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Summary. A distance between isomorphism classes of connected graphs with a given number n
of vertices is introduced. Its definition is based on the maximum number of vertices of a graph
onto which two given graphs can be contracted. The properties of this distance are studied; they
are compared with the properties of other distances between isomorphism classes of graphs.
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An isomorphism class of graphs is the class of all graphs which are isomorphic to
a given graph. Various distances between isomorphism classes have been introduced.

The subgraph distance é was introduced in [6]. The distance §(®,, ®,) of two
isomorphism classes ®,, ®, of graphs with a given number n of vertices is equal to n
minus the maximum number of vertices of a graph which is isomorphic simul-
taneously to an induced subgraph of a graph from ®, and to an induced subgraph
of a graph from ®,. This distance was modified by F. Kaden [3] and F. Sobik [5]
for pairs of isomorphism classes of graphs which need not have the same number
of vertices. For trees this distance was modified in [7]; instead of an induced sub-
graph a subtree is taken. This distance is denoted by dr. The edge distance was
introduced by V. BaldZ, J. Ko¢a, V. Kvasni¢ka and M. Sekanina [1]. Let G, € G,,
G, e ©,, let V}, V, be the vertex sets and E,, E, the edge sets of G,, G,, respectively.
Let E,, be the edge set of a graph which is isomorphic to subgraphs of both G, G,
and has the maximum number of edges. Then the edge distance is 0x(®,, 6,) =
= |E1| + |E2| - 2|E,2| + HV,| - |V2||. The edge rotation distance was introduced
by G. Chartrand, F. Saba and H.-B. Zou [2] If u, v, w are three vertices of a graph G
such that u is adjacent to v and not to w, then to perform the rotation of the edge uv
to the position uw means to delete the edge uv from G and to add the edge uw to G.
The edge rotation distance dx(®,, ®,) is the minimum number of edge rotations
necessary for transforming a graph from &, into a graph from ®,.

Various distances were compared in [8]. There are also other distances between
isomorphism classes of graphs. . .

Here we shall introduce a new distance between isomorphism classes of graphs
called the contraction distance. All graphs considered are finite connected undirected
graphs without loops and multiple edges.
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Let G be a connected graph, let 2 be a partition of the vertex set V(G) of G with
the property that each class of 2 induces a connected subgraph of G. Let G’ be the
graph whose vertex set is 2 and in which two vertices P, P, are adjacent if and only
if at least one vertex of P, is adjacent to at least one vertex of P, in G. Then we say
that G’ (and every graph isomorphic to G’) is a contract of G and was obtained from G
by a contraction.

If one of the classes of 2 has two elements and all the others have one element
each, we say that G' was obtained from G by an elementary contraction. It is easy
to see that any contraction is a superposition of elementary contractions. The number
of vertices of G is equal to the sum of the number of vertices of G’ and the number
of elementary contractions by whose superposition G’ was obtained from G.

Let %, be the set of all isomorphism classes of connected graphs with n vertices.
Let 6, €%,, ©6,€%,. Let G, € ,, G, €®, and let k be the maximum number of
vertices of a common contract G,, of G, and G,. Then §¢(6,®,) =n — k is
called the contraction distance between &, and ®,.

In other words, 6C((ﬁl, (52) is the minimum number of elementary contractions
whose superposition is a contraction of G, or of G, onto G,,.

Now we shall define an auxiliary concept. Let G’ be a contract of G, let e be an
edge of G and let ¢’ be an edge of G’. We say that e and e’ correspond to each other,
if the end vertices of e belong to the classes of 2 which are end vertices of e'.

Theorem 1. The functional 6 is a metric on €,,.

Proof. Every two connected graphs with n vertices have a common contract,
namely the graph consisting of one vertex; if n = 2, then also the complete graph
with two vertices. Therefore 6.(®,, ®,) is well-defined. It is easy to prove that
36y, G,) = 0, that 6(6,, ®,) = 0if and only if &; = G, and that 6(6,, 6,) =
= 3(6,, ®,). We shall prove the triangle inequality. Let ®;, ®,, ®; be three iso-
morphism classes of connected graphs with n vertices, let G, € ®,, G, € 6,, G, € ©;.
Let Gy, (or G,3) be a common contract of G, (or G, respectively) and G, with the
maximum number of vertices. The graph G,, is obtained from G, by §(®,, ®,)
elementary contractions, the graph G, 5 is obtained from G, by 6(®,, ®;) elementary
contractions. Let F be the set of edges of G, whose contractions yield G,;, let F,
be the set of edges of G, corresponding to the edges of F. There may be an edge
of F to which no edge of F, corresponds, because this edge is contracted when
forming G,,; on the other hand, obviously there may be more than one edge of F
which correspond to the same edge of F,. Therefore |E0| < |F] = 0d6,, 6,).
Let Gy,3 be the graph obtained from G,, by the superposition of elementary con-
tractions determined by edges of F,. As G,, is a common contract of G, and G,,
s0 is G,,3. As the superposition of contractions is evidently commutative, the graph
G,,3 €an be obtained from G, also by contracting the edges of F to obtain G,; and
the edges corresponding in G, to the edges which were contracted in G, to obtain
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Gy;. Thus Gy,5 is also a contract of G,; and hence of G,. It is a common contract
of G; and G; and has n — 6¢(®,, ®,) — |F,| vertices. Thus 5(6,, ®3) <
<66y, 6,) + |F0| < 6d(®y, ®,) + 6(0,, G;), which was to be proved. [

In the sequel, instead of speaking about the distance between isomorphism classes
of graphs we will speak about the distance between graphs (for the sake of brevity).
We will also use the corresponding notation (G4, G,).

The concept of contraction distance is related to the Hadwiger number (in another
terminology, contraction number) which is dealt with e.g. in [4], [9]. The Hadwiger
number n(G) is the maximum number of vertices of a complete graph which is
a contract of G.

Theorem 2. Let G, G, be two connected graphs with n vertices. Then 6C(G1, G, <
< n — min (9(Gy), n(G,)).

Proof. Evidently the complete graph with min (n(G,), n(G,)) vertices is a common
contract of G, and G,. This implies the assertion. [

Now we shall compare 5¢(Gy, G,) with §(G;, G,).

Theorem 3. For each n = 6 there exist graphs G, G, with n vertices such that
5C(G1a Gz) = [(n — 1)/2] — 1, while 5(G,, Gz) =1.

Proof. Consider a circuit C with n — 1 vertices uy, ..., u,_; and edges u;u;,
for i=1,...,n — 1, the sum i + 1 being taken modulo n — 1. The graph G,
(or G,) is obtained from C by adding a new vertex v and joining it by edges with the
vertices uy and u, (or u,,, respectively, where k = |(n — 1)/2]). The circuit C is
a common induced subgraph of G, and G, with n — 1 vertices and thus 6(G,, G,) =
= n — (n — 1) = 1. Each of the graphs G,, G, has exactly two vertices of degree 3
and consists of three paths connecting these two vertices. In G, the lengths of these
paths are 1, 2 and n — 2, in G, they are 2, [(n — 1)/2], [(n — 1)/2]. Hence in no
contract of G, there may exist a path longer than [(n — 1)/2] and connecting two
vertices of degree 3. Thereforé a common contract of G; and G, with the maximum
number of vertices has two vertices of degree 3 and consists of three paths connecting
them; their lengths are 1,2 and [(n — 1)/2]. Such a graph has [(n — 1)/2] + 2
vertices, hence 6c(Gy, G,) =n — ([(n — 1)[2] +2) =|(n — 1)/2] = 1. O

Theorem 4. For each positive integer p there exist graphs G, G, such that
5C(Gl, Gz) =D 5(G1, Gz) = 2p.

Proof. The vertex set of G, is the union of disjoint sets U = {u,,...,u,}, V=
= {vy,..,0,}, X ={xy,..., %}, Y={yy,..., ¥}, Where ¢ = p. Any two vertices
of U and any two vertices of V are joined by an edge. Each vertex of U with each
vertex of X and each vertex of V with each vertex of Yis joined by an edge. Further
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edges uw; for i = 1,.... p are in G;. No other edges are in G,. The vertex set of G,
is the union of disjoint sets U = {uy, ..., u,}, W= {w,, ..., w,,,,}. Any two vertices
of U are joined by an edge and each vertex of U with each vertex of Wis also joined
by an edge. No other edges are in G,. If we contract all edges u;v; fori=1,...,p
in G, and all edges u;w,,4; for i = 1,..., p in G,, we obtain isomorphic graphs.
This is a minimum number of edges by whose contraction this may be done, because
G, contains two disjoint cliques with p vertices, while G, only one. Therefore
8/Gy, G,) = p. The largest graph isomorphic to isomorphic subgraphs of both G,
and G, is evidently the graph consisting of 2q isolated vertices. As the number of
vertices of G, as well as of G, is 2p + 2q, we have §(G, G,) = 2p. 0O

Now we turn to trees. Note that trees can be characterized as connected graphs
whose Hadwiger number is equal to 2.
We shall compare d. with d1 defined above.

Theorem 5. Let Ty, T, be two trees with n vertices. Then
5Ty To) S 6:(T3, T3) -

Proof. Let Tbe a tree, let T, be its subtree. By V(T) (or V(T,)) we denote the vertex
set of T (or Ty, respectively). For each vertex x € V(Ty) let P(x) be the set consisting
of x and of all vertices y € V(T) — V(T,) with the property that the path joining x
and y in T'does not contain an inner vertex belonging to V(Tp). The sets P(x) for all
x € V(T,) form a partition 2 of V(T) and each of them induces a connected subgraph
of T. The contract of T obtained by means of £ is then isomorphic to T,. We have
proved that each subtree of a tree is also its contract. This implies the assertion. []

Theorem 6. The maximum of the contraction distance between trees with n = 3
vertices is n — 3. The only trees having this distance are a star and a path.

Proof. Every tree with n = 3 vertices contains a subtree which is a path of length
2, i.e. with 3 vertices. Therefore do(Ty, T,) < 6,(Ty, T,) < n — 3 for any two trees
Ty, T, with n vertices. Every tree which is not a star contains a path of length 3
and every tree which is not a path contains a star with 3 edges as a subtree. Thus,
if one of the trees Ty, T, is neither a path nor a star, then 6T}, Ty) < 3T}, T;) <
<n-4. 0O

Theorem 7. Let Ty, T, be two trees with n vertices. Then 6Ty, T,) =
2 |d(T,) — d(Ty)|, where d denotes the diameter.

Proof. Without loss of generality let d(T;) 2 d(T;). In no contract of T, there
may be a path of length greater than d(T). Therefore in order to obtain a common
contract of T; and T, we must contract at least d(T;) — d(T,) edges, which implies
the assertion. [J
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Theorem 8. Let P be a path with n vertices, let T be a tree with n vertices. Then
0P, T)=n—1—4d(T).

Proof. We have d(P) = n — 1 and thus 6(P, T) = n — 1 — d(T) by Theorem 7.
On the other hand, both P and T contain a subtree which is a path with d(T) + 1
vertices and thus 6¢(P, T) < 6(P. T) £ n — 1 — d(T), which implies the assertion.

O

Theorem 9. Let (T) denote the number of terminal vertices of T. Let Ty, T, be
two trees with n vertices. Then 5Ty, T,) = [(T,) — «(T»)|.

Proof. Without loss of generality let #(T;) = #T5). Let Ty, be a common contract
of T; and T, and let 2 be the partition of the vertex set V(T,) of T, by means of
which the tree T,, is obtained. If a class of £ contains only non-terminal vertices
of T,, then evidently this class is a non-terminal vertex of T;,; hence #(T;,) < #T>).
In order to obtain T;, from T, at least #(T;) — #(T,) terminal edges of T, must be
contracted, which implies the assertion. []

Theorem 10. Let S be a star with n vertices, let T be a tree with n vertices. Then
(S, T)=n—1—«T).

Proof. We have #(S) = n — 1 and thus 64(S, T) 2 n — 1 = (T) by Theorem 9.
On the other hand, a star with #(T) + 1 vertices is a common contract of S and T.
From S it is obtained by contracting arbitrary n — 1 — #(T) edges, from T by con-
tracting all non-terminal edges. This implies the assertion. []

In [8] there are theorems analogous to Theorem 8 and Theorem 10 for the edge
rotation distance. Unfortunately, Theorem 6 from [8] is false. We will correct the
paper [8] by proving the following theorem.

Theorem 11. Let P be a path with n vertices, let T be a tree with n vertices. Then
Or(P, T) = (T) — 2.

Proof. When the transform P into T by edge rotations, at each edge rotation the
degree of exactly one vertex may decrease. As P has two vertices of degree 1 and T
has #(T) such vertices, we have Sgx(P, T) = (T) — 2. Now denote the terminal
vertices of T by ug, Uy, ..., Uyry—;. Let Py be the path in T connecting u, with u;.
For k = 2 let P, be the path in T connecting u, with the vertex v, of the union of
paths P;forj = 1, ..., k — 1 whose distance from u, in T'is minimum. Let w, be the
vertex of P, adjacent to v, (W, = u, may hold). Let R, for k =1, ..., ((T) — 2 be
the rotation of the edge W, Vx4, to the position wy4 4. Evidently by the edge
rotations Ry, ..., Ryr_, the tree T is transformed into P and thus Og(P, T) =
= (T) — 2.
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We see that the contraction distance of a tree T from a path depends on the diameter
of T and its distance from a star depends on #(T), while the edge rotation distance
of Tfrom a path depends on t(T) and its distance from a star depends on the maximum
degree of T.
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Souhrn

KONTRAKCN{ VZDALENOST MEZI TRIDAMI ISOMORFISMU GRAFU

BOHDAN ZELINKA

Zavadi se jista vzdalenost mezi t¥idami isomorfismu souvislych grafu; jeji definice je zaloZena
na maximalnim po&tu uzlu grafu, na ktery Ize dané dva grafy pfevést kontrakci.

Pe3rome

KOHTPAKIIMQOHHOE PACCTOSIHUE MEX/Y KJIACCAMU
N30MOP®PU3MA I'PAD®OB

BOHDAN ZELINKA

BBOIUTCS PAaCCTOAHAE MEXAY Kaccamy M30MOPQHU3Ma CBA3HBIX rpadoB; €ro onpesieNieHHe OCHO-
BaHO Ha MAaKCHMaJIbHOM 4YHCJIe BEpIUMH rpada, Ha KOTOPHIi MOXHO ABa 3aaHHbIX rpada CTaHyTh.
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