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časopis pro pěstování matematiky, roč. 106 (1981), Praha 

DISTINGUISHING SUBSETS IN GENERAL ALGEBRAS 

IVAN KOPECEK, Brno 

(Received February 21, 1979, in revised form July 3, 1979) 

Distinguishing (also called disjunctive) subsets were considered for semigroups 
by E. J. Tully, Jr. [9], M. P. Schutzenberger [7], B. M. Schein [5, 6] and in a slightly 
different sense by R. Pierce [4]. M. Novotny [2] and H. J. Shyr [8] discussed dis­
tinguishing subsets for monoids with respect to their relationship to languages and 
J. Zapletal [10, 11, 12] considered them for some special classes of semigroups. 

In the present time languages are investigated not only as subsets of monoids but 
also as subsets of general algebras (see, for instance, [3]). Hence, it can be useful 
to generalize the notion of a distinguishing subset for universal algebras. This is the 
purpose of giving here a definition of distinguishing subsets in general algebras, 
which coincides with the original one for the case of semigroups. 

Some elementary properties of distinguishing subsets on general algebras are dis­
cussed in this paper. The necessary and sufficient condition for the existence of dis­
tinguishing subsets in unary algebras would be of interest for characterizing the 
existence of distinguishing subsets in general algebras (see 3.7). In this paper, this 
problem is solved for a special case — mono-unary connected algebras. 

I would like to express my thanks to Prof. M. Novotny. I am obliged to him for 
reading this paper and for many valuable suggestions. 

1. PRELIMINARIES 

Basic algebraic and set-theoretical notions are supposed to be known. Throughout 
the following text 'if and only i f is abbreviated as 'iff'. Proofs ot easily verifiable 
assertions are omitted. 

Set-theoretical terms and notations. R ^ S denotes that R is a subset of S. R cz S 
is equivalent to R £ S and R 4= 5. 

Let a be an equivalence on a set R. The factor set of JR by a is denoted as R/oc. 
If r e R, then [r]a is the element of R/a containing r. Hence, terms of the form [x]a, 
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where x E R, represent classes of the equivalence a. For L _ K we put: [L]a = 
= {[xjtixeL}. 

The mapping from R onto Rjoc defined by x i~» [x]a is denoted by nat (a). Con­
versely, the equivalence on the set R induced by a mapping f is denoted by ker(f). 

The empty set is denoted by 0. By id# we understand the identity on R (i.e., 
id^ = {(x, x); x E R}). 

Let f be a mapping from R into S and g a mapping from 5 into T Then gf denotes 
the composite off and g. If L _ S, thenf_1(L) = {x e R;f(x)E L}. 

By N, the set of all positive integers is meant. 

Algebraic terms and notation. An algebra will be denoted as a pair consisting of 
a support and a set of fundamental operations, for instance, A = (M, F). By x e A 
we shall understand XEM. We shall recall the notions of elementary translation and 
translation (see, for instance, [ l]) . 

1.1. Definition. An elementary translation on an algebra A = (M, F) is a function 
of the type 

where 1 _ i — n, f is an arbitrary operation from F and au ..., a^u ai+1, ..., an 

are arbitrary elements of M. A mapping g from M into M is said to be a translation, 
if g = idM or g can be obtained as a composite of a finite number of elementary 
translations. 

The set of all elementary translations on an algebra A will be denoted by EtA and 
the set of all translations by TA. 

The following assertion will be useful in what follows ([1], Theorem 6.1.). 

1.2. Proposition. Let A = (M, F) be an algebra and a an equivalence on the set M. 
Then the following assertions are equivalent. 

a) a is a congruence relation, 
b) a is closed with respect to EtA, 
c) a is closed with respect to TA. 

Letusrecal that the assertion b (c) means: for every (x, y)ea and g e EtA(TA) 
the condition (g(x), g(y)) e a holds. 

2. DISTINGUISHING SUBSETS IN GENERAL ALGEBRAS 

2.1. Definition. Let M be a set, a an equivalence relation on the set M and L^ M. 
We say that a saturates L, if L can be obtained as a union of a system of classes of the 
equivalence a. 
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2.2. Lemma. Let a be an equivalence on a set M saturating a subset L := M 
and P an equivalence on the set Mjcc saturating Ljcc. Let us denote /A = nat (a) 
andf2 -= nat(/?). Then ker(/2/i) is an equivalence saturating L. 

2.3. Definition. Let A = (M, F) be an algebra and L e A. We shall say that L 
distinguishes A if the following condition holds. 
(*): For arbitrary elements X J G M , x + j , there exists a translation / G T ^ such 
that exactly one of the elements f(x),f(y) belongs to the subset L. 

The set Lsatisfying the condition (*) is said to be a distinguishing (or disjunctive) 
(see [2], [6]) subset of the algebra A. 

2.4. Remark. Let us recall the definition of a distinguishing subset for monoids 
([2], Definition 1.1.): Let 5 be a monoid, L £ S its subset. We say that L distinguishes 
S if, for arbitrary elements x, y e S, x 3= y, there exist such elements u, v e S that 
either uxv e L, uyv e S — Lor uxv e S — L, uyv e L. 

Since translations on the monoid S are functions having the form x i—> wxt;, where 
w, v e S, it is seen immediately that Definition 2.3 is a generalized form of the above 
mentioned one. This means that for monoids, both definitions are equivalent. 

For the case of semigroups, the previous definition taking monoids can be used 
if it is supposed that u, v can be void symbols (see, for instance, [6]). Hence, our 
definition coincides wit the original one for semigroups, too. 

2.5. Definition. Let A = (M, F) be an algebra and L<=,M. We define the relation 
3iAL) on the set M by: 

(x, y) e 3{AL) iff for all / e TA, f(x) e L is equivalent to f(y) e L. 

2.6. Proposition. 3{AL) is a congruence relation on the algebra A. 

Proof. Clearly, 3iAtL) is an equivalence relation on A. Let feTA and (x, y)e 
€ 3(AtL). For each g e TA, the assertion gfe TA holds. Hence, the conditions gf(x) e 
e L, gf(y) e Lare equivalent for each g e TA. We obtain (f(x),f(y)) e 3(AtL), which 
by 1.2 implies that 3{AtL) is a congruence. 

2.7. Proposition. 3{AtL) saturates L. 

Proof. Let xeLand (x, y)e3(AtL). Since id^e TA and idA(x)eL, we have y -= 
= idA(y) e L. Hence, 3(AtL) saturates L. 

2.8. Theorem. 3(AtL) is the greatest congruence relation on the algebra A satura­
ting L. 

Proof. Assume a is a congruence saturating Land (x, y) e a. From 1.2, it follows 
that a is closed with respect to TA. Hence, (f(x),f(y))ea holds for a l l / e TA and, 
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since a saturates L, f(x) and f(y) simultaneously belong both to L or A - L. Hence, 
(x, y) e S{AtL). It means (x, y) e a implies (x, y) e S(AtL), i.e. a £ E(AtL), q.e.d. 

2.9. Proposition. Lis a distinguishing subset on an algebra A iff E(AL) = idA. 

2.10. Theorem. Let A = (M, F) be an algebra, L^ M, and a a congruence 
saturating L. Then the following assertions are equivalent. 

(i) a is the greatest congruence on the algebra A saturating L. 
(ii) L/a distinguishes Ajot. 

Proof. Let us denote ft = S(A/aL/oc), hx = nat (a) and h2 = nat (/?). Then ker (h2^i) 
is a congruence on the algebra A. From 2.2 it follows that this congruence saturates L. 
Hence, (i) is equivalent with the assertion ker (h2hx) £ a = ker (hx) = ker (h2 î)> 
i.e., ker (hx) = a = ker (h2h^). This is equivalent to the assertion that h2 is an in-
jective mapping, i.e., /? = id^/a, and this is, by 2.11, equivalent to (ii). 

3. DISTINGUISHING SUBSETS IN CONNECTED MONO-UNARY ALGEBRAS 

3.1. Notation. Throughout this section, we shall suppose that A is a mono-unary 
algebra with a support M and the set of operations consisting from one unary opera­
tion f. Further, we shall use the following notation. If x e M, then 

x° = x , 

xn =f(xrt_1) for all neN. 

3.2. Remark. Directly from Definition 1.1, it can be easily verified that the set of 
all translations on A coincides with the set of all functions of the type xi-^x""1, 
where neN . 

3.3. Definition. A is said to be connected, if for all x, y e M there exist m,neN 
such that xm = / . 

3.4. Definition. A cycle of a mono-unary algebra A is a subalgebra C of A such 
that there exists n e N satisfying xn = x for every x e C. 

3.5. Lemma. Let A be connected. Then the following assertions are equivalent. 
a) A includes no cycle. 
b) Each subalgebra of A is infinite. 

3.6. Theorem. Let A be connected. Then A includes a distinguishing subset 
iff there is no triplet of elements a, b, ceAa-j=b=t=c4=a, satisfying a1 = b1 = c1. 
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Proof, a) Assume there are elements a,b,ceM, a 4= b 4= c 4= a, satisfying 
a1 = b1 = c1, and let I? be a distinguishing subset of A. Then for each translation 
/ 4= idM, we have*/(a) = f(b) = /(c), and simultaneously two of the elements 
a, b, c belong to R or M — R, so that they cannot be distinguished by idM. However, 
by 2.3 this contradicts the assumption that R distinguishes A. Hence, if there is 
a distinguishing subset in A, there are no elements a, b, ce M, a 4= b 4= c 4= a, 
with the property a1 = b1 = c1. 

b) Let there exist no elements a, b, c e M, a 4= b 4= c =j= a, satisfying a1 = b1 = 
= c1. We have to prove that there is a distinguishing subset of the algebra A. 

bl) Let us suppose that there is no cycle in A and let z be an arbitrary element of A. 
The subalgebra generated by the element z will be denoted by P(z). From 3.5 it 
follows that P(z) is infinite (hence, zm 4= z" iff m 4= n). We put Rx = {z2n; n e N } . 
Further, we put R2 = {y; y $ P(z) and there exists x e P(z) — Rt such that x1 = y1}, 
and S = {{x, y}; x + y, x1 = y1 and {x, y} n (Pj u P2) = 0}- By t n e assumption 
(there are no elements a,b,ceM, a 4= b 4= c =# a, satisfying a1 = b1 = c1) and 
the axiom of choice there exists a set P3 with the following property: R3 "= U s and 

ses 

i R 3 n s contains exactly one element for each se S. The definition of S yields R3 n 
n (# ! u R2) = 0 and P3 n P(z) = 0. 

We shall show that the set R = Rx u R2 u P3 is a distinguishing subset of A. 
Let p, q e M, p 4= q. Since A is connected, there are numbers k1? k2, k3, k4 e N 

such that zkl = p*2 and z*3 = g*\ Let k = max (k2, k4). Then pk, qk e P(z). 
Assume pk = qk and let r be the smallest number satisfying pr = qr. Hence, pr~ 1 4= 

4= q.r_1. Assume further p r _ 1 , qr"1 "P(z). This means that there are numbers 
m 4= n satisfying p r _ 1 = zm, q''1 = z \ Then z" ,+1 = pr = qr = z" + 1 and this is 
a contradiction since A has no cycle. Hence, at most one of the elements p r _ 1 , qr_1 

belongs to P(z). Without loss of generality we can suppose that P(z) n {pr~ \ qr~x} = 
= {pr~x} if P(z) n {p r ~\ qr_1} 4= 0. Thus, the following cases can occur. 

1) pr~1^P(z). Then, as we assume, q""1 £P(z). Therefore p r _ 1 $ Rl9 qr~' <£ Rt. 
Since ^ r _ 1 is the only element different from p r _ 1 satisfying (qr~1)1 = (p7""1)1 and 
qr~1$P(z) - i^i holds, pr~xiR2 holds as well. Analogously qr~1$R2. This 
implies {p r ~\ qr_1} e S and therefore exactly one of the elements p r " \ g r - 1 is in 
R3!-R. 

2) p r _ 1 e P(z) and p r _ 1 e Pj. Then qr_1 $ P(z) and therefore qr~l ^Rv Further, 
p r _ 1 is the only element from P(z) satisfying (p1*-1)1 = (q1"1)1. Since p r _ 1 e Rl9 

we obtain qr_1 $ R2. Because of p r _ 1 eP 1 ? we have {p r ~\ qr_1} £ S and conse­
quently q9"1 <$ R3. 

3) pr~1eP(z) and p r"1^-R1 . Then a/-1 £P(z) "and ( p ^ 1 ) 1 = (q^1)1 implies 
4 r _ 1 eP 2 . Clearly, p r - 1 eP(z) implies p r _ 1 $R2andqr-1 e R2 implies { / " \ qr-1}£ 
£ S . Hence, p r _ 1 ^ J " 3 . 

From 1), 2) and 3) it follows that exactly one of the elements pr~~x,qr"~1 belongs 
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to R. Hence, if pk = qk, the condition (*) (2.3) is satisfied for the translation 
-1 

Now, assume pk #= qk and let pk = zv and qk = zw. Without loss of generality 
we can suppose w > v. Let us denote u = w — v. Let d be a positive integer satisfying 
d = 2 and 2d - 2d~1 > u. Then / + 2< d -» -» = z 2<-" e ^ s # a n d ^ + 2 ( ^ D - , = 

= z"-v+2i"1} = z2(d"1)+M t Rl9 whereby ^ + 2 < d - 1 ) - $ R2 u R3 because of 
(JR2 u K3) n P(Z) == 0. Consequently, q*+**-"-" £ R . Hence, the condition (*) (2.3) 
is satisfied for the translation x i-> xk+2id~i)~v. 

h2) Let a cycle C exists in ,4 and suppose Z e C. We put Rt = {Z} and S = 
= {{x, y}; x + y and x1 = y1 and {x, y] n Rx = 0}. By our assumption (there 
are no elements a, b, c with the property a + H c + a and a1 = b1 = c1), the 
axiom of choice and the fact that s $ C for each seS, there exists a set R2 with the 
following properties: K2 c: \J s, R2 n s contains exactly one element for each s e S, 

seS 

and K2 n C = 0. We shall show that the set R = Rt u R2 distinguishes A. Let 
p,qeM and P 4= q. Further, let k be the smallest positive integer satisfying pk, qk e C. 

Assume pk = qk. Let r be the smallest positive integer satisfying pr = qr. Hence, 
pr~x rj= gr~"\ Assume p r ~ \ qr_1 e C . Then there exists m 4= n such that p r _ 1 = 
= Zm and qr_1 = zn. This implies Zm+1 = pr = qr = zM+1. We obtain pr_1 = 
= 2m = zn = qr~\ but this is a contradiction. Hence, {Pr~\ a/""1} $ C. Without 
loss of generality we can suppose C n {Pr~\ qr-1} = {pr~x} if C n {Pr~\ qr_1} # 
=j= 0. Thus the following cases can occur. 

1) p'-i 4. z. Then {pr~\ q1"1} n Rx = 0 and therefore {pr~\ gr_1} e 5 . This 
implies that exactly one of the elements Pr~\ qr_1 belongs to R2. Hence, exactly one 
of the elements Pr~\ qr_1 belongs to R. 

2) pr~x = z. This implies {pr~\ ^r~1} £ 5, i.e., ^ r~1 ^ i*2. Hence, exactly one of 
the elements Pr~\ gr_1 belongs to R. 

From 1) and 2) it follows that if pk = qk, the condition (*) (2.3) is satisfied for the 
translation x h-> x r ~ \ 

Assume pk =)= qk and let u be a positive integer satisfying pk+u = z. Then qk+u #= z. 
Hence, J* distinguishes A because R2 n C = 0 implies #k+M £ j ^ . This completes 
the proof. 

3.7. Problem. Find a necessary and sufficient condition for the existence of distin­
guishing subsets in general unary algebras. Since a distinguishing subset is defined 
by means of translations and those are unary operations, solution of this problem 
would simultaneously characterize the existence of distinguishing subsets in general 
algebras, as far as the set of all translations could be suitably described. 
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