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SVAZEK 106 ®* PRAHA 27. 2. 1981 * CISLO 1

ON EXPONENTIAL GROWTH OF SOLUTIONS OF ABSTRACT
INITIAL VALUE PROBLEMS

MirosLAv Sova, Praha

(Received January 8, 1976, in revised form November 23, 1978)

In this paper, we study certain properties of the following standard initial value
problem in a Banach space E:

[*] u®(t) + A u"" V() + ...+ A, u(t) =0

u(0,) = w(0,) = ... = u®2(0,) = 0, u® D(0,) = x

where t > 0, x € E, u(t)e E for t > 0 and where Ay, 4,, ..., 4, are closed linear
operators from E into E (see [1]).

The main result may be roughly described in the following way:

We suppose that the solutions u of [ %] exist for x from a dense subset of E and that
they depend continuously on x, uniformly for ¢ from bounded subintervals of (0, o).

Under these assumptions we prove that there exists a constant w (depending only
on Ay, A, ..., A, and not on u) so that the functions e”“*u(t) depend continuously
on x uniformly on the whole interval (0, o).

Such a situation is well known for the case n = 1 as the theorem on exponential
boundedness of strongly continuous operator semigroups (see [2]) because the oper-
ator A; may be always considered as the generator of such a semigroup.

Analogously for the case n = 2 with A; = 0 we can interpret A, as the generator
of a strongly continuous cosine operator function which also can be proved to be
exponentially bounded (see [3]). )

In both the above cases, the exponential boundedness is a consequence of certain
functional equations satisfied by semigroups and cosine functions of operators.

In our general case we cannot proceed in such a way because we do not know any
functional equations for solutions of the standard initial value problem [] for the
operators Ay, 4,, ..., A,. Our proof is based on different ideas, in particular on the
method of local or finite Laplace transform (see [4] and [5]).



1. PRELIMINARIES

1.1. We shall use the following notation: (1) R — the real number field, (2) R* —
the set of all positive real numbers, (3) (a, b) — the set of all real numbers between a
and b if a,beR, a < b, (4) (w, ) — the set of all real numbers greater than
ifweR,(5) M; > M, — the set of all mappings of the whole set M, into the set M,.

1.2. In the whole paper, E will be a Banach space over R with the norm |-.

1.3. We shall denote: (1) L*(E) — the set of all linear operators from E into E,
(2) L(E) — the Banach space of all closed everywhere defined operators from L*(E),
equipped with the usual norm, (3) D(4) — the domain of the operator 4 € L*(E),
(4) R(4) — the range of the operator 4 € L*(E), (5)I — the identical operator from
L(E).

1.4. Let A be an open interval and f € A — E. The notions of differentiability and
of derivatives of the function f are considered in the usual sense (see [2]). The notions
of integrability and of integral are used in the simplest form as absolutely con-
vergent Riemann integrals (see [2]) of vector-valued functions.

1.5. Let fe R* — E. If the function f is continuous on R™ and bounded on (0, 1),
then we shall use the following notations:

E)th(r) dr = f(t) for every teR™,
Lf 1) dv =

and re {1, 2.}

1)'J (t =ty ' f(r)dr forevery teR*

2. AUXILIARY RESULTS

2.1. Lemma. Let Ae L*(E), let A be an open bounded interval and fe A — E.
If () the operator A is closed, (B) the function f is continuous and bounded on A,
() £(t) € D(A) for every te A, (8) the function Af is continuous and bounded on A,
then (a) [, f(r) dt e D(4), (b) A [4f(r) dr = [, A f(7) dr.

2.2. Lemma. Let fe R* — E. If the function f is continuous on R* and bounded
on (0, 1), then for every s € {0, 1, ...}, the function

s f 0 £(d) de

has the same property.
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2.3. Lemma. Let f € R* - E. If the function f is continuous on R* and bounded
on (0, 1), then

lL"‘Sz tf(r) de =[—3th <I2Jnf(o-) da) dt for every te R* and s,,s5,€{0,1,...}.
0 0 0

2.4. Lemma. Let f € R* — E. If the function f is continuous on R* and bounded
on (0, 1), then for every se{0,1,...}

t
(a) the function I—Sj f(v) dt is s-times differentiable on R*,
0

(b) ad?rr (szt 1) dr) - |i__rJ"f(r) dt for every te R* and re{0,1,...,s}.
0 0

2.5. Lemma. Let fe R* > E and qe{1,2,...}. If (o) the function f is g-times
differentiable on R*, (B) f@ is continuous on R* and bounded on (0, 1), (v) f(0,) =
= £(0,) = ... = f4=2(0,) = 0, then

(a) f971(0,) exists,
[ ams [+i—1(" -1 +
(b) Y| f@9(r)dr = '———| f@V(r)dr for every teR™,
0 0
1€{0,1,...} and ie{1,2,...,q},

c 141 tf(q) ) dr = Ll tf(q—l) 7)dr — t_lf(‘l"” 0,) for every teR* and
( ) () ( Al ( )
o !

0

1€{0,1,...}.

2.6. Lemma. Let fe R* - E and re{0,1,...}. If (o) the function f is r-times
continuously differentiable and all these derivatives are bounded on R*, (B) f(0,) =
=f(0,) = ... = f*71(0,), then for every Ae R*

A jwe"“f(r) dr = fme""f(')(r) dr.

0 0

2.7. Lemma. Let e R* —» R, feR* - Eand re{0, 1, ...}. If () the function ¢
is r-times continuously differentiable on R*, (B) the function f is continuous on R,

) [[lotol 10 4 < o[ ot0) i (7 as

. ¢
() oY1) l—j«-tl-[f(*r) dt—» 0 fort— 0, andt— o and forje{0,1,...,r — 1},
0

dr < o0,




then
[EGERC KRS ('—’ [ 110y 00) .

2.8. Sublemma. Let A be an open interval, pe A > R and ® € A - L(E). If
(@) ¢(4) #+ 0 and D(2) is one-to-one, (B(2))~* € L(E) for every A€ 4,
(B) (@) = (e(2))~! for every A€ A,
(Y) the functions @, ® are infinitely differentiable on A,
(®) |2V = (—1)y*" ¢"(4) for every Ae A and re{l,2,...},
then .
(a) the functions (¢(2))~* and ($(1))™* are infinitely differentiable on A,

(b)

Proof. First, we easily obtain from (o) and (y) that
(1) the functions (¢(4))~*, (#(1))~! are differentiable on 4,

(2) (o)™ = ~ (o) (2,

H=(- l)pa;(q)(l)) for every e A and pe{0,1,...}.

dar

adi(qj(’l))_l = (@) &(2) (@(1))"* for every Ae A.

We now proceed by induction on pe {0, 1,...}.

The case p = 0 is the assumption (B).

Let now pe {0, 1, ...} be arbitrary and let us suppose that the assertions (a) and
(b) are true for every 0, 1, ..., p.

It follows from the assumptions (ot)—(Y) and from the induction hypothesis by
means of the Leibniz theorem that

(3) the functions (¢(4))~2 ¢’(4) and (¢(1))~* @’ (,1) (9(4))~* are p-times differentiable
on A.

Further, it follows from (1), (2), (3) that
(4) the functions (¢(4))~! and (®(4))~* are (p + 1)-times differentiable on 4,

() v (o) = 5;( (o))" ) = - & () o)

G B = (S @0)) = ~ £ (o) #() (o)

for every A€ A.



Using now (8) and (5) we get by means of the Leibniz theorem

© [ 00| = |5

5O () Grem) o ow] (35 ewr)| <
<3 (i)[z(y G 6 (-0 ).

(0 o)t =

Lo (2) (W)Y =

dark

= 0 g (O] 5 (4) (S ) oo [ o -

= (- 1)”(;/{;,(((/)(/1)) ¢'(A) (p(1)™") = (= 1)"37,(@#(/1))” ¢'(2)) =

=~ I

Py, (qo(l)) ! for every A€ A.

The proof is complete because (4) and (6) confirm the induction hypothesis.

2.9. Lemma. Let A be an open interval, ¢,y € A —» R and &, ¥ € A - L(E). If
(¢) the functions @, y, ®, ¥ are infinitely differentiable on A,
(B) [|2P(2)| = (—1)? V(1) for every Ae A and pe{0,1,...},
(v) 1+ ¥(2) # 0 and I + ¥(A) is one-to-one, (I + ¥(1))~! € L(E) for every L€ A,
) T+ ®@A)~ = (1 + ()" for every Ae 4,
() [PUA)| = (—1)** y®(2) for every Ae A and re{l,2,...},
then

(a) the function ®(2) (I + ¥(A))~" is infinitely differentiable on A,
dr
®) |75 @O + 7))

and pe{0,1,...}.

é(-1)v§; (0(A) (1 + ¥(2)™Y) for every AeA

Proof. Since the functions 1 +  and I + ¥ satisfy the hypotheses of Sublemma
2.8, the assertions of the present lemma follow from 2.8 and from the Leibniz theorem.
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2.10. Lemma. Let fe R* — E, let  be a constant and F € (w, ©) - E. If
(o) the function f is measurable and e~ “'f(t) is bounded on R*,

(B) F(2) = Jwe“‘f(‘c) dt for every A > w,
0

then
-1 /p + 1\PH1 +1
(___l p— F(p) p_— _'p—»w,p>wt f(t)
plo\ ¢ '

for every t € RY which is a point of continuity of the function f.
y

Proof. The same as the proof of [1], Proposition 4.10, because the assumption
of continuity can be clearly weakened to measurability.

2.11. Lemma. Let M, w be two nonnegative constants and F € (w, o) — E. If
(@) the function F is inﬁnitely differentiable on (w, ©),

® 1) s 52

then

——=—— for every A>w and pe{0,1,...},

)+1

1
———F M(-1 — (———) for every A>w, pei{0,1,...} and
dar A * )“ Sy dAar (A‘(}. )> f Y pel ;
se{0,1,...}.
Proof. Easy by means of the Leibniz theorem.

2.12. Lemma. Let  be a nonnegative constant and F € (w, ) - E. If
(o) the function F is infinitely differentiable on (®, ©),
(B) there exist M 2 0 and se{0, 1, ...} such that

1
FOQ)| < M(-1)? ———— ) forevery A > w and pe{0,1, ...},
o] 5 M1y () forevery pefo ...}

then

—1)? pt+1 p

(_ll (.13_"'_1_) {[d e~ AT F(A)}] —pow,p>or 0 for every 0 <t < T.
p

p! t da A=+ 1)/t

Proof. First, we easily see that

o o] - [ () v

M8 (0) e & () - M




forevery T> 0, A > w and pe{0,1,...}.
On the other hand, we obtain from Lemma 2.7 for ¢(t) = e~ %, f(1) = e, te R",
and for r = s that

(2) ,__1_— 1 o e 4 [— ad d0'> dt for every 4 > o.
(A — o) 2 0

By (2), we can write

—AT © T © T
@) ——— = e“”j e’“(LSJ‘ e“"’da) dt =j e M D (sz e’ da) dr =
'zhs(/1 - w) 0 0 0 0
© t~T
=-[ e“'(l—sj e“"’da) dr forevery T> 0 and 1 > w.
T 0

By Lemma 2.10, taking here f(t) = 0 for 0 < ¢ < T and

t—T
f() = Ls‘[ e“? do for t = T, we obtain from (3) that

p p+1 P —AT
(4) 1) (P + 1) I[i_ (__e__>ﬂ —psw,p>or 0 forevery 0 <t <T.
t dAr? /ls(). - CU) A=(p+1)/t

The assertion is an immediate consequence of (1) and (4).

2.13. Lemma. Let fe(0, T) > E, T> 0 and se{1,2,...}. If the function f is
s-times continuously differentiable on (0, T), then

(a) ;11_5 SZ (j_()(q)s—k f(t + kh) >0, f€A2) for every te(0, T),
k=0

(v) z ( )( 1 £t + kh) = J:ﬂ...J:f<s>(t+tl+rz+...+1,)d11 dr, ... dr,

for every t € (0, T) and h > O such that sh < T — t.

Proof. It is easy to see that (a) follows from (b). Hence we prove only (b).
We proceed by induction on s. The case s = 1 of the identity (b) is evident.
Now suppose that (b) is true for an s e {1, 2, ...} and prove it for s + 1.
Using the known identity

s+ 1 _(s + s
k k k-1
for every ke {1,2,...,s}, we easily obtain

s+1

O 3 (7)ot = 5 () o+ e+ 0 -




— f(t + kh)) forevery te(0,T) and h > O such that (s + 1)h < T — t.

Using the induction hypothesis, we can write by (1) that

s+1

P z(s“)( 117k £t + kh) = “' J(f(°)(t+h+rl+rz H1)—

—fO%t + 7t + 1, + ...+ 15))dr, dr, ... dr, for every te(0,T) and h > 0
such that (s + 1) h < T — 1.

From (2) we easily obtain that
s+1
Gy (s :1>(_1)s+1—kf(t + kh) =
k=0

h rh h
=J f ...Jf““’(t + T+ Ty F e+ T+ Teyq)dry dr L drgdegy
0J0O (V]

for every te(0, T) and h > O such that (s + 1) h < T — ¢.

But (3) proves the induction step and hence completes the proof.

2.14. Lemma. Let fe R* - E, let M, w be two nonnegative constants and s e
€{0,1,...}. If

(o) the function f is s-times continuously differentiable on R*,

(B) J‘ e~ * f() dv exists for every i > o,
0
Mp!

w( J —Mf(r)d’) ==yt

then | f®(1)| £ Me®* for every te R*.

() ‘

for every 2 > w and pe{0,1,...},

Proof. Let us first write
(1) F(a) =.[ e * f(r) dt for 1 > o.
0 .

It is easy to see that
(2) the function F is infinitely differentiable on (@, ).
Further, we shall write

(3) G(A) = A" F(4) for A > w and re{0,1,...}.
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For the sake of simplicity we further introduce the following notation:

@ sy = 1) (‘1 ks 1).,+1 F® <€tL1> for teR* and ge{0,1,...)

t

such that g > wt.

We now prove some auxiliary results.
It follows from (1), () and (B) in virtue of Lemma 2.10 that

(5) f(t) 2450 f(2) for every te R*.
It is clear from (2) and (4) that

(6) for every q € {0, 1, ...}, the function f, is infinitely differentiable on {t : ¢ > wt}.
Now we shall prove that

—1)atr q+r+1
(7) £(1) = (=) a+1 Gatn (122 1Y for every te R* and
q!(q + 1y t t

g€{0,1,...} such that g > wt and for every re {0, 1, ...}.

We proceed by proving (7) by induction on r.

The case r = 0 is clear from definitions (3) and (4).

Suppose now that (7) is valid for some re {0, 1, ...}. Since, by (3), clearly
G V() = (q + r + 1) GE*(A) + 4G "*V(2) for every 1> w and g, re
€{0, 1, ...}, we obtain from (7) that

— 1)t g+ 1N\"*"/ qg+1 q+1
(r+1) (4 =,£__ +r+ 1)[F—— - )Gt ) 4
f0) q!(q + 1)y (4 ) t 2 t

( 1)etr q+lq+r+1 —q+1)G5q+'+1) qg+1 _
Ty 2 ;

—1)atr+1 qtr+2
(-1) (q * 1> [(q +r+1) Gf"*"(——q * 1) +
t

B q'(q + 1y*! t

q + IG(q+,+1) q + 1 ( 1)q+r+1 q +1 atr+2 Gg?:lr-i-l) q + 1
t t gl + )\ e t

for every te R* and q €{0, 1,...} such that g > wt. But this last identity justifies

the induction step and proves (7).
After these auxiliary results, we proceed to the proof proper of our Lemma 2.14,

In view of (1) and (3), the assumption (y) can be written in the form

(8) |GP(2)] £ ——— for every A > w and pe{0,1,...}.

(4 - )



It follows from (7) and (8) that

1 q+s+1 q+1
9) [ f® _ q + G+ <
O e S E
q +1 q+s+1
< M(q + s)! t -M (g + s)! 1 q+s+1
" q!(q + 1f q+1__w q!(q + 1y L ot
t qg+1

for every te R* and g € {0, 1, ...} such that ¢ > wt.
Using Lemma 2.13 (b) we get easily from (6) and (9) that

(10) ”kzo (i ) (=17t + kh)” <

h rh h
éj J‘ f If&O + 7 + 7, + ... + 1)| dry dry ... dr
0J0 o

q(‘zq++5)1') f _[ _[ _ot+1 i T .+ 1, o )

q +1

.dr, dt, ... d7g
for every te R and g € {0, 1, ...} such that ¢ > wt and every h > 0 such that
q > ot + sh).

Letting ¢ — oo in (10), we get from (5) by virtue of Lemmas 2.17 and 2.19 that

s h rh h
(11) H Z (S) (_l)s—kf(t + kh)l < MJ. J‘ . j ew(t+t1+r2+...+r,) d‘L'I d‘l'z...d‘l's <
k=0 \k 0Jo o

< MK et+sh for every te R* and h > 0.

By virtue of Lemma 2.13 (a) we immediately get the desired result from (11) for
h-0,.

2.15. Lemma. Let f € Rt — E. If the function f is continuous on R* and bounded
on (0, 1), then

J G f(o) da dr ‘— J e * f(r)dr — e_“si:/l'{———r-l.l Tf(r) dr
0 r= 0
for every T> 0, A€ R and SG{I, 2.}
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Proof. By induction on s.

2.16. Lemma.

r .t L (AT)
AHIJ e_“;;d’f =1= e—hz x for every T>0, AeR and 16{0,1,...}.
0 . k=0 :

Proof. By induction on I.
2.17. Lemma. For every te R, @ 20 and se{0,1, ...},

p+1 p+s+1
t

p+]_

t

wt
2 p-0,p>o0t e .

2.18. Lemma. For every te R*, w 2 0 and s€{0, 1, ...},

—1)7 (p + 1\?*1 [ d» 1 5[
H T g, e
p! t d? \X(A — )] Ja=p+1ye 0

Proof. It is easy to prove by induction on s that for A > w and s e {0, 1, },

______1 =J et (‘—SI e?’ do) dr.
/q,s(). - (l)) 0 0

Now it suffices to apply Lemma 2.10.

2.19. Lemma. For every teR*, w 20, pe{0,1,...} such that p > 2wt and
se{0,1,...},
p + 1 pts+1

'_;_* < 28620”.
p+1 -
t

2.20. Lemma. For every t > 0, 2 0 and se {0, 1, ...},

t S
Ls_ e dr £ e L .

0 s!
3. MAIN RESULTS

3.1. Let A, 4,,...,4,€L*(E), ne{1,2,...}, and ue R* —» E. The function u
will be called a standard solution for the operators A, A,, ..., A, if

(1) u is n-times differentiable on R*,
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(2) u"(t) e D(4;) for every te R* and i€ {1, 2, ..., n},

(3) the functions 4u™~" are continuous on R* and bounded on (0, 1) for every
ie{l,2,...,n},

(4) u™(t) + 4,u""V(t) + ... + A, u(t) = 0 for every te R¥,
(5) u(0,) = w'(0,) = ... = u""2(0,) = 0.

3.2. Proposition. Let A, A,,...,A,eL*(E), ne{l1,2,...}, and ueR* > E.
If the function u is a standard solution for the operators Ay, A,, ..., A,, then
(a) u"=1(0,) exists,

(b) the funciions u, v, ..., u™ are continuous on R* and bounded on (0, 1).

3.3. Proposition. Let Ay, A, ..., A, e L*(E), ne{1,2,...}, and ueR* > E. If
(o) the operators Ay, As, ..., A, are closed,
(B) the function u is a standard solution for the operators Ay, A,, ..., A,
then for every te R*, ie{1,2,...,n} and 1€{0, 1, ...}, the following statements
hold:

@ U -9 e D) ant 4L we-s)ae U oo
(6) = oo dee D and Al o=l e g

© L’J" u(z) de e D(4;) and A,-I—IJ' ;u(t) ge =n=itl '[ ;Ai 4= 9(1) d.

Proof. Use 2.1—-2.5 and 3.2.

3.4. Proposition. Let Ay, 4,, ..., 4,€ L*(E), ne{1,2,...}, and let KeR* - R
be a nonnegative function. If

(o) the operators Ay, A,, ..., A, are closed,

(B) there exists a dense subset Z < E such that for every x € Z, we can find a stan-
dard solution u for the operators Ay, A,, ..., A, for which u®#~1(0,) = x,

('y) for every standard solution u for the operators Ay, Az, ..., 4, for every 0 <
<t < T and for every ie{1,2...., n}, we have

J‘t Ai u("—i)(t) d»t

0

< K(M)u20.)]

12



then there exists a function We R* x E — E such that

(a) for every x € E, the function W(, x) is continuous on R* and bounded on (0, 1),
t
(b) f (t — 7)'"! W(r,x)dr e D(4;) for every x€ E, teR* and ie{1,2, ..., n},
0
t
(c) the function Ai,[ (t = ©)'~! W(r, x) dt is continuous on R* and bounded on
0

(0,1) foreveryxeEandie{l,2,...,n},

(d) w(t, x) + Z

J(t——r)' ! W(r, x) dt = x for every x € E and te R,

1(i - 1)'

(e) for every te R*, the function W(t, ) is a linear mapping,

() - 1)' -[(t — 7)1 W(r, x)dr

and ie{l,2,...,n},

< K(T) ||x|| for every xe E,0<t<T

(g) W(t, u"V(0,)) = u"~V(2) for every standard solution u for the operators
Ay, Ay, ..., A, and for every te R*.

Proof. First, we easily see from (y) that

(1) for every x € E, there exists at most one standard solution u for the operators
Ay, A,, ..., A, such that u®~D(0,) = x.

Further, let us denote

(2) D — the set of all x € E for which there exists a standard solution u for the
operators Ay, 4,, ..., 4, satisfying 4"~ 1(0,) = x.

Now we define a function W, € R* x D — E in the following way:

(3) Wo(t, x) = u=1(t) for every te R* where u is, according to (1) and (2),
the unique standard solution u for the operators A,, 4,, ..., 4, satisfying
u""0,) = x.

Since, by (o), Lemmas 3.2 and 3.3 are applicable we easily obtain from (3) that

(4) the function W,, defined by (3), possesses the properties (a)—(g) if we write
there W, instead of W and D instead of E.

Further, it follows from (4) (the properties (d) and (f)) that there exists a non-
negative function K, € R* — R such that

(5) [[Wo(t, )| < Ko(T) ||x| forevery 0 <t < T.
On the other hand, by the assumption (B)

13



(6) the set D, defined by (2), is dense in E.

Now, it is easy to conclude the proof.

We first obtain from (5) and (6) that there exists a unique continuous extension
We R* x E = E of the function Wy e R* x D — E. By (4), it suffices to extend
also the validity of the properties (a)—(f ) from D to E which is easily done by means
of the assumption (c). The property (g) is automatically satisfied by W as a con-
sequence of the definition (2) of the set D.

3.5. Proposition. Let A, A,, ..., A,eL*(E), ne{1,2,...},and We R* x E - E.If
(o) the operators A,, A,, ..., A, are closed,

(B) for every standard solution u for the operators Ay, A,, ..., A, such that
u®=1(0,) = 0, we have u(t) = 0 for every te R,

() the conditions 3.4 (a)—(d) are fulfilled,
then for every x € D(4,) n D(4,) n ... n D(4,) and for every te R™,

w(t, x) +é:1 G _1 1)![; (t =) W(r, A4x)dt = x.

Proof. For the sake of simplicity of formulas we shall write 4, = I.
By means of Lemmas 2.1—2.3 and of Proposition 3.3, we easily obtain from
(@) and (y) that

(1) forevery x e Eand I € {0, 1, ...}, the function

t
l—lj W(z, x) dr is continuous on R* and bounded on (0, 1),
0

R ¢
2 Mj W(t,x)dte D(4;) for every xeE, teR*, je{0,1,...,n} and
0

le{0,1,...},
(3) foreveryxeE,je{0,1,...,n}and I € {0, 1, ...}, the function

A; IHLJ" W(z, x) dr is continuous on R* and bounded on (0, 1),
0 .

n . 1
4) ZAJULIfW(T, x)drt =it~'x for every x€ E, te R* and 1€ {0, 1, ...}.
Jj=0 0 | S .
Let us now fix an x € D(4;) n D(4;) n ... n D(4,) and let us write

(5) w(r) =k§° I—IEJ.; W(r, Ax) d% — x for te R*.
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We conclude:

(6) the function w is continuous on R* and bounded on (0, 1),

.t
(7) uf w(t) dt € D(4;) for every te R* and je{0, 1, ..., n},
(o] t )
(8) the functions 4; ]J w(t) dt are continuous on R* and bounded on (0, 1) for
0

every j € {0, 1, ..., n),
) éoA,.' Jw(r)dr-— 54 Lf ( IW(O‘ Akx)da)dt—z L

=i iAj!L—ﬂcf W(t, Ayx) dt — Z Ax—-

j=0 k=0 j=o j!
=Y Y4 L—'[W(T,Akx)dr—z —Air =
k=0 j=0

k
_Z —Akx—z Ax—Oforevery teR™.
k=0 k! j=o0 j!

Let us now denote
T
(10) wo(t) = Mf w(z)dr for 1€ R*.
(1]

It immediately follows from (6)—(10) by virtue of Lemma 2.4 that w,, is a standard
solution for the operators Ay, 4,, ..., 4, such that wy'"(0,) = 0. Thus by (B),
wo(t) = 0 for every te R*. But accordmg to Lemma 2.4 we see at once that also
w(f) = 0 for every te R*. This fact together with (5) implies the assertion since
x € D(4;) n D(4;) n ... n D(4,) was chosen arbitrary.

3.6. Proposition. Let Ay, A,, ..., A,e L*(E), ne{1,2,...}, and let M, o be two
nonnegative constants. If
(@) the operators Ay, A,, ..., A, are closed,
(B) for every A > w, the operator A" + A" 'A; + ... + A, is one-to-one and
(AT + 2714, + ... + 4,) e L(E),
(Y) the functions A" + A""'A4; + ... + A,)”! are infinitely differentiable on
(@, ) for every ie{1,2,...,n},
__Mp!
(A w) p+1

IIA

14
) “(%; AL 4+ A4, for every

A>0,ie{l,2,..,n}and pe{0,1,...},
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then for every standard solution u for the operators Ay, A,, ..., A,, for every
teR* and for every ie{1,2,...,p},

t
J’ A;u" (1) de
0

< Me|u(0.)]

Proof. For the sake of simplicity we shall write
(1) RA) =T+ 24, + ... + 4,)7" for 4 > o.
Then by assumption (8)

(2 ”d ity R(A)“ ; forevery 4>, ie{1,2,...,n} and

Mp!
) p+
pe{0,1,...}.
Since clearly A"~! R(4) = EI - ZA" =14, R(%) for every A > w, we get at

once from (2) that

o) “ (- 1R(/l))“ < %+—’”‘)4)+—lj for every 4 > @ and pe {0, 1, ...

Now let u be a fixed standard solution for the operators A, 4,, ..., 4, which will
be examined up to the end of the proof.

We get from the properties 3.1 (a)—(e) and from the assumption (o) by means of
Lemmas 2.2, 2.4, 2.5, Proposition 3.2 and Proposition 3.3 that

t
(4) the function Llf u(t) dz is continuous on R* and bounded on (0, 1) for every
0
le{0,1,...},
! .
(5) Y| u(r)dre D(4;) for every te R* and 1€ {0, 1, ...},
0 i |
(6) the function 4, J‘ u(t) d is continuous on R* and bounded on (0, 1) for every
0

ie{l,2,...,n}and 1€{0,1,...},

1
u®~1(0,) for every te R*.

(7) u() +i=i1AiEj;u(r) dr = (nt—_l '

In virtue of Lemma 2.1, we deduce immediately from (o) and (4)—(6) that

®) J.:e“' (L’f;u(a) da) dre D(4)) and



T l_l T T ,_l T
A,-f e‘“( f u(o) da) dr =J‘ e‘“(A,- fu(a) do) dt for every T > 0,
0 0 0 0

AeR,ie{l,2,...,n} and 1€{0, 1,...}.

Multiplying (7) by e ™%, integrating from 0 to T and using (8) we can write

(9)J' ¢=5 u(c) dr + ZA-[ -“(LJ u(o)da) de —L - (n’"__ll)! dr u=9(0,)

for every T > 0 and A€ R.
Multiplying (9) by 4" and using Lemmas 2.15 and 2.16 we get

(10) f :e—h u(@)dr +
+i;l”"A,-|: J’ T u(e) de - e‘“Zl"‘k—+ u(o) dt]

0

= [ ‘“ Z (AT)] u®=1(0,) for every T> 0 and A€ R.
By means of (8) we obtain from (10) after rearranging the terms

T
(11) (W1 + 274y + .o + A,,)J e~ u(r) dr =
' 0 .

= u(n—l)(0+) _ —}.TZ (}‘T) u(u 1)(0 )+

n i—1 T )
+e Ty ¥ l"‘i’L"Ailki-—»l-J u(t)dr for every T> 0 and A€ R.
i=1k=0 0

Owing to (B) we can rewrite (11) in view of (1) in the form
(12) J e *u(r) dr = R(A) u"~V(0,) — Z ’”}J R(A) u®™~1(0,) +
n T .
+ 2 Z e AT I*E R(2) Aj‘k—_HJ‘ u(t)dr forevery T> 0 and 1 > o.
Jj=1k= 0
By Lemma 2.15 we get from (12) that
T l_l T
0 0
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n—-1 Tl .
- IZO —IT C_AT){" l R(;L) u("— 1)(0+) +

noi-1 - T
+ 3 Y e ATarmivk=i R(2) A,.@J' u(7) dr —
j=1k=0 °

i-1 T
- Ze'”l""b_—lj u(t)dr forevery T> 0, 1> w and i€ {1,2,..., n}.
r=0 0

It follows from (5), (8) and (13) that
(14) j Te“‘(AiEJtu(a) da) dt = 27 AR (1) uD(0,) —

=5 D emsmiot, R() w0(0,) +

i=o [!
n j—1 T

+ Y Y e ATnmitk-iy, R(/l) Aj\k_‘_—lj u(-z:) dt —
i=1k=o0 o

-1 T
- Ze‘")f"'Ai‘ilj u(t)dec forevery T> 0,74 > w and i€ {1,2,...,n}.
r=0

0

In virtue of Lemmas 2.10, 2.11 and 2.12 we get from (2), (3), (12) and (14) that

(15) u(t) = lim &' 1) (” + l)p“ \[dl" (A)}l u®=(0,) for every te R*,

P ® t

A=(p+1)/t
pt+1 p
(16) AH u(z) dr = lim =1’ (” + 1> l[d— (A"'AiR(/l))}] w0,
0 p>w p! t da? A=(p+1)/t
forevery te R* and ie{1,2,...,n}.
Writing
1 o
RG) =~ (1 RG))
and

—i U onim
ATA,R(A) = = (A"~714; R(%))
for A > wandie{l,2,..., n} wesee from (2), (3), (15) and (16) by means of Lemmas
2.11, 2.18 and 2.20 with s = n — 1 that

-1
17) lu@®)]| = (1 + nM e“"tn—- for every te RY,
1!

(n -
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-1
< Me“"——t:— forevery te R* and ie{1,2,...,n}.

(n— 1)

In virtue of Lemma 2.1 we easily deduce from (8) that

(19) J' :e"' (L’ J ;u(a) dcr) dre D(4;) and
A,.J:e-h(ﬁj ;u(a) da) dr = J’ :e“'(Ail—iJ' ;u(a) da) de for every 4 > @ and

ie{l,2,...,n}.

(18) ” 'f u(r) de

It follows from (7) and (19) that

o0
(20) (AT + A" 4, + ... + A,,)J. e *u(r)de =
0

= (+ Ay + .+;A>Jme‘“u(t)dt—
[J’ '“u(t)dr-l-ZAJ (Lf u(o')da) ]

I e [u(f) + ZA l-'[:u(a)do] dr =

= )."J. et T g u”~1(0,) = u"(0,) for every 1 > .
0

(n— 1)!

In view of (1) we can rewrite (20) in the form

(21) J‘ e *u(r) dr = R(2) u®~1(0,) for every 1 > w.
0

Now we easily obtain from (18), (19) and (21):

22) I:e"' (AiUJ:u(a) da) dr = 4, j:e"‘(l-if;u(a) da) de =

=274, J e u(t) dr = 474, R(2) u""1(0,)

0o

forevery 2 > w and ie{l,2,...,n}.
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On the other hand, we obtain by Proposition 3.3 that
(23) A,-I—l.ru(t) dr = A,BJ" u®"(r)dr =
0 0
= MfAi u®~9(r)dr forevery te R* and ie{l,2,..,n}.
0
According to Lemma 2.4 we see from (23) that

. ot
(24) the function A,-EJ‘ u(t) dr is (n — 1)-times continuously differentiable on R*,
0

dn—l
tn—l

OF

. t
(Ai '—lf u(t) dr) = J‘ A;u® (1) dr for every teR* and ie{l,2,...,n}.
0

0

By (2), (22) and (24), Lemma 2.14 is clearly applicable with
Li t
f(1) = 4, Ju(t)dr ands =n —1
0

and so we immediately get the desired result from the identity (25).
The proof is complete:

3.7. Remark. The case n = 1 in the above Proposition was proved by Ju. J. Ljubi¢
in [5], p. 30. The present generalisation for arbitrary n € {1,2, ...} is based on the
same idea, but brings about many technical difficulties.

3.8. Theorem. Let A,, 4,,..., A,eL*(E),ne{1,2,..}.If
(o) the operators Ay, A,, ..., A, are closed,

(B) there exists a dense subset Z < E such that for every x € Z, we can find a stan-
dard solution u for the operators Ay, A,, ..., A, so that u)"~1(0,) = x, '

(y) for every T > 0, there exists a K = 0 such that for every standard solution u
for the operators Ay, A,, ..., A, for every 0 <t < T and for every ie
€{1,2, ..., n}, the following inequality holds:

t
j. A;u"" () dr

0

< K[u=1(0.)] ,

then there exist nonnegative constants M, o such that for every standard solution u
for the operators Ay, A,, ..., A,, for every te R* and for every ie{1,2,...,n},

t .
j‘ A4;u" (1) dr

0o

< Meue=0(0,)]
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Note 1. The assumption (Y) can be formulated equivalently as follows:

(Y') for every T > O, there exists a K = 0 such that for every standard solution u
for the operators Ay, A, ..., A,, for every 0 < t < T and for every i€ {1, 2,...
..., n — 1}, the following inequalities hold:

[«*=2@)] = K[u"="(0.)]

13
J‘ A;u (1) de
0

< Kfu®=2(0,)[ .

Note 2. The conclusion of our theorem moreover implies:
[u"=D(@) = (1 + nM) e**||u®(0,)| forevery teR*.

Proof. For the sake of simplicity of formulas we shall write in the whole proof
A, =1

Further, we choose a fixed . nonnegative function K € R* — R such that the as-
sumption (y) holds for every T > 0 with the constant K = K(T).

By Proposition 3.4 we can fix a function We R* x E — E such that

(1) the function W possesses the properties 3.4 (a)—(f).

It follows easily from (1) by using properties 3.4 (d) and (f) that there exists a non-
negative function K, € R* — R such that

@ |4, J' W(s, %) de

je{0,1,,...,n}.

Now we prepare some auxiliary results and introduce some notations.
In virtue of Lemmas 2.1—2.3 we easily get from (1) (properties 3.4 (a)—(d)) that

< Ko(T) |x|| for every xe E, 0 < t < T and

. t
(3) uisj. W(z, x) dr e D(4;),
(V] .
. t ¢ Pt
Aj|J_+_sJ W(z, x) dt = '_SJ (Aj Uj W(o, x)da) dr for every xe€E, te R*,
0 0 0

je{0,1,...,n} and s€{0,1,...}.

Further, in virtue of Lemma 2.1 we get from (3) that’

) J' () (L——J W(o, x) da) dt e D(4;),
f or) (L2 W(a x)da de —J qz(r)( L_f W(o, x)da)
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for every continuous bounded function ¢ € R* — R vanishing outside of a bounded
subset of R*, for every xe E, je{0,1,...,n} and s€{0, 1,...}.
Further, we choodse a fixed function 9 e Rt - R such that

(5) 9is(n + 1)-times continuously differentiable on R*,
(6) 0= 9(t) < 1foreveryteR*, 9(t) =1for 0 <t=<1and §(t) =0 for t = 2.
Let us further denote

(7) L= Max (sup [89(1))).

je(0,1,.,n+ 1} teR*
Integrating by parts we get from (5) and (6) that

(3) JA e 9(r)dr = i(l +j e 7 9(z) dr) for every A > 0.
0

0

Further, it follows from (1), (5) and (6) in virtue of Lemma 2.7 that

©) f :e“‘ 8() (Lsf o (o, %) da) dr =
— (- 1)120 (;) (=) J' :e“' 3¢9 (x) (Lsﬂ J ;W(cr, %) da> dr for every x € E,

AeRand r,s€{0,1,...}.

After these preparatory technicalities we return to the proof proper.
The first step will be the proof that the operator Y A""/4; is one-to-one for
j=0
sufficiently large A.
First, according to (1), we can apply Proposition 3.5 and write

n g
(10) ¥ i W(t, A;x) dt = x for every x € D(4,) n D(4;) n ... n D(4,) and
i=0 Jo

teR™.

Multiplying (10) by e~** 9(z) and integrating over (0, c0) we get

(1) j‘:go J :e_“ 5() (UI (:W(a, 479 da) de =

=J e % 9(7) dr x for every x e D(4;) n D(4,) n...D(4,) and AeR.
o

It follows from (8), (9) with s = jand r = n — j and from (11) that
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(12) J.we"‘ 3(2) (lﬂ J tW(a,jgol"'jij) da) dr +

+z( 1y J"'z_l( : j)(—z)kfe-“s(n-f-w(r)(BJ;w(a, ij)da) de =

1(1 + J. e (1) dr) x for every x € D(4,) n D(4,) n ... n D(4,)
0

and 1 > 0.
Multiplying (12) by 1 and rearranging the terms we get

(13) j “‘9(1)<LJ W(o, 2,1" ia, x)da)d -

_ x_[_ L e §(1) dex —
_222(_1) "ij ( )( ),m-[ e~ gr=i=(y) (LJ W(o, A; x)da> ]

for every x € D(4;) n D(4,) n... n D(4,) and 1 > 0.

Immediately from (13) we get the following identity:

(14) x = — f:e-h $(x)dr x —

—2( 1) g ( j)(—A)k+1J:e“’3("‘f‘*)(r)@J;W(c,Apc)do)dt

for every x € D(4,) n D(4,) n ... n D(4,) and A > 0 such that
Zlﬂ‘jij = 0.
Jj=0

It follows from (1), (3) and (4) that

-j—-1

09 (B0 5 (") o [Cemaeag.

0

C-I W(o, Ax)da)dr) =§(—1) Z ( >( ap
‘J.o e™* 9071 70(x) (I J ( LJ. W(eo, 4;x) dg) da) dr for every

xeD(4,)nD(4;)n...n D(4,), AeR and re{0,1,...,n — 1}.
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The properties (2), (5), (6), (7) and (15) imply

16) |- ["er s ar - A,(:;‘)(— s () e

. L 64 go=i=b(y) (LJ W(o, 4,%) da) dr)

J’ e=% de L|dx| +

(T eyt

Sy () ),Ko(z)nAxn

< Lean] + (1 4P L2 K@ T [An] <
j=o
n—1
< [L% + 2" LKo(2) (1 + l)"e“] Y |4;x|| for every
j=o

xeD(4;)nD(4;)n...nD(4,), A>0and re{0,1,...,n — 1}.
It is now easy to see from (16) that there exists a constant w, such that

(17) wo 2 0,

(18) N—fe‘“ ¥(r)dt 4,x — A4, (I;I)(_ 1= :Z ( >( aas

. j :e~h g=3-0(r) (lf f ;W(a, 4%) da) dr)

x€D(4,) nD(4;) n...n D(4,), 2 > wy and re{0,1,...,n — 1}.

< i [4;x| for every

1
2n

It follows easily from (14), (17) and (18) that
(19) :Z: 4| < %:—g:[IAJx” for every x € D(4,) n D(4,) n ... n D(4,) and
A > w, such that iol"’fA x=0.
j= .
On the other hand, let us observe that, because 4, = I,

n—-1
(20) Y |4,x| = 0 if and only if x = 0.
1=0

24



But as an immediate consequence of (19) and (20) we have:

(21) the operator ) A"7JA; is one-to-one for every A > w,.
j=0

Now we proceed to the next step of our proof, namely, we shall try to find some
n

analytical expressions for the operator ( Y, A""74,)™! for sufficiently large 1 > w,.
ji=0
According to (1) we can write

n + Pt
(22) Y A4; LJ.[ W(t, x)dt = x for every xe€ E and te R*.
Jj=0 0

Multiplying (22) by e™** 9(z), integrating over (0, o) as permitted by (5) and (6)
and using (4) we get at once

(23) JZ::OA,- ( j :e‘“ 9(2) (Uj 0 (o, x) da) dr) _ J "o 9(c) de x for every

0
xeE and AeR.

It follows from (4) and (9) with s = jand r = n — j and from (8) that (23) can be
rewritten in the form

(24) éol"‘fAj ( j :e““ 5) Oﬁ j 0 W(o, ) do-) dr> +

n—1 n—j—-1 I ©
FL AL (M) e j e~ 9O I W)
j=o k=0 k o
(BJ. W(o, x) da) dr) = i(l +J e ™ ¥(1) dr)x for every xe E and 4 > 0.
0

0

Multiplying (24) by A and rearranging the terms we get

(25) j:;oi"‘fAj ( f " e 9(2) (‘ﬁj (:W(a, %) da) dr> —x- [- f “ek g(e) drx —

0 0o

k=0

J‘ R S () ('—'{[ W(a, x) da> dr)] for every x € E and 4 > 0.
]

Fera(E Do

0

For the sake of simplicity we define

(26) G() x = J " 1o 9(2) (lﬁj W(o, %) do-) d for x€E and ZeR,

0o 0
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(27) H(A) x = — re‘“ 9(x) dr x —:éj:(—n""f 4; (;gl (" ;’) (= Ayert,

9

. J.we"’ 9 =i=h(r) (IﬁJ”W(a, x) da) d’t) for xeE and AeR.
] 0

According to (26) and (27) we can rewrite (25) in the form
(28) é:ol"'fA, G(4) = I — H(2) for every AeR.

Now, we shall establish some necessary estimates for G and H.

We begin with the function G.
In virtue of Lemmas 2.4 and 2.6 we get easily from (1), (3), (4) and (26) that

(29) "7714, G(A) x = A, (j:/ln*"e“' 8(z) (\EJ: W(o, x) da) dr> =

. ( J‘:e_h (;1: (9(1) L’lj 0 W(s, x) da)) dr> -
([ 5l re))-

=y (" - i) J " e gamion(y) (Ai‘n—_—lf.[;W(a, x) da) d =

0

R S Ot

for every xe E, Ae R and ie{l, 2,...,n}.

It follows from (29) that

(30) T2 (1 4,G(2) %) =

“E( e (e wje)s

for every xe E, A€R, ie{lv_, 2,...,n} and re{0,1,...}.

Using (2), (5), (6) and (7) we get easily the following estimate from (30):

b N\ on—k=i
<y ( ) J’ e L2 Ko2)x] =
k=o \ k A — i)

(31) “i’ip (#7114, G(3) ) ; (n— &
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22"LK0(2) |x|| for every xe E, 2> 0, ie{l1,2,...,n} and

lp+ 1
pef0,1,...}.
The estimate (31) may be written, as is easily seen, in the form

d’ n—i-— p! n
@ | L0 ‘A,-G(A))l < 2L L)

forevery A >0, ie{l1,2,...,n} and pe{0,1,...}.

Let us now denote

(33) Hy(A) x = —J e *¥(r)drx for xeE and AeR,
0

09 1@ x =g a5 (M)
. J :e'“ g0=3-R(5) (lﬁf 0 W(o, x) da) dt) for every x € E and i€ R.

By (27), (33) and (34),
(35) H(2) = Hy(A) — H,(A) for every AeR.
Now we easily obtain with regard to (5)——(7) and (33) that

(36) < J. e * P dr L||x|
0

On the other hand, in virtue of Lemmas 2.4 and 2.6 it follows from (1), (3)—(7)
and (34) that

o1 s =g -0 4, (5 e () [T
(o sl
Fer (o (e
(;; (< Yo 2] ) ) -

eriger (DR

dp
l@ Ho(2)x
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. gn=i= D7) (A,. L”L W(o, x) da> dr =

e o (R0
. gni- Hl)()O”—’—’j (L'[ e, x)dg)do—)

for every x€e E and A€ R.

It follows at once from (37) that

o0

69 i@ =g -0 5 o () s () [
, g=i=re1() (U‘:’—’—’ j' t (A,. UJ:W(Q, %) dg) da> de

forevery xeE, AeR and pe{0,1,...}.
According to (2), (5), (6), (7) and (38) we obtain

n=1n=j=1 7, — R k41 on=1-j
< e * P dt L——— Ko(2) ||x]| £
—jgo k;o ( k )z;o ( 1 ),[o ¢ ( -1 - ])! 0( ) “ ” -

< P ok () x] = 2= ” - 2% LK,(2) ||

- Ap+l

(9 |75 10

for every x € E, A > 0 and pe{O, 1, ..}
It follows from (35), (36) and (39) that

) | H) x| 5

+ 2% Ko(2)) [x]

for every xeE, 2> 0 and pe{0,1,...}
But (40) implies |

o [

+ 2*"K(2)) for every A >0 and pe{0,1,...}.

Let us now denote
(42) ®,; = max (wo, [1 + L(l + 24n KO(Z))]‘I).
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It is clear from (42) that
(43) v, 2 w,.
Now by (41) and (42), we have
(44) |H(A)|| < 1 for every A > w;.
Summing up (21), (28), (43) and (44) we obtain the following basic relation:

(45) (;;A"'fAj)"l = G(A)(I — H(%))™* for every 1 > w,.

Let us now write
(46) N = L(1 + 2% K(2)),
(47) = max (o, N),
(48) M = 22" LK (2),

(49) R(%) =(i ATI4)7 for A > w,.

It is clear from (46)—(48) that
(50) © =0, M 2 0.

Taking now ¢(4) = M[4, Y(2) = —N[A, ®(4) = I"""'4,G(2), ¥(2) = —H(4)
for A > w in Lemma 2.9 we get from (32) and (41)—(49) that '

1) “a‘-‘{-p (A"“"‘AiR(A))ll <

s (= =y (5
dary{ A 1__ dAP A N
A
p! p!
=M —————_< M ———— forevery 1> o,
(,1 — N)p+1 - (A — w)p+l y

ie{l,2,...,n} and pe{0,1,...}.

We see from (o), (21), (42), (47), (49), (50) and (51) that all the assumptions of Pro-
position 3.6 are fulfilled and consequently, its application gives the desired result.
The proof is complete.

3.9. Remark. The preceding theorem shows that any system of operators 4, 4,, ...
. A, L*(E), ne{1,2,...}, satisfying the assumptions (o), (B) and (y) is correct

of class zero in the terminology of [1] or strictly correct in the terminology of some
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other papers of the author. The assumptions (B) and (y) describe the property which
is usually called (in more or less rough form) well-posedness of the problem in
question. .

The assertion of Theorem 3.8 is well-known for n = 1 and n = 2, 4; = 0, where
the functional equations characterizing semigroups and cosine functions of operators
are used to get the necessary estimates (cf. [2] and [3]). But similar functional equa-
tions are not known in the general case considered here, and they almost surely do not
exist. Therefore, the preceding proof had to be based on completely different ideas.
One of them, namely, how to express the generalised resolvent of the system 4, 4,, ...
..., 4, by means of a form of local (finite) Laplace transform of solutions, is due to
Chazarain [4].
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