulfils ^ but does not fulfil <€\. 
Combining Corollary 2, Theorem 2 and Proposition 3 we get the following result: 

Corollary 3. Let G be a connected graph. Then G fulfils «7 , # J , <&? and <g% if 
and only if G is isomorphic to Kx, K2, Or K(2, 2). 

Problems. Characterize the connected graphs which fulfil ^ 7 a n c l ^ i • Characterize 
the connected graphs which fulfil ^ 7 an<i ^2 • 

Remark 4. The subject of the paper has its origin in the author's study of mathe­
matical models in semiotics. 
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O JISTÝCH ROZŠÍŘENÍCH INTERVALÜ V GRAFECH 

LADISLAV NEBESKÝ 

Nechť G je souvislý graf. Když u a v jsou uzly grafu G, tak jako (uf v)* označíme množinu 
vsech uzlù н> grafu G takových, že buđ (i) и> = u nebo (ii) existuje uzel н>* gгafu G takový, že и>и>* 
je hrana, w* leží na n jaké nejkratší w — u cest , ale neleží na žádné nejkratSí н> —• v cest . Když 
w^ a и>2 jsou uzly grafu G, tak definujeme (wíf w2)

n = (wíf и>2)* П (и>2, и>x)* a (wít н>2)
u = 

= (wi> ^2)* u (w2> wi)*- S využitím funkcí (...,.. . ) n a (...,.. . ) u jsou v ðlánku chaгakterizovány 
n které třídy souvislých grafů. 

Резюме 

О ПРОДОЛЖЕНИЯХ ИНТЕРВАЛОВ В ГРАФАХ 

^А^IЗ^АV № В Е 8 К * 

Пусть С — связный граф. Для вершин и и V графа С пусть (и, V)* обозначает множество 
всех вершин н> графа (7, для которых либо (0 н> = м, либо 60 существует такая вершина н>* 
графа С, что и>и>* — ребро и н>* лежит на некотором кратчейшем н> — и пути, но не лежит ни 
на каком кратчайшем н> — V пути. Далее, для вершин н'1, н>2 графа С пусть (н>1, и>2)° = 
= (и'1, и>2)* Г. (и>2, н>1*) и (и>1, и>2)

и = (и>1, и>2)* и (н>2, н»!)*. В статье при помощи функций 
(..., . . . ) п и (..., ...)и характеризуются некоторые классы связных графов. 

Ашкогч5 аМге$5: РПохопска ГакиИа итуегыгу Каг1оуу, пат . ^. Ра1аспа 2, 116 38 РгаЬа 1 
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