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Casopis pro p¥stovini matematiky, rok. 95 (1970), Praha

ON THE EXISTENCE AND THE UNIQUENESS OF SOLUTIONS
AND ON THE CONVERGENCE OF SUCCESSIVE APPROXIMATIONS
IN THE DARBOUX PROBLEM FOR CERTAIN DIFFERENTIAL
EQUATIONS OF THE TYPE u,, . = f(x4, ..., Xp %, ..., Uy ooxy )

J

Vieapmir Durikovié, Bratislava
(Doslo diia 30. maja 1968)

1. Introduction. In the paper [1] W. WALTER proved the uniqueness of solutions of
some initial value problems for the ordinary, parabolic and hyperbolic differential
equations under certain generalized conditions of the Nagumo and Osgood type. On
the basis of these uniqueness conditions, M. Kwapisz, B. PALCZEWSKI, W. PAWELSKI
[2] showed the existence and the uniqueness of solutions of the Darboux problem
for the equations of the type u,,, = f(x, y, z, u, u,, 4, u,, 1y, u,,, u,;) V. PALCZEWSKI
[3] and J. S. W. WoNG [4] proved, besides the existence and the uniqueness of solu-
tions, also the uniform convergence of successive approximations in the Darboux
problem for the equations of the type u,, = f(x, y, u) under the conditions for the
uniqueness of the Krasnosielski and Krein type.

In the present paper we shall study the questions of the existence, of the uniqueness
of solutions and of the convergence of successive approximations in the Darboux
problem for the equations of the n-th order of the type u,, . = f(xy, ..., Xp t, ...
cees Uy s ...) and for the systems of differential equations of the n-th order using
the generalized conditions of the Krasnosielski and Krein type and of Nagumo-
Perron-van Kampen type [5]. Instead of the classic method of proving the following
theorems, it will be shown that these results all follow as a consequence of a certain
theorem on the conctractive mappings in some generalized metric space. This theorem
was first initiated in the paper by W. A. J. LUXEMBURG [6].

2. A theorem on contraction. First of all we shall define the notion of the generalized
metric space.

Let Y be a non-void set; and let d(x, y) be a non-negative real valued function
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0 £ d(x, y) £ + oo defined on the Cartesian produét Y x Y and satisfying the fol-
lowing conditions for arbitrary elements x, y, z€ Y:

a) d(x, y) = 0if and only if x = y.
b) d(x, y) = d(y, x).
c) d(x,y) < d(x, z) + d(z, y).
d) If the sequence {x,}7 of the elements x,eY is a d-Cauchy sequence, i.e.
lim d(x,, x,,) = 0, then there exists an element x € Y such that lim d(x, x,) = 0.
k,m— k—
An abstract set Yon which the distance is defined in this way is called the generalized
complete metric space. It differs from the usual concept of the complete metric space
by the fact that not every pair of elements x, y € Y necessarily has a finite distance

d(x, y).

Theorem 1. (Luxemburg [6]). Let Y be a generalized complete metric space and T
a mapping of Y into itself satisfying the following conditions:

1° There exists a constant 1,0 < A < 1 such that
d(Tx, Ty) < 2 d(x, y)

for all x, y € Y with the distance d(x, y) < + .

2° For every sequence of succesive aproximations x, = Tx,_y, k=1,2,..,,
where x, is an arbitrary element of Y, there exists an index K(x,) such that
d(xg, Xg4+1) < +00 foralll =1,2, ...

3° If x and y are two fixed points of the mapping T, i.e. Tx = x, Ty =y, then
d(x, y) < +oo0.

Then the equation Tx = x has one and only one solution and every sequence of
successive approximations {x,}7 converges in the distance d(x, y) to this unique
solution.

3. The formulation of the Darboux problem. Let us introduce the following notation
and assumptions.

1. Let R°, R be an arbitrary set of points X = (x,, ..., x,), for which 0 < x; < 4,
0 < x; £ A; respectively, A; > 0 for all i =1,2,...,n and n = 1. Further, let
Ry, denote an arbitrary (n — j)-dimensional closed domain of points X I P
= (Xg5 ees Xy ts Xty a 15 o3 X1;= 15 X1,415 - X,,) such that 0 < x; < 4; holds for
i=1,..,L-LL+L... -4+, .. ,nandj=1,2,...n—1.(I, ..., [}
denotes an arbitrary combination of j numbers from the n numbers (1, ..., n),
Lh<..<lI,
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2. Let us define the sets E and E° as Cartesian products E = R x [[{—o <
i=1
<z;< +oo}and E® = R® x [[{~w < z; < + ]} for s = (g) + (") + ...+
i=1

1
h
(") -asr-az

3. Further, let us denote:

n .
) real components by U’ = (u; ..., u; 1 ...

J
oo Up_ger.m) forj=1,2,...,nand U° = u,. Let the symbol |U’|" mean the vector

(1.3 o> [1,t)]’s o5 |tn=j 1..a]") for any real number y and let (U, ¥) mean the
scalar product of the vectors U and V.

o'
0xy, ... 0xy,

a) an arbitrary vector with (

b) . Dl,...ll = ’ Dj = (Dl...j’ sy Dl,,,.lp sy Dn—j+1...n)

forj=1,2,...,nand D% = u.

4. Let us suppose that the function f(X, U°, U*, ..., U"™") of 5 + n variables is
continuous on E.

5. Let the function ¢ (X ;) together with its derivatives D;, ,0; of the k-th order
for k = 1,2,...,n — 1 be continuous in the domain R; for j = 1,2, ..., n and let it
fulfil the conditions

[O'i(Xi)]xj=0 = [aj(Xj)]x‘=0 > i 4‘-‘ ]; l,j = 1, 2, ..o R
in the domain R, where s = min (i, j), t = max (i, j).

6. At last, let us denote the set of all functions z(X) € C(R) with continuous deriva-
tives D;, ,zfork =1,2,...,n — 1in the domain R satisfying the conditions

[Z(X)]xl=q = aj(Xl)’ j = 1, 2,...,"
in R; by M(R).
We shall understand by the solution of the Darboux problem
1) D"y = f(X,u, D'u, ..., D" 'u)
(2 ‘ u(X) =0/X,) for x;=0,
[odX)]s,=0 = [04(X))]xi=0 for i%j, i,j=12,..,n
any function u(X) € M(R) which has the continuous derivative D"u in the domain R

and satisfies equation (1) on R.

180



Then, the Darboux problem (1), (2) is equivalent to solving the integro-differential
equation

) u(X) = G(X) + j f(5, 4, D'u, ..., D*~1u) d .
R
The function G(X) can be explicitly expressed in R by the initial functions ¢(X,) for
i=1,2,..., n because
G(X) = u(0, X3, .-y X,) + ... + u(Xy, ...y X, 0) —

— [u(0,0, x5, ..., x,) + oo + u(Xy, ooy X2, 0,0)] + ... + (=1)"" 1 u(0,...,0).

With respect to (3), the sequence of Picard’s successive approximations {u,‘}‘{0 is
defined by the equation

@) u(X) = Go(X) + f (5, 1y DYty .y D"y ;) dE
R

for k =1,2,... on R where uo(X), Go(X) are arbitrary functions of M(R). The
sequence of the derivatives {D,,. ;us}i= is determined by

(41) Dy, e = Dy, Go(X) +

=X 1 n—1 = .
+ SE 1 k-1, D'y s ..., D Uy 1) d&y, .,
_JRLy

forj=1,2,..,n — 1and X € R where £}, denotes any point of R with the com-
ponents (&, ..., &1,— 15 X1 &1y s &,); i.e. we get the point £, so that we replace
the Iy, ..., I;-th component of the point £ = (51,‘..., ¢,) by the variables x;, ..., x;,
in this order.

4. Theorems on the existence and uniqueness. In the following theorem we shall
investigate the problem (1), (2) using the generalized conditions of Krasnosielski and
Krein.

Theorem 2. Let the function f(X, U°, U', ..., U""") be defined, continuous and
bounded on E and let it satisfy the following conditions in E°:

(5) If(X, ue,ut, .., U"_l) — f(X, vo, vl ., vn—l)l <
L n—1 . .
= Y (P U -V)]), L>0
X1 ...x,, j=0
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where

Pj—( Cx;y Dhely e Xppy e p"—‘“—ﬂx,,ﬂjﬂ...x,,)

yu e Yo

denotes the vector with ( ) real components for j = 1,2,...,n — 1, P® = p,. The
J

-

coefficients p,, ., po are non-negative constants at least one of which is non-
vanishing. Let, further, the inequality

(6) |f(X, U0, UL L, Uy — AL YO,V L YY) <

n—1
S5 2 (@ |- v, c>0
xf ... xb =0

1 0o

a x* a a a ' a
where Q' = (q1 JX e Xy s Quy g X0y e X oo Da=j+ 1o Xn— et e xy) also de-

notes the vector w;th( )components forj=1,2,...n—-1,Q° =goand0 < a <

J
< 1, B < « hold. The coefficients q,,.;,, 4o are non-negative constants at least one
of which is non-vanishing and let the inequalities L(1 — «)* < (1 — B)", (po +
+ Z Y, Pu.a)'L(1 — &) < (1 — BY" be fulfilled. Then there exists one and only

=1 1,.. 'I

one solutwn u(X) of the Darboux problem (1), (2) and furthermore the Picard’s
sequence of successive approximations (4) for arbitrary functions uy(X), Go(X) €
€ M(R) such that D"Go(X) = 0 in R, converges uniformly to this unique solution.

Proof. To prove this theorem we shall apply the preceding Theorem 1 on the
contracted mappings. Hence we must choose a suitable complete metric space Y and
an operator T mapping the space Yinto itself and show that the conditions of Theorem
1 are fulfilled. We shall prove that Y = (M(R), d) where the distance d is defined by
the following equation

Z(P’ |Diu — DYv))

(xl e X )P E

(7 d(u, v) = sup

for u, v € M(R) is the required metric space. The number p > 1 satisfies the inequali-
ties p"L(1 — )" < (1 — B)", p"L> 1.
The existence of the number p considered above is guaranteed by the assumption

.....

— )" < (1 — )" we immediately see that p can be chosen as follows

1-§
+
Po ; hZ, jl’zl a4y < \/Ll—ac
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The function d(u, v) defined by the relation (7) evidently fulfils the properties
a), b), c) of the distance from Part 2. For the proof of the completeness of the metric
space Y we shall use the inequality

n—1
8) max Y. (8, |D’u — D'v|) < d(u, v)
R j=0
where $7 = (sy_j, ... St,..1 -+ +» Sn—j+1...n) denotes the vector with (n) components
. J
forj=1,2,...,n — 1and §° = s,. The components s,, ,, of the vector §/ for j =

=1,2,...,n — 1 and s, are non-negative constants at least one of which is non-
vanishing and they can be expressed by the constants L, p;,..;, and 4;fori = 1, 2, ...
..., n. From inequality (8) there follows that the d-convergence of the sequence
{ufX)}7 of functions u,(X)e M(R) implies the convergence of the sequences
{Dy,..1ii=r forj = 1,2,...,n — 1 and {y}7 in the sense of the distance

(84) d(u, v) = max |u — .
R

Consequently, there exists such a function u(X) € M(R) that
(8,) lim u(X) = u(X), lim Dy, u(X) = Dy, W(X)
k— o0 k= x

forj =1,2,...,n — 1in the domain R.

Let now the sequence {uy(X)}¥ be d-Cauchy, i.e. lim d(uy, u,,) = 0. Then we have

k,m—
d(uy, uy) < €

for any &€ > 0 and k, m > N(g) where N(x) > 0 is a real valued function. From this
inequality and by (8,) we obtain that the sequence {(po/(x; ... x,)"™") i}y
uniformly converges to the function (po/(x; ... x,)” "V*) u(X) where u(X) € M(R) on R°.
Analogically we shall show that the sequence {(p;, 1%y, --- %, /Y/(L)(%; ... x,)?™5).,
.Dy,.1,w}i= 1 uniformly converges to the function (py, i %1, ... Xy, /3/(L)(xy ... X, ™VE) .
. Dy, 4, u(X) forj =1,2,...,n — 1 in the domain R°.

From there

9 ——&’—~——u—-u<ff0rk>Ns,
() bl < 2

Puy..aXy - Xy ID
Y(L)(xy .. x)? "

forj =1,2,...,n — 1, s = 2" — 1 and suitable positive constants No(e), Ny,...(€)

e
LB — Du...t,”l < ; for k> Nh...l,(s)
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on R°. If we denote N = max(No, max N, ;) then from inequalities (9) for
=1
k > N there follows that d(uk, u) ¢ ie. hm d(u, u) = 0. Thereby the property
d)is proved and Y = (M (R) d)isa generahzed complete metric space.
The operator T defined by the equation

(10) Tu(X) = Go(X) + j‘ f(5, u, D'u, ..., D" u) d=
R
for X e R maps the set M(R) into itself. Hence we obtain the equation
(101) Dt,...z,T“(X) = Dt....x, Go(X) + ,[R f(E'l‘,...l,, u, Dl“, cees D"—lu) dE;,..,z,
Iy...1l '

forj=1,2, ...,n — 1 in the domain R. Therefore, the problem to find the solution
of the Darboux problem (1), (2) or of the integro-differential equation (3) is trans-
formed to the problem of finding the fixed point of the mapping T on the set M(R).

The sequence of Picard’s approximations (4) is equivalent to the sequence
{Tu,_,}s>, and the sequence of the derivatives (4,) is equivalent to the sequence
{Dy,..4,Tu_yJizy forj=1,2,..,n - 1. :

Proof of condition 1°. Let u, v be two arbitrary functions from Y with d(u, v) <
< + 0. Then from equation (10) and hypothesis (5) we have

(1) |Tu - Ty < I |f(E, u, D*u, ..., D" 'u) — f(Z, v, D'v, ..., D" 'v)|dE <
R

-1
<L jzo(Pj’ IDJu - DJUD (¢ ) VD1 AE < d( )(xx LX)
< = : v &y “1dE 2 d(u, v -

-[R (’fl“'fn)p v ' p

for X e R. Further, by (10,) we obtain the estimates

Xy - Xy (g - %, VE
(111) ID‘I “Tu Dh ’JTUI < d(u U) ——-p

vy
for every j = 1,2,...,n — 1 in the domain R®. The necessary inequality
d(Tu, Tv) = A d(u, v)
where 1 = (p, + Z 2 p,l 1,)/p < 1 follows directly from relations (11) and (11,).

For the proof of condmon 2° we shall use the boundedness of the function
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fX,U°% U, .., U""Y) in the domain E. Let us denote K = sup |f(X, U°, U*, ...
: E
.-.» U"™1)|. Then from equations (4) and (4,) for any function uo(X) € M(R) we get

(12) I"z(X) = “1(X)| < 2K(x1 xn)’ (xz, xz,)|Dl,...l,“2 - D:,...z,“ll =<
< 2K(x4 ... x,)

forj =1,2,...,n — 1 in R. By relations (12) and assumption (6) the estimates

lus(X)'— uy(X)| £ f |f(Z, uz, D*uy, ..., D" *u,) — f(E, uy, D'uy,...,D" 'uy)| dE <
R

: )
n—1
dZ £ C(qo +_Z1 1 ¥ 1 u,..1,) (2K)* (%1 ... x,) @ P*!
J= 13s0esb

n—1
> (Q, [D/uy — DIuyl%)
< CJ i=0

R &g...a

hold for X € R°. Similarly, it is possible to show that
(xh e le) IDll...lj u3(X) - Dll...lj uZ(X)I é

n—1
< C(go + Y,
ji=11

Leees

forj =1,2,...,n — 1inthe domain R°. We shall easily prove the following estimates

I“k+3(x) - “k+2(X)l =

(13) (xt, xz,) th...lj “k+3(X) — Dy,..q, “k+z(X)l =

n—1
<[Clgo + Y
j=11

fork=0,1,...and j = 1,2,...,n — 1 in R® by the mathematical induction with
respect to k. The inequality

n—-1 n-1
(14 X |Diuy, 5 — Diuy.,|) < [Clgo + b l Z: P sl
= J= 1seensly

n—1

Di,..q ak+1 @—B)(1+a+...+ak)+1

. + —L=4 ) (2K Xgoee Xy
(po ng Il,g,lj UL’ >( ) ( ! )

follows for X € R° by estimate (13). The condition p"L(1 — a)" < (1 — )" guarantees
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the existence of such a number N(P) that
(=Pl +a+...+a)+1l=(1-B(1+a+..+0d)+a"t=

=i—ﬂ(1-0€k+1)+dk+l>p:/L
- a

.

for all k = N(p). Consequently we have d(u.y, u,) < +00 for k 2 N(p) + 2. On
the basis of the property c) of the distance (7) we conclude that condition 2° is proved.

Let us suppose that u, v e Y are two fixed points of the mapping T, i.e. Tu = u,
Tv = v. Using the method form the proof of condition 2° we obtain for the difference
of the function u, v and their partial derivatives estimates (13) and (14). Hence the
third condition of Theorem 1 follows; d(u, v) < + oo.

Now we easily conclude that there exists one and only one fixed point of operator
(10). The sequence of successive approximations (4) due to any initial function uy(X) e
€ M(R) converges in the sense of the distance (7) to this solution. On the basis of
relation (8) for any function Go(X)e M(R) with the derivative D"Gy(X) = 0 in R
Theorem 2 is proved.

In the following two theorems we shall generalize the Nagumo-Perron-van Kampen
assumption of the paper [5] and use it to consider the convergence of successive
approximations of the Darboux problem (1), (2). Before we pronounce this theorems
let us define the space (M*(R), d,). .

Let the operator T be defined by the relation (10) and T M(R) is the set of all the
m ages of the set M(R) under mapping T.

Let the symbol (M*(R), d,) denote the complete metric space which we obtain by
the completion of the metric space (TM(R), d,) in the sense of the distance

(15) dy(u, v) = max [:g:(l", |Du — Dv))]

where F = (1, ..., 1) denotes the unit vector with ") components for j = 1,2,...
p J

ceon—1land I° = 1. J

Then easy considerations lead to the following results:

If the sequence {u(X)}7 of functions u,(X) € M*(R) converges in the distance (15)
to a function #(X) € M*(R), then this sequence and the sequence of the derivatives
{Dy,..., u(X)}i, converge in the sense of the distance (8,) for j = 1,2,...,n — 1
and there is lim dl(l{k, u) = 0, lim dl(D,l._.,juk, D,l_",)_u) = 0. Conversely, the

k- o0 k= o0

convergence of the sequence {uy(X)}%,; and of the sequences of its derivatives
{D,,..., u(X)}i> in the distance (8,) for j = 1,2, ..., n — 1 implies the convergence
of the sequence {#(X)}{ in the sense of the distance (15).
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Theorem 3. Let the function f(X, U°, U, ..., U""!) be defined and continuous on
the domain E and let it satisfy the following assumptions:

(16) (X, U° U U S A(x, ), P20, A>0
in E and '
(17) I7(x, U% U, .., Un™Y) — f(X, VO, VY, .., VoY) <

S < "il(Fi’ U/ - Vj|q)’ g=1, ¢>0

(xq ... x,) =0

on E® where Fz = (fl...j(xl xj)qs ""fl;...lj(xll xl,)q’ ey fn—j+l...n(xn—j+l xn)q)

. n . .
denotes the vector with < ) non-negative components f, _, forj=1,2,...,n — 1,

J
F) = fo 2 0 satisfying the condition

c 4
(p + 1)°

(f0+z 12 fh 'J)

where g(1 + p) — r = p. At least one of the constants Siy..1p Jo is nonvanishing.
Then there exists one and only one solution u(X) of the Darboux problem (1), (2)
and, moreover, the Picard’s sequence of successive approximations (4) for arbitrary
functions uo(X), Go(X) € M*(R) such that D" GO(X) = 0 in R converges uniformly
in the domain R to this unique solution.

Proof. The proof will be given again by Theorem 1. First of all by (15) it is evident
that M*(R) = M(R). Let us consider the metric space Y = (M*(R), d) with the
distance

Z (F{, |D’u — D))
18 d(u, v) = sup £=°
( ) ( ) R'p (xl xn)p+1

and the operator T defined by relation (10). Hence there is TY < Y. The inequality

(19) m:lx:g:(gf, |Du — Dv]) < d(u, v)

is obtained similarly as that of Theorem 2. §7 = (8, ;, ..., 5, .15 -+ o> Snji 1..m)

I

= - . n _ - .
and S° = 5, denote the vectors with () constant components 5y, .1, §o for J
J

=1,2,...,n — 1 at least one of which is non-vanishing. The constants 5y, 5;,..,
depend on fy, 1, fo and A4;, i = 1,2,..., n. From relations (15), (19) there follows
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that the d-convergence of the sequence {u(X)}{ of functions uy(X) e M*(R) implies
the d,-convergence of this sequence.

Let now the sequence {uy(X)} be a d-Cauchy sequence, i.e. lim d(u,, u,) = 0.

k,m— o0

Then this sequence converges to a function u(X)e M*(R) in the metrics (15) and
lim uy(X) = u(X), lim D, ,; u(X) = Dy, ,,u(X) for j=1,2,..,n—1 in the
k= o - ko0

domain R. Similar calculations to those of Theorem 2 lead us to the conclusiqn that
lim d(u;, u) = 0. Consequently Y = (M*(R), d) is a generalized complete metric

k=
space.

Proof of condition 1°. Let u(X), »(X) be arbitrary functions from Y with d(u, v) <
< + 0. The completeness of the space Y and equations (10), (10,) together with the
assumption (16) guarantee that

(20) lu(X) — o(X)| = 2A1(x1...x,,)’“,

p+

2

A
Xty -oo X | Dyya, w(X) = Dy, (X)| £ 1 (%y ... x,)P*t

p

for j =1,2,...,n — 1 on the domain R. It follows by (17), (20) and the relation
M*(R) = M(R) that
n—1
5 (Fh D/ — D)
Tu(X) - To(X) gcf i=o d
l ( I R (él 6:1)’

n—-1
24 q-1 Z(F{’ ID]u - D"I)I)
= C(P + 1) J = (f ¢ )p+1 (fl éJ(FHM_l)#HPH = =
R l s n

< C—(Eé)i-—ld(u, v) (g ... x,)P*L.

o (p+1y

(]
I\

Similarly, it is possible to show that

(62

(p + 1)

forj=1,2,...,n — 1in R° From the last inequalities we obtain

Xy - %y |Dyy .y, Tu — Dy 4 To| £ C d(u, v) (xy ... x,)P*!

(24)*t
..... (p+1)7

d(u, v) .
This proves condition 1°.
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The proofs of conditions 2° and 3° are trivial in this case, as the inequality

d(ukauk+l)<(f0+z Z fh l;)_'_< + 0, k=112y*--

.....

is directly given for any Picard’s sequence {u, = Tu,_,}-, due to an arbitrary
initial function uo(X) € Y by (14).

Remark. Assumption (16) of Theorem 3 guarantees the boundedness of the
function f(X, U, U, ..., U""') in the domain E. In the following theorem we shall
show that the assumption of the boundedness is not necessary.

Theorem 4. Let the function f(X, U°, U', ..., U""!) be continuous on E and let it
satisfy the following conditions:

(21) |£(X, U, U, .., U Y)| < A(X) (%, ... %), —1<p<0

in E°. The function A(X) is integrable on the domain R and in the (n — j)- dimen-
sional domain R,, .1, Jor any (%1 oo x;,) with 0 < x;, £ A, where k = 1,2,.

and j=1,2,....,n — 1. Moreover, the mequalmes 0 < A(X) £ Ao, A(X)

< Ao(xy, ... x,l) , Ap > 0 are fulfilled for j = 1,2,...,n — 1 on R. Let, further,
the inequality

(22) |f(X, U°, U, ., UnY) — f(X, VO, VL, ., V)| <
= C(X) "i( pq’|u1__ v}lq), q 1

(o1 oo )

hold in E°. The function C(X) is also integrable on R and on Ry, ., for any (x,,, ...

»Xy,) With 0 £ x;, < A, where k = 1,2,...,jand j = 1,2,....,n — 1, moreover

the inequalities 0 S C(X) < Co, C(X) £ Cy,., ,,(x,l X )P forj=12,...,n~1

hold where C,, C,, ..\, are positive constants. ° =hyand forj=1,2,..,n -1
H/ = (hln_!(x, ces xl)’("”), veoy hh__.,,(x“ s x‘I)Q(p.*.l), ‘e

RERH) hn-]+1(xn—j+1 x")q(p+1))

denote the vectors with ( ) non-negative components ho, hy,...1, at least one of which
is non-vanishing. J
If furthermore we suppose that q(p + 1) — r = p and

[Coh +"}_j1 Y (p+1YCyah ](3,42)’_:<1
0o Aus, p LSO Fid SN ) (p + l)nq
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then there exists one and only one solution of the Darboux problem (1), (2) and the
Picard’s sequence of successive approximations (4), for arbitrary functions uy(X),
Go(X) € M*(R) with D" Go(X) = 0 in R, uniformly converges in the domain R to
this unique solution.

Proof. Analogously to Theorem 3 it can be shown that the metric space Y =
= (M*(R), d) on which the distance

Z(H, 1 |D’u — Do)
® do,0) = o0

is defined, forms the complete generalized metric space. The operator T defined by
relation (10) maps the space Y into itself. Then we obtain from (10), (10,) and from
assumption (21) for arbitrary u, v € Y with d(u, v) < + o the inequalities

@) |ux) - ox)| 52 LA(E)@,...cndsg o B

)
(xg, - 3‘?1,)”+1 lDz,..J, u(X) - Dy,..a, U(X)l =

g 2(xh ce x“ i J‘R A(s‘;ll_’) (él cee él;— lxl‘;&lj-f-l s én)p dEh..J] é
1.1y

( X x")p+ !

=0 +1)

in R°, On the basis of assumption (22) and of inequalities (24) we get the following
estxmates

C(S) Z(Hp o [D’u — Do)

Tu — Tv| < dE <
I | .L_ (& ... &n)"
24, P (")Z(H, 1» |D'u — Dly)
= (5 L E )(P+1)(q-1)—r+p+1 d= <
(p+ 1) R (fl...fn pti 1 "
= (4o pt1 p+1 <
= (p + l)nq CO d(ua l.>) (x] e xn) > (XI, oo xlj) |D11._'11Tu - Dh-..l,T”I hS
= (240) Cra(p + 1) d(u, v) (x; ... x,)2**
(p + l)nq 1.0y A
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for X € R°. Hence there follows that d(Tu, Tv) < 4 d(u, v) where

n-1 . 24,1
A= [COhO + 'Zl I Z ) (P + I)J Ch l]hh ‘J] ( 0)
J=111,...,1y

(p+ 1)

We shall obtain the required estimate for the proofs of conditions 2°, 3° directly
by (24). Thereby Theorem 4 is proved

5. Systems of differential equations. The results of the preceding Theorems 2, 3, 4

can be applied to certain systems of hyperbolic partial differential equations
First of all we introduce some new notation and assumptions again

1. We shall consider the sets E; = R X [[{—-w < z; < +x}, E} =R°

+ ..+m(nzl)=m(2"—1)

1 denotes an mteger Further, let us denote 4 = U S;where 6, = {X:X e
0} fori=1,2,.

X [[{—o < z; < + 0} wheres;, = m + m(r)
i=1

and m =
ER,x,-=

2. Let the norm of the vector B =

(by, ..., b,) be defined by equation

J
3. Let a)
ui...; . u'ln...j
U= ull,.. RS “’1"1...1, = (Ul...j’ cees ul,...l,s s un—j+ 1...»)
I ERREARERREIAREREE
un—1+1..n un—j+l n
. . 1 /n\ . . ’
denote an arbitrary matrix of the type — ( ) for j=1,2,....,n—1 and U°
m\J
= (ug, ..., Uy

). The symbol U,, ., denotes the vector (uj, 1,
Let us denote the vector (|U,_;|’

LA [V
., n — 1 and a real number y by | U]’
b) U(X) = (u}(X), ...

, u™(X)) let be a sufficiently regular vector function in the
domain R. Then, let us denote

LR “'l':...t,) and UO = UO.
e ”u'l’-j-'-l...nny) forj=0,1,

D, ju ...D, ..j“m
Dju = Dll l,u Dll.. lju = (Dl.,.ju’ coey D,l-ulju’ ey D’l"j+ 1”.nu) .
Dn-—;+1 nt Dn~j+i.. nld
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4. We shall suppose that the vector function
F(X,U% UL, .., U 1) = (f,(X,U°% U, . ,U"h), | f(X,0% U  ,Uuhy)

of n + s, variables is continuous in E;.

5. Let us assume that the vector function ®(X) = (9'(X), ..., #"(X)) is defined
and continuous in the domain 4 and it has continuous derivatives D;,_;, ®(X) of
the j-th order in any domain d;, i = 1,2,...,n for j =1,2,...,n — 1 and that
D" &(X) = 0 = (0,...,0) on R.

6. Further, let M,(R) denote the set of the vector functions Z(X) = (Z(X), ...
...s Zp(X)) € C(R) with the following properties:

a) The derivatives D,, ,/Z are continuous in the domain Rforj = 1,2,...,n — 1.

b) Z(X) = &(X) for X € 4.

We are now able to formulate the Darboux problem and the concept of its solution.

We shall understand by the solution of the Darboux problem
1) D"U = F(X, U,D'(, .., D" V)
(2) U(X) = d(X) for Xed

any function U(X) € M(R) which has the continuous derivative D"U on R and satisfies
equation (1') in R.

The Darboux problem (1’), (2) is equivalent to solving the system of integro-
differential equations

@) U(X) = Bo(X) + J F(, U, D'U, ..., D" 'U)d=

R

where @y(X) = ®(0, X3, ..., x,) + D(xy, ..., Xo—y, 0) — [®(0, O, X3, ..., X,) + ...
DY + ¢(x1, ceey xn_z, O, 0)] + cee ‘+ ("—1)"—1 ¢(0, ceey 0).

Then, the Picard’s sequence of successive approximations {U,}7 shall be defined
by the equation

@) U(X) = Bo(X) + j F(E, Us-,, D'U,_,, ..., D" 'Us_,) dZ

R

for any function U, e Mj(R)and k = 1,2, ...

Now let us state the following theorems:
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Theorem 5. Let the vector function F(X, U U, ..., U""1) be defined, continuous
and bounded in the domain E, and let it satisfy the conditions:

(5 [F(X, U°, U, .., Ut — F(X, VO, Vi, . V" Y)| <
n—1
s LY@ |u-Vv]), L>o0,
xl DRy x,, j=0
(6') ” F(X, u° ut, .., U"“) - F(X, ve vt V"“)" <
n—-1
s 2@ U - Vi), c>o0
x8 ... xb =0

where P/, Q! denote the vectors from Theorem 2, in E.If the inequalities 0 < o < 1,

there exists one and only one solution of the Darboux problem (1’), (2') and the
Picard’s sequence of successive approximations (4') converges in the sense of the
norm | || defined above to this unique solution for any initial function Uy(X)e
€ M(R) on R.

If we choose the generalized metric space Y = (M,(R), d) with the metrics

1
(P, [DU — D)
0

(%1 xp)? VE

d(U,V) = sup L=
R*

where p fulfils the same conditions as in Theorem 1, then the proof of this theorem
should proceed similarly with the proof of Theorem 2.

Let T M,(R) denote the set of all the images of the set M (R) in the mapping

) T U(X) = @o(X) + J' FZ U,D'U, ..., D" 'U)dz .

R

If we denote the complete metric space which was obtained by the completion of the
metric space (T M,(R), d,) in the sense of the distance

n—1
(8) dy(U, V) = max ¥ (V, |[D/U - D¥V])
R j=0
by (Mi(R), d;), then the following theorems hold:

Theorem 6. Let the vector function F(X, U° U', .. U""") be defined and conti-
nuous in the domain E, and let it satisfy the assumptions

9) |F(x, v, UL, .., U Y| < A(x,...x,)", p20, A>0
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in E| and

(10) |F(x, u°, U‘,... U h — F(X, Vo, Vi, .. Vv <

< C SE -V, q21, C>0
(xl...x,, ji=0

in E} where Fﬁ denotes the vector from Theorem 3. If the conditions q(1 + p) —
—-r=p

<1

c @A™
(fo + Z ,E, fll lj (p + 1),,

are fulfilled, then there exists one and only one solution U(X) of the Darboux
problem (1'), (2') and furthermore the Picard’s sequence of successive approxima-
tions (4') for any initial function Uy(X) € M(R) converges in the sense of the norm
| | to this unique solution on R.

Theorem 7.. Let the vector function F(X, U°, U, .., U""!) be continyous in E,
and in the domain E? let is satisfy the conditions

Sy R, U0, UYL, )| € AX) (xy . x,)?, —1<p <O
where the scalar function A(X) is integrable in the domains R, Ry, _,, and, moreover,

it fulfils the inequalities 0 £ A(X) £ Ao, A(X) £ Ao(x1, ... %;)7%, Ay > 0 for
j= 1,2,...," - 1 inEl.

(12)) [F(x, U°, UL, .., Um=t) — F(X, VO, VY, . V"~ Y)| <
C(X) ¢
S MV -V, gz

where Hl  denotes as defined the vector as in Theorem 4. The scalar function
C(X) is integrable in R and Ry, ;, for j = 1,2, ...,n — 1. Moreover, let it fulfil the
inequalities 0 < C(X) £ C,, C(X) < Cy,. 1%y, .- %1,)"? where Co,C,, ,, are
positive constants for j = 1,2,...,n — 1 in R. Further, if

(240)71
[COhO + Z g-,h(p + 1) C'l 11 1y.. 'J]m

and g(p + 1) — r = p, then there exists one and only one solution of the Darboux
problem (1'), (2') and the Picard’s sequence of successive approximations by (4')
for any initial function U,(X) e M3(R) converges in the sense of the norm || | to
this unique solution on R. .
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We omit the proofs of Theorems 6, 7 because if we choose a suitable metrics on
M7(R) they would proceed similarly to the proofs of Theorems 3 and 4.

Remark. In Theorems 5, 6, 7 an arbitrary norm "BHl which is equivalent to the

t
norm || B =j;l|b ;| (in the sense of convergence) can be taken instead of the norm | B|.
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