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ASYMPTOTIC PROPERTIES OF SOLUTIONS OF DIFFERENTIAL
SYSTEMS WITH DEVIATING ARGUMENTS

Eva SpANikovA, Zilina
(Received June 10, 1988)

Summary. The purpose of this paper is to study the asymptotic behavior of solutions of the
nonlinear differential system (S) which is either superlinear or sublinear and [* p;(t) df < oo,
i=1,2...n—1.
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INTRODUCTION

In this paper we consider the differential system with deviating arguments

(S) yi) =pO)yisi(), i=1,2,...n-2; n=2
Yne1(t) = Pu-1(2) fuz 1(1l9(2))) »
) =1t yi(9.(),

where the following conditions are assumed to be fulfilled:
(@) pi(t) is continuous and nonnegative on [a, ©); p(t) % 0 on any infinite sub-
interval of [a, ), [* p(f)dt < 00, i=1,2,...,n — 1.
(b) g4t) is continuous on [a, ), lim g,(t) = 0, i = 1,n; g,(t) S tfort 2 a.
t— 0

(¢) fu-1(u) is continuous on R; |f,—,(u)| £ K|ul?, for 0 < B <1, 0 < K — const.

(d) f(t, v)is continuous on [a, ) x R and [f,,(t, v)l < oft, lvl) for (t, v) € [a, ) x
x R where o(t, z) is continuous on [a, o0) x [0, ) and nondecreasing in z
for every t € [a, ).

System (S) is called superlinear or sublinear according to whether (1, z)/z is
nondecreasing or nonincreasing in z for z > 0. The purpose of this paper is to study
the asymptotic behavior of solutions of system (S) which is either superlinear or
sublinear. Hereafter the term “‘solution” will be understood to mean a solution y(t) =
= {y4(1), y5(t), ..., y(1)} of (S) which exists on some half-line [z, ®), T > a, and

satisfies sup { 3. ly,-(t)l: t 2 7'} > 0 for any " = 7. Such a solution is said to be
i=1
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oscillatory [weakly oscillatory] if each of its components [at least one component]
has arbitrarily large zeros. A solution is said to be nonoscillatory [weakly nonoscil-
latory] if each of its components [at least one component] is eventually of constant
sign.

Let ipe{l,2,....,n— 1}, k=1,2,..,n — 1, and t, s € [a, 0o]. We define:

Io(t,5) = Jo(t,8) = 1 ;
L{t, 55 Piys Pis - Pin) = §3 Pis(%) Ie=u(X, 85 Pis Pis -5 Pi) A5
T2, 85 Piys Pizs -+ Pi) = J5 PiX) Tm1(ts X5 Piys P+ Piy_,) dX 5
86(1) = 35(t) = 1;
() = J(0, 6 Purj=1s - Prt1s Pi) 3
8i(t) = I(00, 3 P> Pt 1 ++o» Praj—1) fOr j=1,2,...n—k;
g*(t) = max {g,(1), 1} , g4(f) = min {g,(1), 1} ,
h*(t) = sup g*(s), hy(f) = inf g.(s) .
assst st
It is easy to prove that the following identities hold:

Ik(ts S5 p:’p pi;a cecy P:k) = Jk(ts S5 piu piz’ ey pik)
for k=1,2,....,n—1.

OSCILLATION THEOREMS

We first prove a theorem which enables us to classify all solutions of (S) according
to their behavior as t — oo.

Theorem 1. Assume that either (S) is superlinear and

n—-1

(1) 12 T1 6i(g4(1)) oo(t, ¢)dt < o0 forall ¢ >0
i=t

or (S) is sublinear and

@ _[m(%:)))) o(t, c:lljl‘sll(g*(’))) dt <0 forall ¢>0,
i=1,2...,n—1.

If ¥(1) = {34(2), yo(1), ..., y(1)} is a solution of (S), then exactly one of the fol-
lowing cases occurs:

(T) lim sup |y,~(t)| =ow,i=1,2,...,n;
t—=x
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(II) there exists an integer k € {1,2,...,n — 1} and a nonzero constant o such that

ylt) - .
= 1)¢ =1,2,...,k;
lim 6," 0 (=1)"to for i

lim y (1) 6%(1) =0 for i=1,2,...,n—k;
t— oo
(TII) there exists a constant a, such that

Hn;éf(l()) (=1 fuei(e) for i=1,2,..,n—1;

lim y,(1) = a,.

t—= o

Proof. We assume that (S) is superlinear and (1) holds. Let y(t) be a solution of (S)
defined on [1, ). Let T = 7 be such that h,(T) = tand 6{(T) < 1 fori=1,2,...

.,n — 1. Integrating the first (n — 1) equations of (S) from T to t and combining
them we have

1
(3) |)’1(1)| = ZJ)’;(T)I I;i_y(t, T; p1s P2y oo Dj—1) +
i=
+ Ii(t, T; py, P2, -o-,P1|Y1+1|), 1=1,2,...n—=2; t=T,;
n—1
(3n-1) |}’1(1)| _S_jZJ_Vj(TN Ij—l(ta T; pss P2y v pj—l) +

+ In—l(ts T; py, P2s - - pn—l'fn—l(yn(gn))D , t=2T.
Integrating the last equation of (S) from T'to t and using (d) we obtain

(4.) 9i(0)] £ [yl T)] + 7 (s, |ys(ga(s))ds, 12 T.
Using (b), (c), (4,) and Taylor’s theorem we get
(5) |faesg)))] = M + N [r s, [yi(g:(s)|) ds, 12 T,

where M = K|y, (1)]’, N =KB|y(T)|"*.

Integrating the first (n — 1) equations of (S) from T'to t and combining them (using
(5)) we have

n—1
(41) l}’l(f)' = ley,(T)l Ij—l(ts T; pis Pres - pj—l) +
j=

+ MI,_(t, T;p1y ooy Puey) +
+ N]n—l+l(t’ T Pis Pi+1s -+ s Pu—15 w(" I)’l(gl())l)) R
l=1,2,...n—1; t=T.

Suppose that lim sup |y,(f)| = oo. Let there exist an integer i€ {2,3,...,n} such

t—
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that lim sup ly(t)l < oo. Then from (3;-;) we get a contradiction with the as-

sumptlon Case (I) is proved.
Suppose that 11m sup [¥1(t)] < co. From (1) we get that the function H 5’(1) o(t, c)

is integrable on [T oo) for all ¢ > 0. It is easy to prove that p,(r) yz(t) e '[T, o)
(from (4,) we have

5? Pl(t) I)’z(t)l dt §Tg:IYj(T)| 51‘-1(T) + M 5‘_1(T) +

n—1 X
+ N (§ Hléi(s) (s, [yi(g1(s))]) ds) .
j=
From the first equation of (S) we obtain
(6) yit) = oy = 7 pi(s) ya(s)ds, t= T,
where ay = y4(T) + [ ps(s) ya(s) ds .
From (6) we have lim y,(f) = a,.
t— o

From (4;4,) for i = 1,2,...,n — 1, we obtain

3i(1) |yiea()] = aols Z WA ZIAT) + M55 (T) +

+ N 7 ofs [yi(g:(s)))) ‘_H 8i(s) ds] +

+ N 3, (s, |v1(g4()))) ]]5 (s)ds, t=T.

Hence we see that §}(7) ] Vi+ 1(t)| can be madé arbitrarily small by taking ¢, sufficiently
large and then letting ¢ increase without bound. Thus, lim &{(¢) y;4(f) = 0, i =
t— o0

=1,2,...,n — 1; and we arrive at Case (II) (with k = 1) if «; % 0.
Suppose that a, = 0 From (1) we get that the functions 63(g,(t)) H 8(1) oo(t, 1),

Hé () o(t, 1) andH 81(t) w(t, ¢ 51(g4(t))) are integrable on [T, oo) for all ¢ > 0.
Choose aT, = Tsuch that TY = hy(Ty) 2 T, |y,(g,(2))| < 1 for t 2 Ty,

N 7, 1(91(5))H5 (5) (s, 1) ds < %

and
N | H 6i(s) (s, 1)ds < %.

From (6) with regard to (4,) we get
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O OIS BOLTPADITAT) + ME () +
# 8 T 6) ol btonD o] +

n—1
+ N [P Hlé’l(s) ofs, [yi(g:(s)[)ds, t=T.
j=
Putting u,(t) = sup l)’1(5)| and using the decreasing nature of the right-hand side
s2t

of (7), we obtain

(®) Ml g 4N .[ ' "—:5{(s) ofs, [y(:(s)) ds +

’ 51(0 - T J=
N on—-1 X
r f 8i(s) (s, [pi(ga(@))ds, 12Ty,
61(t) t J=1

where K, is a positive constant.
For each t = T, we denote

R} = {se[Ty, ©); gi(s) S t}, A; = {se[Ty, ); gss) > t}.
We then have

u—:(gl(s)) < sup u_:(a) for seR;},

61(g1(s)) Ti*<ost 51(0’)

uy(g.(s)) £ uy(t) for seAf.
Using the inequality
) o(s,ab) < aw(s,b), 0<a=1, b>0,

which is a consequence of the superlinearity of (S), we can derive the following
inequality from (8): g

u,(1) < ul(s)[.{ . n-1
—~- <K +Nsup'—— 5gs 5"Sa)s,1ds+
5}(t) 1 T* <s<t 51(3) . 1( 1( ))jl;lz 1() ( )
.
6;(0 Re1n[t, o)

+N “;—(‘)[a}(}) T 64(5) (s, 1) ds +

é1(2) ATy, I =2

o 15109 ofs, 1) E

t1n[t,0) j=

SH(a,() TT816) s 1) o]+

us L) n—1 .
<K, + sup —:(—)N 5}(g1(s))lj6{(s) o(s, 1) ds +
Tirss<e04(s)  J o, j=2
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+ ul(t)N (s) w(s, 1)ds <

1( ) T, J

ﬁ (1)
sKotd e i T 2T

and consequently

(1) uy(s)
1()— 1+%T1535p<'6(s) t=2Ty,

where K; = 3K, + 1 sup u,(s)/51(s). It follows that

T1*<s=<T,

yl(t)Sul_()_ 1() K,, t=T,.
30 T 30) Trimseealls) B

From the last inequality we have

(10) lyi(g:()| < K% 64(94(t)) for 1= T,

where K7 is a positive constant.

The function p,(t) ys(t) is integrable on [T, oo) (because (45) with regard to (10) yields

57 2300 130 s 5 5 D] o) + M () +

+ N7 H5 (s) (s, K1 81(94(s))) ds) ,
and we have
(11) yao(t) = oy — [P pas) ys(s)ds, t= T,
where o, = y,(T) + |7 pa(s) ya(s) ds.
Therefore, lim y,(f) = a,.

=0

From (6) with regard to (11) we obtain
y1()) = —ay [P py(x1) dxy + [ pu(x1) [ pa(x2) y3(x2) dx; dx, .
The last inequality implies

lim n() _
t-> o 51(t)

From (4)(I=i+2,i=1,2,...,n — 2) in view of (10) we get

50 ees0] = SO LT AT S2AT) + M BT +

—062.

+ N 83(1) 4 ofs, K 5}(g1(s)))j:1-:[: ol(s) s +
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+ N, oo K o0 [[o40) 05, 127,
i=12,..,n-3, andj_

S2-2(t) |yt)] £ 82-5(0) [yuT)| + 62_2(1) [ (s, KT 61(g4(s))) ds +
#1500 ofs KT SlasO) a5, 12 T.

Hence we see that 67(1) |yi+2(f)), i = 1,2,...,n — 2 can be made arbitrarily small
by taking ¢, sufficiently large and then letting ¢ increase without bound. Thus,
lim 87(t) yi4o(f) = 0, i = 1,2,...,n — 2; and we arrive at Case (II) (with k = 2)
1=

if a; & 0.

Further, we suppose that there exists an integer m € {2, 3, ..., n — 3} such that
#; = yiT) + 7 pis) ¥i+1(s)ds = 0 for i = 1,2,..., m. We show that either Case
(IT) or Case (IIT) can occur. We have

(12)) yit) = = [Cpds) yirs(s)ds; i=1,2,...m; t=T.
From (1) we get that the functions

o, c':lj:ii{(gl(t))) (s';(gl(t))j:"mﬁ:l 51(1),
oft, c':lilai(gl(t))):lj’:éi(t) and

m n—1
o(t, ¢ [T 84(g,(1))) T1 &i(r) are integrable on [T, o)
j=1 j=m+1

for all ¢ > 0. Choose a T, such that Ty, = hy(T,)) = T,

_l_ylﬁ]_ <1 for t=T,,
[194()
ji=1

Nz w(s,:ij:a{(gl(s))) 5'{'(gl(s))j:lj[+] S()ds 54 and

N iz, ofs T sl@O) TT o) s < 4.
From (12)) (i = 1,2, ..., m) with regard to (4,+,) we get
O] S 52O T T, AT 5724-(1) + M 3322 () +
+ N frols (o)) TT 016 es] +
+ N 3L 7 ofs e T #0085, 12T,
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The last inequality implies

09 2Ol DOl sy 5 sz + sz +
ot 0

+ N [ ofs, lyl(gl(s))|) H 5 i(s) ds] +

+ N7 ofs e @D TLo40) as. 12 7.
We now define
u,(t) = sup-JYI—()I—
= 11916
Foreacht = T,, we denote
= {se[T ); gils) =1}, AV ={se[T 0); gi(s) > 1} .

Proceeding similarly as in the last case we obtain

(14) |y1(9:(0)| = K5 H 8l(9.()), t= T,

where K, is a positive constant.

It is easy to prove that p, 4(?) Ym+2(t) € L'[ T, ) and

(15) .Vm+1(t) = Opyy — I;D Pm+1(5) .Vm+2(5) ds, t2T,
where 041 = Vs i(T) + [T Pt 1(5) Yms2(5) ds .
From (15) we have lim y,,,,(f) = &,4;. From (12;) (i = 1,2,..., m) with regard
to (15) we get e
yi(t) = (___1)m—i+1 am+1"m—i+1(oo; t; pm’ pm—la ey pl) +
+ (_1)"'_i Jm-i+2(°0§ L Pm+1Ym+25 Pms -+ s Pi) , t=T.
Using L’Hospital’s rule we have
lim Yi (t) _( )m i+1
t= o 5m I+1(t)

From (4,4,+;) (i=1,2,...,n — m — 1) with regard to (14) we can prove that
limy,,q1+{8) 07 () =0for i =1,2,....n — m — L. If a,,, + O then Case (II)

t= o0
occurs for k = m + 1.

Suppose that a,_, = 0. It is easy to prove that in this case (12;) (fori=1,2,...
...,n — 2) and (14) (for m = n — 2) hold, p,_,(?) fo-1(y.(g.(1))) € L'[ T, o) and

(16) yn—l(t) = Op—q — I:o pn—l(s)fn—l(yn(gn(s))) ds, t=T,

Tm+1 s l=1’2)"'7m
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where
“n—l = yn—l(T) + .[? pn—l(s)fn—l(yn(gn(s))) ds .
From (16) we have lim y,_,(f) = ,_,. Using (12;) (i = 1,2,...,n — 2) and (16)
we obtain o '
lim —yil =(=1y""ta_y, i=1,2,...,n—2.
t— oo 5;_;_1(t)
From (4,) we have lim 877'(1) y,(t) = 0. If «,_; % O then Case (II) occurs for k =
=n-1 e
Suppose that a,_, = 0. In this case we easily see that (12;) (fori = 1,2,...,n — 2)
and (14) (for m = n — 1) hold, f,(t, y4(94(t))) € L'[ T, ) and
(1) yl) = o = [P fuls yi(gs(s)))ds, 12T,
where o, = y,(T) + |7 £.(s, yi(94(s))) ds.
From (17) we have lim y,(t) = a,.

t— 0

From (12;) (i = 1,2, ..., n — 2) with regard to (16) we have

}’i(t) = (—1)"_i Jn—i(OO, i pn—lfn—l(yn(gn))’ Pn=25 -5 Pi+1s Pi)
i=12,...n—1,
and

.yt - .
lim =4 = (=1)""f,_4(a,), i=1,2,...,n—1.
im HO = iyt
Case (III) occurs.
Next, suppose that (S) is sublinear and (2) holds. Case (I) and Case (II) (for k = 1)
can be proved analogously as in the case when system (S) is superlinear. Suppose
that a; = 0. From (2) we get that functions

n—1 X R 51 s n—1

151(9) s, ok(a,(5)) and - TT51(5) als, 54(0,(5)

i=2 81(94(s)) =2
are integrable on [T, o) for all ¢ > 0. We shall show that y,(f) = 0(55(t)) as t > 0.
Suppose the contrary. Then it is possible to select Ty ;, T,; and T3 ; in such a way
that

T<Ty,<Ty<Tsy, Tii=h(Ty,)) 2T,
|Y1(TT,1)1 = 5}(TT,1) s

sup ¥1(5) = sup M for t2T,,,

Toiassst 01(s)  Taussse 61(5)
n—1 :

N7, Hf’i(S) (s, 51(g,(s)) ds = 43
j=

186



NJ.;Q2 e (())),I_—I 8i(s) w(s, 61(g4(s)))ds = & and

_ZIJ y,.(T)| 52_,(T) + M 32_y(T) +

o 7 l yl(T3 1)
N ) (s) s, ]11(91(5))|)d =24 31(Ts, 1)

We rewrite (7) as follows:

(18) yig') < Zi ()| 32_(T) + M 82_(T) +

+ N [ L340 ol |yl(gl(s»|) as + 8§, TLo10)

. afs, |y1(gl(s))|) ds +

1( ) ,l:l 8i(s) (s, | ( (g4(s))]) ds,

t g Tz,l .
Define

vy(t) = sup I-y—:(i)l for t>T7,.

T*,1Sst 61(5) B
Noting that the right-hand side of (18) is an increasing function of ¢ and using the
inequality

19) o(s,ab) S aw(s,b), a=21, b>0,

which is a consequence of the sublinearity of (S), we obtain
n—-1
(20) 1010 (1) = N 6i(1) [, T181(5) (s, 63(9:(5))) va(g(s)) ds +
j=
+ N7 H(S [(s) v4(g4(s)) (s, 81(gs(s))) ds, 1= T5,.

For each t = T; ; we denote

={se[Ti,;0); gi(s) S 1}, A = {s€[Ty,i; 0); g:(s) > 1} .
We then have

v4(g4(s)) S vy(t) for seR;,
31(91(s)) v1(g4(s)) il;[: [61(0) vy(0)] for seA}.

From (20) we have

151(1) oy(1) = N 60 vl(t)[ J H 51(5) (s, 54(g,(5))) ds +

Reln[T2,1;0) § =2
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1

1( ) Rt o ,H 84(s) w(s, 61(91(5))) ds]
+N sup [61(s) v4(s)] [5}(,) 1 H .

A A[T2,15t) l(gl( ).I

(s, 5gx(s)) ds + f 15105 ofs,54(0.() ds ]g

Zg‘n[t ©) l(gl( )

< 510 ()N J ) .13 51(s) wls, 64(g:(s))) ds +

+ sup [51(0) v (] N j T 1( 5 Jn 51(5) s, 61(g,(s))) ds <

161(1) vy(t) + ¢sup [6i(s) vi(s)], t= Ts,.

A

Thus we arrive at 0 < sup [61 (s) v,(s)] £ hsup [61(s) vs(s)], t = T3,4; a contra-

diction. Further, we proceed in the same way as in the proof of the case when system
(S) is superlinear. This completes the proof.

We now turn to an investigation of the behavior of oscillatory solutions of
system (S).
Condition (G*): There exists a sequence {7,},% such that 7, » oc as n > % and

h*(3,) =i, for n =1,2,....
Condition (H): There exists a sequence {7}, such that 7, -  as n - 0 and

hy(H(3#,)) = T, for n = 1,2, ..., where H(t) = inf g,(s).
- st

Theorem 2. (i) Assume that (S) is superlinear, § = 1 and conditions (1) and (H,}
are satisfied. Then every oscillatory solution y(t) of (S) fulfils Case (I) of Theorem 1.

(ii) Assume that (S) is sublinear and conditions (2) and (G*) are satisfied. Then
every oscillatory solution y(t) of (S) fulfils Case (1) of Theorem 1 with a, = 0.

Proof. Let y(t) be an oscillatory solution of (S) defined on [, %). Choosea T = t
such that hy(T) = 7 and 8{(T) <1, i = 1,2,...,n — 1. Since the solution y(f) is
oscillatory, Case (IT) and Case (III) (with a, # 0) of Theorem 1 can never occur,
so that it must fulfil Case'(I) or Case (III) of Theorem 1 with a, = 0.

(i) Consider the case where (S) is superlinear, 8 = 1 and conditions (1) and (H,)
are satisfied. Suppose that Case (III) with &, = 0 holds. Because (12;) (i = 1.2, ...
...,n — 2),(16) and (17) hold we obtain

yi()] £ K [2 pux1) 2 po(xs) ...
e Sy Pu=a(Xa1) Jgrman s (s, |y1(gl(s))|) dsdx,_;...dx;, t =T,
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which implies
v (t 00
@1) D] ¢ j ofs, (g ds, 12 T.
[T &) H®
j=1

Let us put

v(t) = sup 1)L

n—1

=TI 5H)
Jji=1
and choose t; and t, such that

T<t <t,, "—I_LI‘QL§ 1 for t=1t and h(H(t;)=1t,.
[141(2)
ji=1

With the aid of (9) we derive from (21) the inequalities

o0) £ K F0 o, o0:(9) [T (0,9 s =

n—1
< K o(hi(H(1))) J5co Hlé’l(gl(s)) ofs,1)ds, 121,
J= .
which implies

o(1) ©° n-l

22) L O f T164(g:(s)) (s, ) ds, t21,.
o(h«(H(1))) H(r =1

But this is a contradiction, because the right-hand side of (22) tends to zero as ¢t — oo,

while the left-hand side equals 1 along a sequence diverging to infinity by condition

(Hy).

(ii) Consider the case when (S) is sublinear and the conditions (2) and (G*) are
satisfied. Suppose that Case (I) holds. We can select t3, t, and 5 in the following
manner:

T<ty<t,<ts, 153=hyt:) 2T, |p(3)] 21,

sup |y4(s)] = sugt [yi(s)| for =14,
4Ss=

t3*<s=<t

n—1

N 7 T] 6i(s) (s, 1)ds < 4 and
j=1

n—-1

,leyf(T)' 8;_(T) + M 5,_(T) +

+ N [ :]j:é{(s) (s, lyl(gl(s))|) ds < %')!1(1?5)' .

We define u(f) = sup |y,(s)|.

13°<s=t
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Using u(f) and (19) in the inequality
n—1
ya(t)] = ,Z [yAT)|8;-+(T) + M 8,_(T) +
+ N [% H(S’ s) (s, |y1(g4(s))]) ds +

n—1
+ N i, ofs [yl ) TToi(s) ds, 12 1.
=1
which follows from (4,), we find
n—1
u(t) £ Lu(t) + N §i, T104(s) (s, u(gy(s)) ds, 1= ts
=1
and hence

@) bu() S N FLulgi6) TToH6) ol 1) ds <

< N u(h*(1)) j':4 H Si(s) (s, 1)ds, 1 =1t5.
j=1
From (23) we obtain

——ﬂ-<l for t>1t

(W) = =

Because of (G*) this is a contradiction. This completes the proof of Theorem 2.

Theorem 3. Assume that
(24)

Lt x)| = q(t)|x| for (t,x)e[a, ) x R, where q(t) is continuous

and nonnegative on [a, ). Assume moreover that conditions (G*) and (Hy) hold

and B = 1.If

) j 5lggj((t);,l.]5’(9*(t))q(t)dr<oo for i=1.2,...n—1;

then all solutions of (S) are weakly nonoscillatory.

Proof. Suppose to the contrary that there exists an oscillatory solution y(t) of (S).
Since by (24) system (S) is both superlinear and sublinear, and since (25) is equivalent
to (1) or (2), we can apply Theorem 2 to conclude that y(r) fulfils both Case (I)

and Case (III) (with a, = 0). But this is impossible, and so (S) has no oscillatory
solutions.
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Stihrn

ASYMPTOTICKE VLASTNOSTI RIESENi DIFERENCIALNYCH SYSTEMOV
S POSUNUTYMI ARGUMENTAMI

Eva SPANIKOVA

Cielom ¢&lanku je vySetrovat asymptotické vlastnosti rieSeni nelinearneho systému diferencial-
nych rovnic (S), ktory je superlinearny alebo sublinearny a [® p()ydt< o, i=1,2,...,n— 1.

Pe3ome

ACUMITTOTUYECKUE CBOVICTBA PEIIEHHI1 CUCTEM
JN®OEPEHIIMAJIBHBIX VPABHEHUN C OTKJIOHAOUMMCSA APTYMEHTOM

Eva SpANIKOVA

B 3T0if cTaThe paccMaTpPUBAIOTCA ACHMITOTHYECKKE CBOMCTBA PELUEHMH CyNMEpIMHEHHOR HJIH
CcyOnHHEHOM HesuHelHOoM cucTempl auddepennuanbubiX ypaBHeHuit (S) u _f°°p,.(t) dt<< 0,i= 1,
2,..,n—1.
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