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ČASOPIS PRO PĚSTOVÁNÍ MATEMATIKY 
Vydávd Matematický ústav ČSAV, Praha 

SVAZEK105*PRAHA24.11.1980* ČÍSLO 4 

CONCERNING THE CHARACTERIZATION 
OF GENERATORS OF DISTRIBUTION SEMIGROUPS 

MIROSLAV SOVA, Praha 

(Received August 8, 1974, in revised form November 23, 1978) 

In the first part of this paper we prove a new characteristic property of generators 
of distribution semigroups of operators using only the behavior of their revolvents 
on the real halfaxis. It is similar to that of OHARU [1] but does not involve the graph 
spaces of powers of the generator (Theorem 1.2). 

In the second part, we prove the necessity of the above mentioned property directly 
from Chazarain's condition [2] on the behavior of the resolvent in a logarithmic 
domain of the complex plane (Theorem 2.5 and 2.7). 

In the sequel, E will be an arbitrary Banach space over the real R or complex C 
field (real in the first and complex in the second part). 

If A is an arbitrary linear operator from E into E9 we define formally A0 = I, 
I being the identity operator. 

1. SEMIGROUPS AND RESOLVENTS 

1.1. Lemma. For every X > 1, r e {1, 2,...} and p e {0,1,...} we have 

d" 1 
dЛpAr 

< * ! 

~ ( A - l ) p + 1 

Pгoof is easy. 

1.2. Theorem. Let A be a linear operator from E into E. Then the following two 
statements are equivalent: 

(O) there exists a constant x ^ 0 such that 

(I) (*, oo) c= e(A), 
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(II) for every T > 0 there exist k e {0, 1, .;..-} and KS= 0 such that 

\\(kl - A)~n x\\ £ K \ Y.l^xl. for..every n e { 1 , 2 , . . . } , 
(k — xy j=0 

and x e D(A*), 

(C) there exists a constant co _ 0 such that 

(I) (co, oo) £ Q(A), 

(II) for every T > 0 there exist I e {0, 1, ...} and M _ 0 such that 

*L1 
dX"X 

- ( Я / - A ) - 1 Mp\ 

(X - ю) ,p+ 
- for every p e {0, 1, ...} and 

я > ІL+І + «,. 

Proof. For the sake of simplicity we shall write R(X) = (kl — A) x for every 
keQ(A). 

It is well-known that 

(1) A R(n) = p. R(pt) — I for every \i ep(A), 

(2) —-R(j*) = ( - l ) p p ! ^ ( i " ) p + 1 for every ^GQ(A) and pe{0, 1, ...}. 
dfAp 

Now we begin by proving (O) => (C). 
Using (1) we easily obtain by induction on s that 

(3) -i R(k) = R(k) K(a)s - a R(k) £ ~ K(a)s+1"r - £ 1 £(a) s + 1 ' r for every 
A r = 1 k r—\ k . 

k e Q(A), k # 0, a e Q(A) and s e {1, 2, . . . } . 

Let us now choose x = 0 so that (O) holds. 
Let T > 0 be fixed. 
For this T > 0 we can find k e {0, 1,...} and K = 0 such that (O) (II) holds. 
The case k = 0 is trivial according to (2) and therefore we suppose,/c e (1, 2, . . . } . 

k 

We write |flx||| = Y \\Ajx\\ for x e D(A*). 
ill III -—-' II II \ ' 

j-=0 

Then we have according to (2) that 

dp 
Í4) 

(5) 

R(X)(x) ——- ||x|| for every p e (0, 1, . . . ) , X > — 1- x, and 
(X - x)p+l '" "' T dXp 

X E D ( 4 

Using (4) we get by means of Lemma 1.1 that 

d" 1 

о^Я' 
RЏ)(x) 

p ÍЋ\ âp 1 àp~q 

І Г ) — - — Я(А)(x) 
^oVWdЯPЯ^dЯ"-* w w 

< 
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< y (P\ _ i L _ _ K(P ~ <?)! y i = 

-qh\qJ(A- i)«+ 1(A-*r , + 1 " 

" / ř A _J ( p - g ) ' . j | | x | _. 
_"*~\ n I í ^ .. i\a+ 1 I i . . 1 \i»-a+ 1 ''i K\\q)(Å - % - i)«+1 (A - и - i ) p " 4 + 1 

-=(-i>---±r^d" * dP" x 

«= •oW -U« A - M - 1 dA"'* A - » - 1 

(-'ľ-Í.̂ И-*- p! 

d A * ( A - x - l) 2 l i l l!l ( A - x - 2 ) * + 1 ,n *' 

for every x e D(Afc) , re {1,2,.-..}, p e {0, 1, >..} and A > ~-i-~ + * + 2. 

Let us now fix an arbitrary a e Q(A). 
It follows from (1) that there exists a K0 _̂  0 such that 

(7) |||K(ay jcJU _g K0\\x\\ for every x e E and j e {0,A,..., k). 
It is clear that (7) also implies 

(8) ||K(a)Jxl| _SKo||*|| for every x e E and j e {0, 1,..., k}. 
Now by (3), (4), (5) and (7), (8) and by Lemma 1.1 

(9) ^ І R ( A ) x 
dp A* W -- - KPІ ,K0Ы + afc J^ КolNI + 

_ ( A - и ) p + 1 °" " ( A - x - 2 ) p + 1 0 | 1 " 

+ k—^— K0H<^ + a f c x + fc)^!iHi 

( A - l ) * + 1 °!l " " ( A - % - 2 ) * + 1 " " 

for every x e E, p e {0, 1,....} and A > h x + 2. 

Taking co = x + 2, / = k, M = (K + akK + k) K0 we see that (9) proves (C) 
because T > 0 was arbitrary. 

We return to the verification of (C) => (O). 
It follows from (1) that 

(10) R(X) - - R(X) A - - 1 for every A e e(A), A * 0. 
A A 

Using (10) we prove easily by induction on s that 

(11) R(X)^-sR(X)As -j] ~r

Ar~1 for every Xeq(A), A + 0 and se{l,2,...}. 
A r= 1 A 

Let cw __: 0 be such that (C) holds. 
Now we fix a T > 0. ' 
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For this T > 0 we can find / e {0, 1,...} and M = 0 such that (C) (II) holds. We 
omit the case I = 0 which is trivial according to (2) and therefore we suppose 
/ e{ l , 2 , . . . } . 

It follows from (1) and (11) by means of Lemma 1.1 that 

(12) \\RW> 4 = 

i 

1 A " ' 1 II 

( - l y - i — i — i_-R(X)x\\ = 

v ' ( n - l ) í d A " - 1 w || 

dA""1 W I ~ (n - 1)! [ (X - co)" " " 

( » - 1 ) : 

+ t^iiA'~'4]-(^TrhlA'xl for every "s{1'2-'}-
A > - + co + l a n d x e D(Al). 

Taking x = co + 1, fc = I and K = M we see that (12) proves (O) because T > 0 
was arbitrary. 

1.3. First Characterization Theorem. Lef A be a linear operator from E into E. 
Then the operator A is the generator of a regular distribution semigroup if and only 
if it is densely defined and possesses the property (C)from the preceding theorem. 

Proof. Immediate consequence of Theorem 1.2 and Oharu's results from [1]. 

1.4. Remark. The advantage of the property (C) from the above theorems con­
sists in the possibility to extend it to a characteristic property of the correctness of 
the Cauchy problem for abstract higher order equations — see Part 2 and compare 
[2]. The Oharu method in this case brings about certain hardly surmountable dif-
ficutlies. 

2. RESOLVENTS IN COMPLEX AND REAL DOMAINS 

2.1. Sublemma. 1/(1 - £) ̂  e2* for every 0 = { g £. 

Proof. The function e"2<:(l/(l — <!;)) has the value 1 at the point £ = 0 and the 
value 2e~x < 1 at the point £ = \. Hence it suffices to prove that it is nondecreasing 
in the interval <0, i>. But this is clear because its derivative is nonnegative. 

expŕ-гč iog i^ i ) 
»• ^ т-T-śl fo 

Í-2Č + (l + c)Є 

2.2. Sublemma. '- ̂  1 for every c > 0 and <{; >. + . 
' 2£ + (l + c){a 
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Proof. Let c > 0 be fixed. The roots of the polynomial 1 - 2£ + (1 + c) S,2 are 

~+~c ~ J\\T+~c) ~ 1 + c) ~ 1 + c ~ 1 J \l + c ~ (1 + c)2J ~ 1 + c ~ 

Vc 
+ І 

1 + c 

Consequently, the function 1 — 2£ + (1 + c) £2 is positive on R and 

1 - 2Í + (1 + c) Є - (1 + e ) ( { _ - J _ _ i _ _ Ц ( - _ _ _ + ,___Л 
V Я 1 + c 1 + c)\ 1 + c 1 + c) 

Thus we have 

(i) 
i 

_:(1 + C)_V_____V___ _____ for every £ e R . 
~ V ^1 + c l + c 1 + c 

< for every {eR. 
1 - 2£ + (1 + c) ¥ ~ c 

On the other hand, 

(2) 
/ _ . , l + c\ / c \ 2 i t c V*"1 c _-' c •• exp [ - 2Č, log ) = [ ) = [ I __ for every 
V c ) \\ + c) \l + c) 1 + c 1 + c 

Now (1) and (2) give the desired estimate. 

2.3. Lemma. 
i 

i 

p + i 
< e(Z+log(l + -2))Re_ 

P + l 

for every a > 0 and Re z g; 0 such that 

|Im z| ^ - Re z 
a 

and for every pe{0,1,...}. 

Proof. Let a > 0. 
We can write 

(i) 
i 

i -
л + iß 

p + 1 1 (p+D/2 

\ p + ì) +\P + Í) p + 1 

for every a,PeR and p e {0,1,...}. 
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Taking £ = a/(p + 1) in Sublemma 2.1 we see from (1) that 

(2) 
1 

1 
a + iß 

P + l 

p + i \ p + i 

-\ _ 
1 

p + 1 n + 1 
g e2a for every O ^ a g ^—— , 0 e R 

+ 1/ 

and pe {0, 1,...}. 
On the other hand, we have 

(3)f1_____y+f_-__y=f1-____y+if___y = 1_2___+ 
V P + V \P + V \ P+lJ a2\p + \) p + 1 

+ l__^y+_.f___y_1_2_^ + f1+j_v___yforevery 
VP + 1 / a2\p+lj p + 1 V « 7 \ P + 1/ 

a ^ 0 and /? e R such that |/?| _ - a and for every p e {0, 1,...}. 

It follows from (1) and (3) that 

(4) 
1 
<x + iß 

p + 1 

p + i , (p+D/2 

)SGR such that |/?| ^ - a and for every pe {0, 1,...}. 

for every a = 0, 

Now we obtain from (4), taking £ = a/(p + 1) and c = l/a2 in Sublemma 2.2, 
that 

(5) 
1 

1 -
a + iß 

p + i 
_ e«

Io*(1+a2) for every a £ - H , IjSl £ - a and p e (0, 1,...}. 
2 ' ' a 

P + 1 

Summing up (2) and (5) we get at once 

1 

1 -
a + iß 

p + i 
^ e(2+log(1+fl2))a for every a £ 0, |/}| ^ - a and p e {0, 1,...}, 

P + 1 

which is the desired result if we take Re z = a, Im z = /?. 

2.4. Proposition. Let /l be an open subset of C and R a mapping of A into E. 
If the function R is analytic in A and if there exist a __ 0, £>__(), ___^0 and v __ 0 
so that 

(a) {z : z e C, Re z > a log (1 + |lm z\) + b} _= /l, 
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(P) ||K(z)|| = K(l + |z |) v/0r every zeC such that Re z > a log (1 + |lm z\) + b, 

then there exist M = 0, co = 0, x e {0, 1, ...} and m e {0, 1, ...} such that 

(a) (o>, oo) = A, * • . 

(b) 
d" 1 

dД" F r + m - m ^ ) 
Mp 

(Я - ш)' 
— /or every T G {1, 2,...}, A > co and p e {0,1, ...} 

such that k > h co. 

Note . If the constants a _ 0, b = 0, K = 0 and v > 0 are given so that the 
assumptions (a), (P) hold, then the constants M = 0, co = 0, /e{0, 1, ...} and 
m e {0, 1,...} can be chosen, for example, in the following way: 

M = T K ^ + a ) , co = b + 2 , x - 1 < 4a + 2 log (1 + a2) = x , 
2 . . . . . . 

m — l < v + 2 _ ^ m . 

Proof. Let us first fix constants a=0, b = 0, K = 0 and v = 0 so that the as­
sumptions (a) and (P) hold. 

For the sake of simplicity we shall denote 

(1) Q = {z : Re z > a log (1 + |lm z\) + b), 

(2) r = {z : Re z = a log (1 + |lm z\).+. b + 2}, 

(3) co = 6 + 2. 

Further, we need the function 

(4) z({) = a log (1 + |f |) + 6 + 2 + if for { G R. 

It is clear from (1), (2) and (4) that 

(5) r = {z({) :£eR}czQ, 

(6) z'(c) = ^ - | + i for every { e R. 

Regarding (1) we can rewrite the assumptions of Proposition 2.4 in the form 

(7) the function R is analytic in Q, . 

(8) \\R(z)\\ = K(l + \z\)v for every z e Q. 

It is easy to prove from (1) —(3), (7) and (8) by means of Cauchy's integral theorem 
that 

dP * R(X\^. Plf ^ (Z) dz 
d A ^ / + v + 2 W 27liJrZ

/ + V + 2 ( z - ^ + 1 

for every A > co, / G {0, 1,...} and p e {0, 1, . . . } . 
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This identity can by written in the following form used below: 

(k - a>y+1 6S 1 
p \ dX" A' 

(9) 
l í + v + 2 W 2 m J r z ' + v + 2 V z - A j 

for every A > co, I e {0 ,1 , . . . } and p e {0, 1 , . . .} . 
Let us recall that, as is well known, 

r°° 1 
(10) — - « * ! = *. 

J-ooi + r 
Further, (4) and (6) immediately imply 

(11) 1 + l y ) l = 2 , |z(^)| = V(2-f-^), |z'(£)| = l + a for every ^ R . 
Z\S) 

Let us now consider the case a = 0. 
In this case we have 

A — æ 

*«) co 

Å — CD 

z(£) — ш — (A — ш) 

A — co 

ІÇ - (A - ю) 
A — ш 

[(Я - ш)2 + £ 2 ] 1 / 2 < 1 

for every A > co and <!; e R and consequently 

(12) A — ш 

<€ ) - co 

P+1 
g 1 for every k> co and <!; e R. 

Let us denote by m an integer such that 

(13) m - l < v + 2 = m. 

It is clear from (11) and (13) that 

1 
(14) 

(15) 

. , xl „ < 1 for every { e R. 

W)\m—2 -
It follows from (4), (5) and (8)-(14) that 

| ( A - < o ) p + 1 d" 1 
I p\ dkp km R{X) _ | 1 Г RШ)ґl-a>У"_, 

2яi 
r^/^я-^y- II 

_ £ f ( i + Koird ť<£r _ ^ d í < 
- t o j . . K0|'« í-.2rtJ_002 + ̂ 2 \ -

— I 2 ^ — ^°r eVefy ^ > ^ ailC^ P e {0, 1, • • •}• 
2rc J -oo 1 + Č 2 

Now we suppose a > 0. 
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We easily see from (3), (4) and (6) that under this hypothesis 

(16) Re z(£) - co ^ 0 and |lm (Z(£) - co)\ ^ - Re (Z(£) - co) for every { e R. 

Using Lemma 2.3 we obtain from (16) that 

(17) CO 

# ) 

P+Í X — co i p + i 

z(í) - ш - (Я - Û>)| Z(<_) - <o\ 

X — ш 

P + i 

ď + i) 
# ) ~ в> 

co 
P + l 

'+1 ^exp Г(2 + Юg (1 + «')) (p + a M - f f l - " ) ] 
L Я — co J 

for every ^eR, A > a> and pe{0,l,...}. 
For the sake of brevity let us now denote by x &n integer such that 

(18) x- K 2 { [ 2 + log(l + a2)]a} _S x . 

It follows from (4), (6), (17 and (18) that 

X — co 
(19) 

z({) - A 

+ 1 ^expfc + log(l + .-))(p + l) f l l ° g ( 1 + i ^ 1 = 
L A — co J 

= (1 + |̂ |)(X/2)((P+I)/(A-CO» for e v e r y £ G R, A > c0 and p e {0,1,...}. 
Finally, let us recall two elementary facts: 

(20) I ± J - d < l for every { e R; 
v 2 + e • 

(21) - ^ - i _$ 1 for every T > 0, X > co and p e {0,1,...} such that 
T(A — c0) 

X > + ca. 

(22) 

Using (4), (5), (8)—(11), (13), (14) and (18)—(21) we obtain 

p! dXp X*T+m v ' 

\\±r ^(-(l))/A-a>Y+1
z^)d, 

|2i.iJ_-_(€)-r+-Uí)-A1 ^ 

-LP0 

2*J-C 

N-(Ш 
ш\ят+y+г ш*-*-

X — co ИflИíã, 
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-27tj_ ro(V(2 + { 2 ) r + 2 | z ( a r " . 
= _ _ ( L + _ _ ) r / i + K g ) i v ( i + |c?[j<-l->«'+'>':<--m» i 

2̂  J-A KOI / w + a r 2 + ^ \ = . 
K(l + a) r (i + |t;|)<-'v->«>+*>/<»•<--»>>> i 

- 2n J - ^ (2 + ^2Yr/2 , l + £ 2 

_ r x ( i + a ) r (i + \z\yT<2 I 
, - 2* J_00(2 + ^ r / 2 l + ̂ 2 -

£ 2 ' iC( l + a ) r 1 2"_:(l + a) 

2ic J_ool + ^2 " 2 

for every Te {1, 2,...}, X > co and pe {0, 1, ...} such that X _ (p + 1)/T + to. 

The statement of our proposition follows from (l), (2), (6), (13), (14), (17) and (20) 

if we take M = 2V K(l + a)/2. 

2.5. Theorem. Let A be a linear operator from E into E. If there exist a ^ 0, 
b _ 0, K _ 0 and v _ 0 such that • 

(a) {z : z e C, Re z > a log (1 + jlm z\) + b) _ Q(A), 

(p) ||(_f - i4)_1 J _ K(l + \z\)v for every zeC such that Re z > a log (1 + |lm z\) + 
+ b, 

then the following condition is fulfilled: 

(D) there exist M }> 0, co ^ 0, x e {0, 1,...} and me {0, 1,...} such that 

(a) (G>, OO) __ Q(-4), 

d> 1 
dЛ" Л*74 

Mp! (b) i__ m - A)"1 < ť " /or euer/ Tě {1, 2, ...}, A > co and 
V ' \\A1P nT + m V 7 — Z] _ „Ap + 1 y ' l J (Я - co) 

n J- 1 

P e {0, 1,...} sucft that X J> + a>. 

Proof. Let us denote A = Q(A) = the resolvent set of the operator A and R(z) = 
= (zl — At)""l for z € Q(A.). It i_ well known that the set A is open and the funclion R 
is in this case analytic on A. Thus our theorem immediately follows from Proposi­
tion 2.4. 

2.6. Remark. The converse of Theorem 2.5* provided the operator A is densely 
defined, follows from Oharu's results in [1] and from Theorem 1.2. A direct proof 
of this converse is not known to the author. It would be desirable to construct a proof 
not involving sufficiently "smoth" elements, i.e., elements of higher powers of the 
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operator A, which is not convenient in particular if we consider the Cauchy problem 
for equations of higher degrees (cf. [2] and the following Theorem 2.9) because in 
this case great difficulties arise connected with the use of "smooth" elements produced 
by many noncommutative unbounded operators. 

2.7. Second Characterisation Theorem. Let A be a linear operator from E into E. 
Then the operator A is the generator of regular distribution semigroup if and 
only if it is densely defined and possesses the property (D) from the preceding 
theorem. 

Proof. Immediate consequence of Theorems 1,3 and 2.5 and of Oharu's results 
from [1], . . - . • , . , . 

2.8. Remark. For regular distribution semigroups it is possible to prove the 
following growth property (D'), similar and closely related to the property (D) 
from Theorem 2.5. 

Let £>(R) be the linear space of infinitely differentiable real-valued functions on R 
with compact support. 

If-&~, as a mapping 0/X)(R) into L(E), is a regular distribution semigroup, then 
(D') there exist M ^ 0, co ^ 0, x ~ {0, 1,...} and m e {0, 1, ...} such that 

||̂ (<p)|| ^ Me^sup(j^<^+->(0|) 

for every Te {1, 2,...} and (p e £>(R) satisfying support (cp) £ (-^oo, T]. 

2.9. Theorem. Let At, A2,..., An, ne{l , 2,. . .}, be linear operators from E 
into E. If the operators Au A2,..., An are closed and if there exist a ^ 0, b ^ 0, 
K ^ 0 and v ^ 0 such that 

(a) znI + zn~1A1 + ... + Anis a one-to-one operator and its inverse is everywhere 
defined and bounded for every Re z > a log (l + |lm z|) + b, 

(P) \AlfI + zn~lA1 + ... + An)~
l\ ^ K ( l + \z\)v for every i e{ l ,2 , . . . , n} and 

for every z eC such that Re z > a log (1 + |lm z|) + b, 

then there exist M ^ 0, co ^ 0, / e {0, 1,...} and m e {0, 1,...} such that 

(a) knI + An"1A1 + ... + An is a one-to-one operator and its inverse is every­
where defined and bounded for every A > co, 

(b) l——zr-Mx'1 + ^"~1A1 + ... + A,)-1 Mp\ 
for every Te (Å - co) ,p+l 

e {1, 2,. . .}, A > co and p e {0,1,...} such that A > (p + i)JT + co and for 
every i e{ l , 2,..., n}. 

Proof. Let us denote by A the set of all z e C such that znI + zn" lAl + ... + An 
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is a one-to-one operator and its inverse is everywhere defined and bounded. More­
over, let us write R0(z) = (zrtI + zn~1Al + ... + A,)"1 for every zeA. As proved 
in [3], the set A is open and the functions R0, AiR0,..., AnR0 are analytic in A. 
Taking now R = ^ K Q for a fixed i e {1, 2,.. . , n} we can apply Proposition 2.4 and 
our theorem follows. 

2.10. Remark. The author does not know whether the converse of the preceding 
Theorem 2.9 holds in any form 

2.11. Remark. The definitions of the so called logarithmic domain — cf. (1) 
in the proof of 2.4 — vary in [l] , [2] and in the present paper. It seems that our defini­
tion is the simplest one nad it is possible to verify that all three are essentially equi­
valent, i.e., a logarithmic domain of one type can be immersed into that of another 
type with an unimportant change of parameters. 
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