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&asopis pro péstovani matematiky, rot. 107 (1982), Praha

THIRD BOUNDARY VALUE PROBLEM FOR THE HEAT
EQUATION 1II

MirosLAv DoNT, Praha

(Received August 14, 1979)

The present paper is a continuation of the paper [I] where only a special type
of the third boundary value problem was investigated. We shall keep the notation
introduced in [I]. We also continue the numbering of the paragraphs and formulas.
‘Thus we refer to items in [I] by writing simply (0.1) instead of (0.1) in [T], and so on.

3. THE OPERATORS L, 4
As well as in the preceding part let ¢ be a continuous function on an interval
<a, b); the sets E, K are defined by (0.1), (0.2). For u € %'(<a, b)) the heat potential
U, = Uj is defined by (0.3). Further, let G* stand for the adjoint heat kernel, that is,

G*(x, 1) = G(x, —t) ([x, {] € R?). Define the adjoint heat potential U¥ of a measure
ue % by the equality -~ ‘

U2 (x, 1) = U*(x, 1) = J "6%(x — o(2), ¢ — ) du(e)

(for [x, ] € R? for which this integral exists). Note that if g, A are two measures
from 2'(<a, b)) such that either both y and 1 are non-negative or the integral

(oot na

converges, then by the Fubini theorem

‘[ :Uu((P(t)a ) di(f) = J'b ( J :G(tp(t) — o(d), t — 1) d#(r)) aie) =

_ J "( j bc(fp(;) — o), t - 1) dz(t)) du(z) = I:UI(q)(r), ?) du(z).

Let Ae #5(<a, b)) be fixed. -



For pe #'(<a, b)) let

-

6 90)= {w <y (0. 9] U0, D el ) < w} .
On 9(p) we define a functional L,:

(32) WLy = j WD), 1) U0l ) 420, (¥ € 2(0).
Further, let A, = H, + L,. that is

(3.3) ' WA =< Hy + WLy, ved(u).
According to the introductory remarks the functional A, can be regarded as a weak
characterization of the term
0
aU“ + Uy(io + 4)
on K (dAo(t) = do(r) — provided the function ¢ is of bounded variation on <a, b}).

The following assertions are analogous to the relevant assertions from [32].
The proofs of these assertions are also quite similar to the proofs of the assertions in
[32] (but [32] deals with sets in R*** of the form D x (4, 7,), D = R", instead of
the set E).

3.1. Proposition. The following two conditions are equivalent to each other:

(i) For each p € %, there is a unique linear extension of the functional A, from
D(p) onto the whole 9,

(ii) The potential U}, is bounded on any compact set contained in the set

(3.4) Ko = {[¢(t), t]; te<a, b)}.

If one of the conditions (i), (ii) is fulfilled then D(n) = D, for each p e By,
Proof. Let pe %, t € <a, b). If Y(¢(t), 1) = 0 for each Y € P(u) then

<¢’ Au) = <¢” A“) + !ﬁ(‘/’(t)s t) for l// E g(y) .

Hence if the condition (i) is fulfilled then it cannot happen that ¥(¢(t), f) = 0 for
each Y € 9(w). It is thus seen that under the condition (i) for each y € %, and each
tea, b) there are 6 > 0, Y € P(u) such that yY(p(z), t) = 1 for each te(t — 4,
t + &) n <a, b) and, moreover, if M < {a, b)isa compact set then there is a y € D(u)
such that Y(e(z), 7) = 1 for te M.
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Suppose now that the condition (ii) is not fulfilled. Then there are a compact set
M < <a, b) and points t;e M (i = 1,2, ...) such that

(3.5) Uh(o(), t) =22+ 1, (i=12..).
There is a point t, < b, t, > sup M such that
(3.6) [n(to — sup M)]~ 2 |2| (<to, b)) £ 1

(A({b}) = 0 as 1 € % by the assumption). Put

21 = W ooy
(the restriction of ]AI on to the interval {a, to>). Since
G(x,1) < (nt)" Y2, (t>0),
we get from (3.5), (3.6) that
(3.7 Ui (o(t), 1) = 2°.

Consider now the measure

”_ = .le_ién .

Then p e &y, spt p = {a, ty» and according to the preceding consideration there is
a function y € 9(y) such that Y(¢(r), t) = 1 for each t € <a, o). For this function ¥
we have

fwwammwmnﬂuwzfmwmoumw=

_ J Ut (o), 1) du(t) gii 27 UL (1), 1) = +oo,

which means Y ¢ 9(u) — a contradiction. We have thus proved that the condition (i)
implies (ii).

Suppose now that the condition (ii) is fulfilled. Then for each Y € 9, and each
p e %y we have

(IR ERCOREER
_ J ’ ( j " 6((1) = o), 1 — 1) [(o(0) 0] dJA] (z)) dlu| ().

a a

For t > t, = sup {te <a, b); [¢(t), t] € spt ¥} we have

rﬂﬂo—dat—ﬂMM¢MﬂM@=0



and hence (as t, < b; we suppose furthermore that t, > a since else there is nothing
to prove)

r|l/f(¢(t)s ) Up(e(®), ) d|A] (1) < ¥ FUTM(Q’@), o) dlu| (z) =

< [l lul sup {UR (. ) [x, ] €K, t < 1o} < oo

It follows that 2(u) = 2, and the condition (i) is fulfilled.

3.2. Lemma. There is a number y > 0 with the following property:

For each t, < b there is a function ., € D, such that 0 < ,, < 1in R* y,, =1
on KN R, -and :

(38) |<'»[/to’ Ha,>
for each te{a,b).

=y

Proof. Fix 7, €<a, b).

Let Y, : R! > R! be an infinitely differentiable function with compact support
such that 0 <y, £ 1 on R, spty; = (—o0,b), ¥; <0 on (10, b), ¥, =1 on
<a, 7). Choose ¢ > sup {|¢(t)|; te<a, b)} and let y, : R' > R! be an infinitely
differentiable function with compact support such that 0 < ¢, <1 and |¢2| <1
on RY, ¥, = 1 on {—g, ¢). Now define a function y,:

ll’to(x’ t) = ll/l(t) W;(X) > ([x’ t] € Rz) :
Then ¥, € 9,, Y, = lon K N R, .
Let 7 € {a, b) be arbitrary. Then

(3.9) W Hyd =
- | f j (B9 TV ) = Gl = ) 1 =) 2 o)) e

+ H‘EG(x — o(0), t = 1)y (x) [y (1)| dxde = I, + I, .

=

Ui(0) [Wa(x)| dx dr +

As Ilﬁ'zl =1, ¢y, <1 weget

(3.10) I, < f J‘Rab

according to (0.5).

g(x — ox), t — 1)

dxdté%t\/(b—a)
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Further, we have (denoting E, = E — R,)

v ) G e BRI TS

Putting 7, = sup {t; ¥,(t) # 0} we conclude that I, = 0 if © = 7,. Suppose now

that 7 < t,. Then
(0] — 0@ .
o W] G e D LT
Using the substitution
x— o) _

2./t =)

rwexp(_ (i—_fl’ﬁf)_)f) dx =4 J(t - f)f:e"z dz = 2(n(t = 7)

4t — 1)

we get

and hence (for y; < 0 on <{a, b))

(3.11) I, < 2‘[ [Wi(n)] de < 2.
Now it suffices to put

y =2+ (b - a)

Jr

and (3.8) follows from (3.9), (3.10), (3.11).

3.3. We shall denote
m} = sup {U}}(x, 1); [x, 1] € Ko}
(where K, is defined by (3.4).
3.4. Theorem. Suppose that A is a non-negative measure (in %;,). Then the

following two conditions are equivalent to each other:

(i) For each p € %, there is a unique measure v, € B, whichrepresents the functional
A, in the sense that

WA =Sy s
v e D(w), £(1) = wo(),1) (e <a, b).
(i) C Pe4+mi <o
(where V= sup {#(¢(), 1); T€<a, b)}).
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Proof. Suppose that (i) is fulfilled. Then for each u e %; the functional 4, has
a unique linear extension from 2(u) on to 2,, which means (according to Proposition
3.1) that 9(u) = 9, for each p € %y First, we show that

(3.12) m; < +o.
Suppose that m} = + oo. Then there are points ¢, € {a, b) such that

Uo(t) t) > 2, (i=1,2..).

Consider a measure

” = Z 2_i5!| ;
i=1
we have pe &;,. For t < b let
)“t = A’l(“ﬁ) .

Given n natural there is a 7, < b such that
U} (o(t),t) > 2" foreach i=1,2,...,n.

Let ¢, be the function from Lemma 3.2. As ., = 1 on K n R,, we have

f bl 1 U0l ) d(0) 2 j U (o(t) 1) dit) =

= [0, 9 = Z2 Uz (oteh ) 2 .

Since by lemma 3.2
|<¢r0’ H&,,)I é 7 ’
which implies

[ H)| £ 73277 =7,
we have
[V 4| Z 1 = 7.

As Il/l,ol < 1 and the number n was arbitrary, it is seen that the functional 4, is not
bounded which means that there is no element from %;, representing (in the mentioned
sense) the functional 4,. We see now that if the condition (i) is fulfilled then necessarily
(3.12) is valid.

If (3.12) holds then the functional L, can be represented by a (unique) measure
from 4, since in this case

<¥, L>] < vl [ m3 -

As A, = L, + H,, it follows that then the functional 4, can be represented by a unique
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measure from %, if and only if H, can. But according to Theorem 2.3 the functional
H, can be represented by a unique element from %, if and only if the condition
Vx < oo is fulfilled. Hence we obtain the assertion.

4. THE OPERATOR V

For fe%(<a, b)) let f. A be the product of the function f and the measure 1.
For f e ¢(<a, b)), t € a, b) we define

4.1) Vi) = ULile(), 1) = _[bf (1) G*(o(t) — (), t — 7) dA(x) =

_ j tbf(r) ﬁ exp (_ M) a2

4r — 1)
provided the integrals exist.

If, for instance, the restriction U} is continuous (on K) then for each f € ¢(<a, b))
we have Vf e %5 ({a, b)) and one can regard V as an operator on %(<a, b)) or as an
operator on %5 (<a, b)) (V:€ > &, resp. V: 65 — %5). .

By the equality (4.1) one can also define Vf for any bounded Baire function
on {a, b) and then V can be regarded as an operator on the set of all bounded Baire
functions ob {a, b) (in this case even supposing only m; < ).

4.1. Proposition. Suppose that L e %, is a non-negative measure. Then the fol-
lowing two conditions are equivalent to each other:

(i) Vfe%s(a, b)) for each fe €5 (<a, b)).

(ii) The restriction Uﬂxo is continuous and bounded (on K,).

Proof. Let (i) be valid and suppose that the restriction Uj'{lKo is discontinuous at
a point [¢(to), to] (Where t, € {a, b)). Choose a point ' & (t,, b) such that A({t'}) = 0
and put

M= Wy A2 = Herpy -

Let fe %5(<a, b)) be such that f = 1 on a, t'). The restriction U},| is certainly
continuous at the point [¢(to), o] (for 1, ¢ spt A;) and U, , | is continuous at the
point [¢(to), 0] as well. As U}|x is dicontinuous at the point [¢(to), £,] and

Ut = U3, + U3,
the restriction U} | is not continuous at the point [¢(fo); fo]. But (as f = 1 on<a, "))
Vi(t) = UF.i(e(1), 1) = U (@), ) + Ui, (0(1), 1)
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and so Vf is discontinuous at t, which contradicts (i). We conclude that under the
condition (i) the restriction U} |, is continuous on K.

Suppose now that the potential U7 is not bounded on K. Construct a sequence of
points ¢, € (a, b) as follows. Suppose that we have already a point t; € (a, b) such that

Ul(o(t), t) > 211 + 1.
Choose then a point t;,; € (a, b), t;+; > t; such that

U:(‘P(‘Hl)a tH—l) > 22 41

and at the same time

I " G%(olt) — o(e), 1 — 1) diE) < 1.

tisy

There certainly exists such a point t;,,, due to the fact that A({b}) = 0 and that
by the preceding the restriction Uj'{l Ko 18 continuous and so it can be unbounded only
in a neighbourhood of the point [¢(b), b]. Moreover, it is ceen that for this sequence
of points t; we have t; —» b for i > +co0. Consider now a function f € %;({a,b>)
with f(a) = f(b) = 0, f(t;) = 27" (i = 1,2,...) and such that f is linear on the in-
tervals {a, t,>, {t;, t;4,) (i = 1,2,...). Then (for each i natural)

Vi) = Jb f(2) G*(e(t)) — o(x), t; — 1) di(r) 2

> -G+ I e (o(t) — o0), i — 1) dife) =

- 20 [ 6(o(0) - o) =819 - [ 6¥ott) = o) =9 419} >
> 2—(i+1)(2‘i+1 +1 - 1) =1.

Hence Vf ¢ %5 (<a, b)) and it is seen that (ii) follows from (i) indeed.

Suppose now that the condition (ii) is fulfilled and that 4 is not the zero measure
(or else there is nothing to prove). Thenmj} > 0. Let f € €5(<a, b)). Then for each
€ > 0 there is a 6 > 0 such that

€

HUIRS

2m}
for each te (b — 4§, b); furthermare, choose & such that A({b — 8}) = 0. Putting

Ay = ll(a,b—a) y Ay = Al(b—&,b)
we have .
Vi) = UL (0(t). 1) + UZ(0(). 1)

14,



for ¢ € {a, b). The restriction U} , | is continuous on K (since b ¢ spt ,). Further,
a &
U7 2.(000), 1) < —2?" Ui(e(t), 1) < 5

for any t € {a, b). Hence it is seen that Vf is continuous on{a, b) (and, of course,
V£(b) = 0). So the condition (i) is fulfilled.

4.2. Remark. Let 1€ %, be such that the restriction U) lll Kk, 1S continuous and
bounded on K. Then also the restrictions U7}, | ko Ui- | K, are continuous and bounded
on K. Further, m} < oo. It is seen from the proof of Theorem 3.4 that then for each
p € %, the functionl L, can be represented by a (unique) measure from %,. Especially,
the functional L, can be then regarded as a functional on %5 (¢a, b)). The Fubini
theorem yields that for pe %, f€ €

@) = j " [ 16 G*(0 () — 0(@), 1 — ) 44(s) du() =

- FE) Vo), 9 di(s) = <£, L.

Regarding now L as an operator on %4 (L: u+> L;; L: By — %;)and V as an opera-
tor on @, (V:f> Vf; V:€; — %5) we see from (4.2) that the operators V, L are
adjoint to each other.

4.3. Proposition. Let 1 € B, be non-negative and suppose that the restriction U}'I Ko
is continuous and bounded on K. Then the operator V is a compact operator on €4
if and only if the restriction U}‘IK is continuous on K.

Proof. Given n natural, let h, be a function on R' such that h,(f) = 0 for t 2
= —1/n, h(t) = 1 for t £ —2[n, h, is linear on the interval {—2[n, —1/n). For
[x,1] e R* put

Gy(x,t) = G*(x, t) h,(t), BF(x,?) = G*(x,t) — GX(x,1).

It is seen that for n » +co we have Gj(x, t) - G*(x, {) monotonically. Putting
further for [x, ] € R?

i, 1) = J "G (x — o(d) t — ) dA(x), DI(x, i) = [ "B (x — o(c), ¢ — ) di(e)

we have
Ui(x, 1) = Ci(x, 1) + Dj(x, ).

"On account of the continuity of the kernel G} the potential C7 is continuous (even
for each A € %;). At the same time we have that for [x, f] € R?

Gi(x, 1) » Uj(x, 1)

15



(n > +o0) and this convergence is monotonous. Then also

Di(x,t)—> 0

-

(n = +0) and this convergence is monotone as well.

Suppose now that the restriction Uj{‘l k is continuous on K. As C} is continuous,
the restriction DZI  is continuous on K. In virtue of the compactness of K the Dini
theorem gives that

4.3) sup {Dj(¢(t), 1); te(a, b)} -0

for n = + oo, Consider now operators V,:
N b
I = o) = [ 16) 61000 = ote) 1 = ) 8109

(fe%s, te<a, b)). Due to the fact that the function G}(¢(f) — ¢(z), t — 1) is con-
tinuous as a function of the variables t,7 on {a, b) x {a, b), the operator V, is
a compact operator on ¥, (the image of the unit ball of the space % is a set of
equicontinuous and uniformly bounded functions on <a, b)). For fe %;, t € {a, b)
we have
V1) = V() = U0 1) = Calolt). 1) = D}.a(o(0). ).
Hence
[V = Vi| £ sup {D3(e(1), 1); te<a, b)}

and |V — V,| > 0 (n > + o) (according to (4.3)) which immediately implies that
the operator V is compact.

Now suppose that the restriction UII k is not continuous on K (so Uj'{l k is discon-
tinuous at the point [¢(b), b]). Then there are 6 > 0, t,e<a,b) (i =1,2,...),
ty— b (i > +o0) such that

Ut 1) 2 5.

Given i natural, choose t; € {a, b) such that

J " G(0(t) — o(d), 1 — ) di(z) < 36

t'y
(there is such a t] in virtue of the assumption A({b}) = 0). Further, let f;e C; be
such that 0 < f; < 1 on {a, b), f; = 1 on {a, t;). Then

Vf x(t.) = U7, i(o(t:), 1;) Z

= UXolt), 1) - j " GHo(t) — o(z), 1; — 1) di(x) = 36

Now it is seen that the unit ball of the space €, is not mapped by ¥ on to a set of
equicontinuous functions on {a, b) and thus V'is not a compact operator.
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Let us show one auxiliary assertion which will be needed in the following.

4.4. Lemma. Let 1€ #y(<a, b)) be a non-negative and continuous measure
(that is, A({t}) = O for each te<a, b)) and suppose that the restriction U}y is
continuous (on K). Putting for 6 > 0, te{a, b)

}“t,é = Al(a.b)n(r,rh’)
define on {a, b) a function Sy by
Si(t) = UF, (o(1), 1), (te<a,b)).
Then for each 6 > O the function S; is continuous on {a, by and S; — 0 for 6 - 0+
uniformly on {a, b).

Proof. As A is a continuous measure on {a, b) and U7 is finite on K we certainly
have for each ¢t € {a, b) that

for 6 —» 0+ and this convergence is monotone. Taking into account the Dini theorem
it suffices to show that for each § > 0 the function S; is continuous on {a, b).

Fix te<a,b). If t + 6 2 b then S,(t;) = Ui(¢(t,), t,) for t, €<t, b) and the
continuity of S; on {t, b) follows from the continuity of Uﬂ x; especially, the func-
tion S; is continuous from the right at the point ¢.

Suppose now that ¢t + 6 < b and let t; > ¢t be such that t; <t + 4,t, + 6 < b.

Consider the term
|S() = Sa(tn)| = |UZ, (o(1), 1) = U7, fo(t), t)| =

— vz, (o), 0 = U2, fo(e) 1) - j ":"G*(q»(n) — () 1, — 1) di(3)].

The restriction Uﬂ « is continuous and so also the restriction U}"M| x is continuous
on K (for t fixed). Thus for a given & > 0 there is a 6’ > 0, &’ < & such that

U500, ) = VS (o) )] <
for each t, € (t,  + &’); moreover, &’ can be chosen such that
[2(5 = )] 72 Xt + 6,1 + 6 + 87 < f
Then for each ty €(t, t + 6') (t; + 6 < b)

J' " 6%0(t) < o), 1, — 7) diz)

é

t+6+4° A1=1/2 Py
< [x(s ~ 0] 42 dx(e) < <.
t

+45

Hence it is seen that the function S; is continuous at the point t from the right.
Similarly for the left hand continuity.
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5. THE EQUATION 4, =v

-

Let le B, bea measure such that U, All  is continuous on K. Then, of course, the
restrictions U7, | K> | k are both continuous on K as well. Further, suppose that

Vx = sup {#(e(t), t); te<a, b)} < .
Then it follows from (2.10), (4.2) that for f € %5, p € %,
<fa An) = <f5Hu> + <f’ Lu> = <W—f’ﬂ> + <Vf’”> .

So the operators A and (W- + V) are adjoint to each other.

In what follows we shall use some more notations from Sections 1 and 2. Especially
recall that for fe €, , 1 €<a, b)

W_1(z) = Wf(o(z), 1) — 2f(x) 25 (o(2), 7) =

2 ("t exo( — @0 = 0@)*\ 4 o) = o) _, 1. = (ofe). 1) =
J”jcf(t) p< 4t — 1) > "2t -1 2/(z) 2 (¢(z), 7)

= be (1) dv(t) = 2f(z) 25 (0(z), 7)

b
Wi f(x) = W_f(z) + f(z) = 'f f() dv(t) = 1(z) 222 (0(x), 7) — 1) -
v, is the measure defined by the equality (2.3). For r > 0 we have
[v] (<z, min {z + r, b} D) = 2 7(o(1), 7) .
Jn

5.1. Lemma. Suppose that A€ %, is a continuous measure, let Ui';,lx be conti-
nuous and let

(5-1) lim sup (7 7(o(z), 7) + |29E (o(z), 7) - 1|> <1.

r—+0+ te{a,b)

Then the equation

W-+V)f=0
has in €5 only the trivial solution.

Proof. For te€{a, b), r > 0 denote

Aoy = |2 |<q,b>n<f,:+r> » 8(r) = U3, (o(x), 7).

According to Lemma 4.4, for each ¢ > 0 there is an r > 0 such that

sup {S(7); e <a, b)} < c.

18



Since (5.1) is supposed to be fulfilled there is an r, > 0 such that

(5.2) sup (ﬁ 7(o(0), 7) + 225 (0(e), 7) — 1] + S,o(t)> <1.

e
Let f € % (<a, b) be a function for which
(W-+Vv)f=0.

There is a point 7’ € {b — ry, b) such that

@) = sup 17 < b = ro b3}
As |v,.| (<a, 7)) = 0, we have
(53) (7 + V) (@) =
- _[ b' SO dvelt) — F(7) 225 (o), ) = 1) + UL (0(x),

UM(WW)mew)AHMﬁ
But, since ’
= (F_ + V) 1) = (W, + V)f() - 1),

we get from (5.3), (5.2) that f(z") = 0, that is f(r) = O for each te (b — ro, b).
Continuing by induction we obtain that f(‘c) = 0 for each 1 € {a, b) (see also
[4] — the proof of Lemma 2.1).

5.2. Theorem. Let A € %, be a continuous measure such that the restriction Ui':u'x

is continuous on K and suppose that the condition (5.1) is fulfilled. Then for each
v € %, the equation

(5.4) 4
has in B, a unique solution.

Proof. First, let us consider the operator (W; + V). We have found in paragraph’
2.5 that the Fredholm radius of the operator W1 is equal to the reciprocal value
of the number

oW, = lim sup (:/— #(o(7), 7) + |25 (0(7), r) - 1|)

r-0+ te{a,b)

According to Proposition 4.3 the operator V is compact under our assumption
(more precisely, the operators corresponding to the measures A* and A~ are compact,
but Vis equal to the difference of those operators) and so

oWy + V) = oW, .
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By Lemma 5.1 the equation

P+ V)= [T+ V) +1]7=0

has in €, only the zero solution. It follows from the Riesz-Schauder theory that for
each g € ¢, the equation

- +V)f=g

has a unique solution in %, and since the operators A and (W_ + V) are adjoint to
each other, the assertion follows.

5.3. Remark. Suppose that the assumptions from Theorem 5.2 are fulfilled and
let 12 be the solution of the equation (5.4). As A, is a weak characterization of the term

0
aU“ + U,‘(A0 + 4)

on K (where dAo(f) = dA(r)) then the potential U, considered on the set E is a solution
of the third boundary value problem for the heat equation on E with the boundary
condition

Un L U+ ) = v
0x

prescribed on K.

Let us also note that in a similar way one can solve the third boundary value
problem of the given form for the heat equation on the set

- ={[x,f]eR? te(a, b), x < ¢(1)}
and also on sets of the form '
E, = {[x,f]eR?* te(a,b), ¢,(1) < x < 9,(t)}

(where @4, @, are some suitable functions on {a, b)) — see also [4] where the first
boundary value problem for the heat equation is solved on the sets of the above
mentioned forms. ~

5.4. Remark. Suppose that the condition (5 1) is fulﬁlled and suppose, in addition,
that the restriction U, Ml x is continuous on K. As 4, is a continuous measure we can

take A = —4, in Theorem 5 2. In this case A4, is a weak characterlzatlon of the
derivative o ‘

o,

ox
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on K (A, may be called the flow of heat in this case — see [15]). If u is the solution
of the equation (5.4) then the potential U, considered on the set E is a solution of the
second boundary value problem for the heat equation on the set E with the boundary
condition '
ou,
ox
on K.
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