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Časopis pro pěstování matematiky. roČ. 105 (1980), Praha 

EXISTENCE OF GENERALIZED SYMMETRIC RIEMANNIAN 

SPACES WITH SOLVABLE ISOMETRY GROUP*) 

MILOS BOZEK, Bratislava 

(Received June 23, 1978) 

The first existence theorem on generalized symmetric Riemannian spaces was 
proved by LEDGER and OBATA in [8], 

Theorem A. For every integer k ^ 3 there is a compact generalized symmetric 
Riemannian space admitting a regular s-structure of order k and not admitting 
a regular s-structure of order 2. 

This result was strengthened by KOWALSKI, see [4]. 

Theorem B. For every integer k ^ 2 there is a compact generalized symmetric 
Riemannian space of order k such that the identity component of its full isometry 
group is semi-simple. In particular, if k g; 3, then such a space does not admit 
regular s-structures of orders I = 2,..., k — 1. 

The main result of this paper is in a sense dual to that of Kowalski. 

Main Theorem. For every even integer m ^ 4 there is an irreducible generalized 
symmetric Riemannian space of order m diffeomorphic to R m _ 1 and such that the 
identity component of its full isometry group is solvable. 

1. GENERALIZED SYMMETRIC RIEMANNIAN SPACES 

We shall make use of the terminology of the paper [3]. All differ enti able manifolds, 
mappings, tensor fields, etc. are of the class C°°. 

Let a connected Riemannian manifold (M, g) be given and let x e M . A sym­
metry at x is any isometry sx of (M, g) such that x is an isolated fixed point of sx. 

*) I am grateful to Dr. O. KOWALSKI for his valuable hints and comments. 
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A regular s-structure on (M, g) is a family {sx | x e M} of symmetries of (M, g) 
briefly denoted by {sx), for which the following condition is fulfilled: 

(R) For every x j e M w e have sxo sy = sz o sx, where z = sx(y). 

Any regular s-structure {sx} on (M, a) determines a tensor field S of type (1,1) 
defined by Sx = (s*)*^ for all x e M. The tensor field S is called the symmetry tensor 
field of {sx}; this tensor field is differentiable, see [3], Theorem 1. 

A regular s-structure {sx} on (M, g) is said to be of order k, if k is the least integer 
for which (sx)

k = /d for all x e M. 
A Riemannian manifold is called a generalized symmetric Riemannian space, 

shortly a g.s. space, if it admits at least one regular s-structure. Theorem 2 in [3] 
says that there is a regular s-structure of finite order on every g.s. space. The order 
of a g.s. space (M, g) is the least integer k such that (M, g) admits a regular s-structure 
of order k. 

Finally, a regular s-manifold is a triple (M, g, {sx})9 where (M, a) is a g.s. space 
and {sx} is a fixed regular s-structure on (M, #). 

2. THE ISOMETRY GROUPS OF A CERTAIN CLASS OF G.S. SPACES 

Let (M, g) be a g.s. space and let o be a fixed point of M. We are going to use the 
following notation: Vis the tangent vector space T0(M), I(M) is the full isometry 
group of (M, g) and /(M, 0) its isotropy subgroup at o, l(M)° is the identity com­
ponent of l(M). It is known that the group I(M) acts transitively on M, see [8], 
Theorem 1. Hence every g.s. space is a Riemannian homogeneous space. Particularly, 
the mapping n : l(M)° -> M defined by n(a) = a(o) is surjective and locally trivial. 
Finally, let ft denote the image of the linear isotropy representation of/(M, o) in V 
and I) its Lie algebra, ft is a group of linear transformations of V which is naturally 
isomorphic to /(M, 0). 

In this section and in the next one, we shall investigate g.s. spaces with a finite 
group /(M, o). We shall call such spaces g.s. spaces with a finite isometry group at 
a point. The following assertions are equivalent: The group ft is finite; § = 0; 
7i :/(M)° —> M is a covering; n*fl : Tt(l(M)0) -» Vis a vector space isomorphism. 

Throughout this section, (M, g) always denotes a g.s. space with finite isometry 
group at a point. 

There is exactly one Lie algebra structure on Vsuch that n*tl is an algebra isomor­
phism. Recall that there is a scalar product g0 on the algebra V. Let us denote by L 
the group of all isometric automorphisms of the algebra Vand put L = {A e L | Av =f= 
4= v for v * 0}. 

The main purpose of the present section is to prove the following two theorems. 

Theorem 1. The identity component I(M)° of the full isometry group l(M) of 
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(M, g) is a solvable group. If M is simply connected, then I(M)° is diffeomorphic 
to M. 

Theorem 2. For (M, g) simply connected, the map {sx} h-> S0 is a bisection between 

the set of all regular s-structures on (M, g) and the set L. 

First we shall need some preliminary results. 

Lemma 2.1. For a simply connected (M, g), the projection n : I(M)° -> M is 
a diffeomorphism. 

Proof. The projection n is a covering. This covering is trivial, because M is 
simply connected. Our assertion follows now from the connectedness of both spaces 
I(M)° and M. 

Proposition 2.1. ft c L. ft = Lif M is simply connected. 

Proof. Clearly, every element of ft is an isometry of the vector space V. To prove 
that it is also an automorphism of the algebra V, let us consider a transformation / 
of I(M)° for every feI(M, o) defined by J(a) = / o a o /" 1 for each a el(M)°. / i s 
an automorphism of the group l(M)° and n 0 / = / 0 n, therefore /*,«,= n*ti 0 /* t l 0 

o (fl*,!)""1 is an automorphism of the algebra V, and ft cz L. 
Now, let M be simply connected and let F be an arbitrary element of L. The map­

ping F = (rc*^)-1 o F o n*tl is an automorphism of the Lie algebra V. By Lemma 
2.1, the group I(M)° is simply connected, therefore there is an automorphism / 
of I(M)° such that J*tl = F. Since F preserves the scalar product g0, J preserves the 
left-invariant metric n*g. Hence / is an isometry of (I(M)°, n*g) and the map / = 
= n o /o TT"1 is an isometry of (M, g). Clearly/*>0 = F, i.e. F eft. 

Proof of Theorem 1. Let {sx} be a regular s-structure on (M, g). By Proposition 
2.1, the corresponding S0 is an automorphism of the algebra V, thus the Lie algebra V 
admits an automorphism of finite order with no non-zero fixed vector. According 
to [7] or [9], the algebra Vis solvable. The algebra of the Lie group I(M)° is isomor­
phic to V, hence the group I(M)° is solvable. The second assertion of Theorem 1 
is Lemma 2.1. 

Lemma 2.2. Let G be a connected Lie group with a left-invariant metric g and 
let se be an isometric automorphism of G such that the neutral element e of G is an 
isolated fixed point of se. Then the family {sx = Lx o se 0 L"1} is a regular s-struc­
ture on (G, g). 

Proof. It is clear every transformation sx, x e G is a symmetry of (G, g) at x. An 
easy calculation shows that {sx} satisfies the condition (R). 

For every Riemannian s-mahifold (M, g, {sx}) let us denote by Cl({sx}) the closure 
of the subgroup of I(M) algebraically generated by the set {sx}. It is shown, see [3] 
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Theorem A, that the group Cl({sx}) is a transitive Lie group of isometries of (M, g). 
For the identity component of Cl({sx}) we have 

Proposition 2.2. Cl({sx})° = I(M)° for every regular s-structure {sx} on (M, g). 

Proof. The group Cl({sJC})° is a connected subgroup of J(M)° and both the groups 
cover M. Therefore ClftsJ)0 is an open subgroup of I(M)°, thus Cl({sJC})° = l(M)°. 

If {sx} is a regular s-structure on (M, g), then according to [3] we have 

sx = f o s0of~l for every xeM and every f e Cl({ŝ .})° such that f(o) = x . 

Hence Proposition 2.2 has the following 

Corollary. Let (M,g) and {sx} be as in Propositon 2.2. Then sx = / o S 0 o / _ 1 

for all xe M and for all f e l(M)° such thatf(o) = x. 

Proof of Theorem 2. The map {sx} H> S0 is a composition of two maps, namely 
{sx} i-> s0 and s01-> S0 = (s0)#>0. The first map is injective by the foregoing Corollary 
and the second is injective because it is the linear isotropy representation of an iso-
metry group. In virtue of Proposition 2.1, S0 is an element of the group L, moreover, 
it is an element of the set L, because it has no non-zero fixed vector. Thus the map 
{sx} i-> S0 is an injection from the set of all regular s-structures on (M, g) into the 
set L. 

To prove that this map is also surjective, let us consider an arbitrary element F 
of L. As in the proof of Proposition 2.1, there is an isometric automorphism s of the 
group l(M)° such that s^fl = (n*$i)~

i o F o n*fi. It is easy to see that s is a symmetry 
of (J(M)°, 7c*g)at the identity 1. The family {sx = n © La o s © L"1 o n'1}, where a = 
= n~i(x), is a regular s-structure on (M, g) by Lemmas 2.1 and 2.2. We have S0 = 
== (so)*,o = n*,i ° 5*,i o (rc^i)""1 = F, thus the map in question is surjective, which 
concludes the proof of Theorem 2. 

3. CANONICAL CONNECTION ON G.S. SPACES WITH FINITE 
ISOMETRY GROUP AT A POINT 

Let (M, g, {sx}) be a Riemannian s-manifold, V the Riemannian connection of 
(M, g) and S the symmetry tensor field of {sx}. Following A. J. Ledger [1], we intro­
duce a new connection V by the formulas 

*xY = Vx7 - D(Y, X) , D(Y, X) = (VS) (S~ * Y, (I - S)~l X) , 

where X and Fare arbitrary vector fields on M. The connection ^ is called the cano­
nical connection of the Riemannian s-manifold (M, g, {sx}). O. Kowalski has shown 
in [6] that the connection V depends only on the regular s-structure {sx} and not on 
the Riemannian connection V: 
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Theorem C. The canonical connection V of (M, g, {sx}) is the only connection 
on M,for which the following conditions hold: 

(i) All symmetries sx, xe M are affine transformations of the affine manifold 
(M,V). 

(ii) VS = 0. 

Thus, we can speak about the canonical connection of the regular s-structure {sx}. 
To obtain some further properties of the canonical connection we shall start with 

Proposition 3.1. Let M = G\H be a reductive homogeneous space with respect to a 
decomposition g == I) + m, and let f be an automorphism of G such that f(H) c H 
andf*e(m) c m. Then the induced mapf : GJH -> GJH defined by f(aH) = f(a) H 
for all a e G is an affine transformation of M with respect to the canonical con­
nection of the second kind V. 

Proof. The subspace m of g is supposed to be identified in the natural way with 
the tangent vector space T0(M) of M = GJH at the origin o = H. 

The transformation / induces a transformation /* of the set of all vector fields 
on M via 

{hX)p=Utq{Xq), where q =/"'(/>), 

and a transformation/* of the set of all affine connections on M via 

(/*V)xY = /*1(V/.4eX/,Y). 
Our assertion is equivalent to the equality/*? = V. By [2], Corollary X.2.2 we have 
to prove that the connection f*V is invariant and that 

((/*?)* Y)0 = [x, Y]0 

for all vectors X e T0(M) and all vector fields Yon M, where X is an extension of the 
vector X to a vector field on M defined by 

d JL = 
' dř 

(exp*K)(p) for all peM 
t = 0 

The first statement is equivalent to 

a*(f*V) = /*V for all aeG 

and follows from the relations/ o a = f(a) of and a*(f*V) = (/ o a)* V. The second 

statement is a consequence of the identities f*X = /.^(X) and/*[.?, Y) = [/^/^Y] 
which hold for every vector X eT0(M) and every vector field Yon M. 

Proposition 3.2. Let M = G\H be a reductive homogeneous space with the decom­
position g = t) + m, let g be a Riemannian metric on M. Let {sx} be a regular s-
structure on (M, g) such that s0 is an affine transformation of M with respect to 
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the canonical connection of the second kind V and such that sx = / o se o / " 1 for 
all x € M and fe G with f(o) = x. Then the canonical connection ¥ of the regular 
s-structure {sx} coincides with the connection V. 

Proof. The assumptions about {sx} imply that all symmetries sx, x e M are affine 
transformations of (M, V) and that the symmetry tensor field S of {sx} is G-invariant. 
By [2], Proposition X.2.7, S is V-parallel. Our assertion follows from Theorem C. 

Any g.s. space (M, g) with a finite isometry group at a point is a reductive homo­
geneous space M = GJH where G = I(M)° and m = g. For every symmetry s of M 
at the origin o the induced map s : G - » G , ai-^Soaos"1 is an automorphism of G 
preserving H and m and such that s(aH) = s(a) H for all aeG. This fact together 
with Propositions 3.1, 3.2 and with Corollary of Proposition 3.2 implies the first 
part of the next theorem. The second part of the theorem follows then from Theorem 
X.2.6 of [2]. 

Theorem 3. All regular s-structures on a g.s. space (M, g) with a finite isometry 
group at a point have the same canonical connection 'V, namely the projection of the 
Cartan (-)-connection of the group I(M)° via the covering map n : l(M)° -* M. 
For its torsion and curvature we have 

f0(X, Y)= - [ K , Y] for every X, Ye T0(M) (= g) , and £ = 0 . 

As an immediate consequence of Propositions 3.1, 3.2 and Proposition X.2.12 of 
[2] we obtain 

Proposition 3.3. Let (G, g) be a connected Lie group with a left-invariant Rie-
mannian metric. Let se be an isometrical automorphism of (G, g) which has the 
neutral element e e G as an isolated fixed point. Then the canonical connection V 
of the regular s-structure {sx = LxoSeoL~1} is the Cartan (-)-connection. For 
its torsion and curvature we have 

fe(X, Y) = -[X, Y] for all X, Ye Te(G) = g , and R = 0. 

4. RIEMANNIAN S-MANIFOLD (Gw, g, {sx}) 

Let n = 1 be an integer. Let us consider a matrix group Gn consisting of all matrices 
of the form 

e"° 0 
0 eUl 

. . 0 x0 

. . 0 xг 

0 0 
0 0 

T Ł 2 И + 1 

.. Єn xn 

.. 0 1 

where (x0> xt x„,u1,...,u„)eR2n+* is an arbitrary element and u0 — —ut — ... 
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... — un. Thus, the group Gn is a Lie group diffeomorphic to the cartesian space 
R2w+1(x0, xl9..., xn, ul9..., un). Suppose that the points of Gn are identified with the 
corresponding (2n *+ l)-tuples. Particularly, for the neutral element e of Gn we have 
e = (0, . . . ,0) . 

Let us consider a Riemannian metric g on Gn defined by 

g = £ ^2ui(dx()
2 + a £ dua dufi , a > 0 . 

i = 0 c.,0 = l 

The metric g is left-invariant. For n = 1 or 2, the corresponding manifolds are known 
from the complete list of g.s. spaces in dimensions 3 or 5, see [5], §§ 4, 12. 

Finally, let se be a transformation of Gn given by 

(1) . se(x09xl9...9xn9ul9...9un) = 

^ ("""*«> *05 X l > •••> Xn-U ~~M0> Ml> •••> M n - l ) » 

where w0 = — i/j — ... — un again. The transformation se is an automorphism of 
the Lie group Gn and also a symmetry of (Gn9 g) at e By Lemma 2.2, the family 

(2) {sx = LxoSeoUx
x} 

is a regular s-structure on (Gn9 g). Thus, we have defined a Riemannian s-manifold 
(Gn9 g9 {sx}) for all n ^ 1. All the symmetries sX9 x eGn are of order 2n + 2, hence 
the g.s. space (Gn, #) is of order at most 2n + 2. In fact, it is exactly of order 2n + 2 
as will be shown in § 6. 

In the rest of the present section some coordinate expressions will be given. Let 
us denote 

(3) X| = e»'A i = 0, l , . . . ,n, 
OXi 

TT 8 1 

£/« = — , a = 1, . . . , n. 

A direct calculation shows that the vector fields X09Xl9 ...,Xn, Ul9..., Un form 
a basis of the Lie algebra gn of the Lie group Gn and that the bracket operation in gn 

is given by the formulas 

(4) [X^Xj] =[Ua , 17,1 = 0, 
[X0,17J = X0 , [Xa, 17,] = -da„Xa 

for all i,j = 0,1,..., n, <x,P = 1,..., n. The coordinate expressions of the Rie­
mannian metric g and the symmetry tensor field S of the regular s-structure {sx} 
with respect to the basis (3) are given by 

(5) 0(X„X,)=<5 y , 
g(X„Ua)=0, 
g(U„Uf) = a{l + daf), 
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for all i,;' = 0, 1,..., n, a, ß = 1, ..., n, 

(6) « t f v ^ J * i + 1 f o r * = 0 , 1 , . . . , « - ! , 

f Ua+1 - U! for a = 1, ..., n — 1 , 
for a = n . 

5. THE GROUP I(G„, e) IS FINITE 

We shall continue our study of the Riemannian s-manifolds (Gn, g, {sx}). The 
tangent vector space Te(Gn) which is supposed to be identified with the Lie algebra gn 

will be denoted by V. Let ^ or V be the canonical connection of {sx} or the Rie­
mannian connection of (Gn, g), respectively. The Riemannian metric g and the 
Riemannian curvature R, the tensor field S, the torsion Tand the curvature R of the 
canonical connection V, and also the difference tensor field D = V — ¥, are invariant 
with respect to the left translations of GM. Thus we can replace these tensor fields by 
their evaluations at the point e e G„. The corresponding tensors on V = Te(G„) will 
be denoted by the same letters, for the sake of brevity. Tensors g and S are given 
by formulas (5) and (6), respectively, tensor Tand R by Proposition 3.3. Tensors D 
and R can be calculated from the formulas 

(7) 2 g(D(X, Y), Z) = g(T(X, Y), Z) + g(T(X, Z), Y) + g(T(Y, T),X) , 

(8) R(X, Y)Z = R(X, Y)Z + D(D(Z, Y), X) - D(D(Z, X), Y) + 

+ D(Z, T(X, Y)) , 

which hold for all vectors X,Y,Ze V, see [3] Lemma 4 and [1] Lemma 4.8. In 
order to calculate the tensors D and R it is convenient to consider the complexification 
Vc = V®R C and to choose a basis of Vc consisting of eigenvectors of the trans­
formation S. 

The characteristic equation of S is 

(xn+1 + l)(xB + xn+1 + ... + x + 1) = 0. 

Hence the eigenvalues of the transformation S are the complex numbers 

z2j+l,z2x, / = 0 ,1 , . . . ,», a = l , . . . ,n , 
where 

K K 

z = cos h i . sin -n + 1 n + 1 

For the corresponding eigenvectors we can choose the complex vectors 

(9) Yy = £ z ^ + 1 > % , j = 0 , l , . . . , n , 
i = 0 

375 



V.- z^U,, 
ß=i 

a = 1, ..., n , 

where X0,Xt, ...,Xn, Uu ..., Un are given by (3). The vectors (9) form a basis of 
the vector space Vc, because all eigenvalues of S are mutually different. 

From now on, we shall identify the index set {0, 1,..., n) with the additive group 
Zn + 1 in the natural way and denote 

f = — i — 1 for every i = 0, 1, ..., n , 

& = — a for every a = 1, ..., n . 

Thus, for the complex conjugate vectors to those in (9) we have 

(10) Yt = 7,, Va = Va for all i and a . 

Let us extend the tensors g, S, f, R, D and R to the complex vector space Vc 

without any change of the notation. From (5), (9), from Proposition 3.3 and from 
(4) and (9) we obtain 

(11) g(Yi,YJ) = (n + l)SiJ, 

g(Yt,v.) = o, 
g(Vx, Vp) = (n + 1) aS^ , 

for all i, j = 0, 1, ..., n, a, /? = 1, ..., n, 

(12) T(yi(y,) = T(Va,V,) = o, T(Yi,vx) = Yi+x 

for all i,j = 0, 1,..., n, a, /? = 1,..., n, 

(13) R = 0 . 

Relations (7), (11) and (12) imply 

f0 if i=j, 
(14) ВД. YJ) = Vi+;+1 if iФӯ, 

D(y,, Va) = J)(KB, V,) = 0, D(V„ Yt) = - Yi+X . 

Finally, from the relations (8), (12), (13) and (14) we obtain 

(15) 

ед, үj) үk 

- - Yi+J+k+1 if i * ; , k - ï, 

~~ Yi+j+k+i " 1 + J J к—j, 
a 

0 if ř = J or í Ф к ф j , 

Í0 if i + i + oc + 1 = 0 , 
R(YÍ,K)YJ= Ьу i f í + J - + a + 1 + 0 ) 
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R(Y>, V.)V, = - W , , 

R(Y„ Yj) Vx = R(VX, V,) Y, = R(VX, V,) Vy = 0 . 

The purpose of the present section is to prove the assertion announced in the title: 

Proposition 5.1. The isometry group l(Gn, e) at the point e is finite for all n = 1. 

This proposition can be reformulated. The group I(Gn, e) is isomorphic to the 
linear isotropy group R. By [5] Proposition 13.2, the Lie algebra f) of the Lie group ft 
is given by 

$ = {A e gl(V) | A(g) = A(D\R)) = 0, k = 0, 1, 2, ...} . 

Therefore Proposition 5.1 is a consequence of the following 

Proposition 5.2. A(g) = A(R) = A(D(R)) = 0 => A = 0. 

Proof. Let Aegl(V) be an arbitrary endomorphism of the vector space V. The 
linear extension of A onto the complexification Vc of V will be denoted by the same 
symbol. With respect to the basis (9) we have 

(16) AYd = TAiYj + I,B>V,, 
J P 

AW-ZdYj + ZDlV,. 

It remains to show that our assumptions on A yield A\ = B\ = Ca = Df = 0 for 
all i, j and a, p. 

Condition A(g) = 0 is equivalent to 

(17) g(A(X), Y) + g(X, A(Y)) = 0 for all X, Ye Vc . 

Let us substitute successively X = 7h Y = Y} then X = 7h Y = Vfi and finally 
X = Va9 Y = V^ into (17). Using (10), (11) and (16) we get 

(18a) A{ = -A), 

(18b) B\ = - - Cfi, 
a 

(18c) D!=-D;. 

Condition A(R) = 0 is equivalent to 

(19) A(R(X, Y)Z) - R(A(X), Y)Z - R(X, A(Y))Z - R(X, Y) A(Z) = 0 

for all.K, y, Z 6 Vc. As a rule, we shall apply the following procedure: After replacing 
X, y, Z in (19) by suitable vectors of the basis (9) and making use of (15) and (16), 
the left hand side of (19) will be expressed as a linear combination of the basic vectors 
(9). So we get a system of linear homogeneous equations in A\, B\, Ca and Dfi

a. Let 
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us start with the substitution X = Yi+fi, Y = Vfi, Z = Yf for arbitrary i and />. 
Comparing the coefficients at the vector Yi+P, we get 

-2?? + - ^ = 0 . 
a 

Using in addition (18b), we get 

(20) Bp
t = C\ = 0 for all i and p . 

Now, for every / , ; = 0, 1,. . . , n we define a map / / : Zn + 1 -> C putting //(fc) = 
= A/+£ — A\, fceZn+1. Our next aim is to prove that all these mappings are 
homomorphisms of additive groups. It will be done in a series of lemmas. 

Lemma 5.1. For every i,j, k = 0, 1, . . . , n and a, /? = 1, ..., n we have 

(i) //(fc) = Da
a

+u-l) + D j : : + w - ° i/ a 4= j - i, a 4= k + ; - i, a * fc. 

(ii) A|+k = A\-k i / n _ 2 . 

(iii) //(fc) = D*+w-o // n _ 2 and fc * 0, k 4= i - j , i 4=;. 

(iv) //(fc) = 0 if n = 2 and fc = 0 or fc = i - j . 

(v)f\(k) = D*a + Dk
kZ* ifk**. 

Proof, (i) Put X = Yj, Y = Va,Z = Vk_a in (19), and calculate the coefficient at the 
vector YJ+k on the left hand side. 

(ii) For given i, fc put j = i — fc. Because n — 2, there is an index a e {1 , . . . , n} 
such that a =1= i — j , consequently a 4= fc, a 4= fc + I — i. Hence, by (i) and (18c) 
we have 

A{ _ J i _ k — AJ+k _ AJ — na"~k 4. n ~ a — o 
Ai + k Ai ~ Ai + k Ai — ua + ^-(a-fc) ~ u « 

(iii) Put X = Yj, Y = J*, Z = Vf_y in (19). In the same way as in the proof of (i) 
we get 

AJ+k _ AJ'-a-j) _ nfc+a-o 
^ i + k Aj — uk 

Now, in virtue of (ii), 

and (iii) holds, 

(iv) The first case fc = 0 is evident. The second is a simple consequence of (ii). 

(v) This follows from (i) for j = i. 

Lemma 5.2. Let n = 2 and let i,j, r, se {0, 1, . . . , n} be indices such that j — i = 
= s - r . 7 7 i e n / / = / / . 

Proof. Because n ^ 2, to every fc = 0, 1, ..., n there is an index a, more precisely 
a(fc), such that fc #= a(fc). Our assertion follows from Lemma 5.1 (iii), (iv), (v). 
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Lemma 5.3. 7/ n _ 2, then all the mappings f{ : Zn + 1 -> C, i,j = 0, 1,..., n 
are homomorphisms of additive groups. 

Proof. We have to prove fj(u — v) = //(«) - f{(v) for all i,j,u,veZn+i. 
By Lemma 5.2 we get// = //_7J, therefore 

fJ(u _ iA — J ^ " - * __ J1 — i ( i - - ) + « _ AJ-V __ j(I-»)+i» _ A/-t> ___ fJ-v( \ __ 
Ji\M v) — ^i + u-v A\ ~ ^ ( i - f ) + u ^i-t> ^(i-i>) + t» ^ i - u — Ji-tAM1 

- / » ) = / / ( « ) - / / ( » ) . 

Corollary. fj(k) = 0/or every i,j,keZn+1,n^ 2. 

Let us continue the proof of Proposition 5.2. By the foregoing Corollary we have 

A{Zk = A\ for every i, j , k = 0, 1,..., n , n = 2 . 

Particularly, for fc = — i — j — 1 it follows 

A\ = A) for every 1,7 = 0, 1, ..., n , n ^ 2 . 

Combining this result with (18a), we get 

(21) ^ = 0 for every i,j = 0, 1, ..., n , n ^ 2 . 

Further, by Lemma 5.1 (iii) and (v) and by Corollary of Lemma 5.3, we have 

(22) D{ = 0 for all a, j8 = 1, ..., n , n ^ 2 . 

Therefore, Proposition 5.2 for n ^ 2 is a consequence of (20), (21) and (22). 
From now on let n = 1. Then 1 = 1. From (18c) we have D\ = — Dl, thus 

(23) D\ = 0 for n = 1 . 

Further, put X = Z = Y0 and Y = Yi in (19). Comparing the coefficient at the 
vector Y1 we get AQ = 0. Since 0 = 1 and T = 0 for n = 1, the formula (18a) yields 

(24) Aj = A = 0 for n = 1 . 

In the same way we obtain 

(25) A\ + -4o = 0 for n = 1 . 

By a direct calculation it can be seen that the conditions A(g) = AL(iR) = 0 do not 
imply A\ = A°0 = 0 for n = 1. 

To conclude the proof of Proposition 5.2 for n = 1, it is enough to prove 

A(DW(R)) = 0 for all We Vc => A°Q = 0 . 

Here the endomorphism Dw of the vector space Vc defined by 

DW(X) = D(X, W) for all X e Vc 

acts on the tensor algebra 2T(VC) as a derivation. 
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Let us substitute X = Z = JV= Y0, Y = Yt into (A(DW(R)))(X, 7, Z) = 0 and 
let us develop the term on the left hand side making use of (14), (15) and (16). As 
a consequence of (_J3), (24) and (25) we get 4 A0a~2Vt = 0, therefore 

4 = 0 for n = V 

6. THE ORDER OF THE G.S. SPACE (Gn,g) 

The manifold Gn introduced in § 4 is a simply connected Lie group with a finite 
isometry group I(Gn, e) at the neutral element e. By Lemma 2.1 the natural projection 
it: I(Gn)° -» Gn is a diffeomorphism. Moreover, it is a Lie group isomorphism, 
because the metric g is left-invariant. The corresponding Lie algebras will be identified 
via the induced isomorphism 7i#fl. Now, by Theorem 2, the set of all regular s t ruc­
tures on (Gn, g) is equivalent to the set L consisting of all isometric automorphisms 
of the algebra g„ without any non-zero fixed vector. 

Our aim is to calculate the orders of all elements of L. First we shall determine 
explicitly the group Lof all isometric automorphisms of the algebra g„. We shall start 
with some properties of the algebra qn. 

The following is immediate from (4): 

Lemma 6.1. The centre of the algebra grt is trivial. 

Let Qf
n and ĝ ' denote the vector subspaces of the algebra g„ generated by the sets 

{X0, Xl9..., Xn} and {Ul9..., Un}, respectively. Clearly, the vector space g„ is a direct 
sum of its mutually orthogonal subspaces $n and g'„'. The formulas (4) yield 

(26) [9«,9„]c:g;. 

Lemma 6.2. For every non-zero vector Xe$f
n there is an index ae{ l , . . . , n} 

such that [X, Ua] 4= 0. 

Proof. Let X = ^ c ^ - , X 4= 0 be an arbitrary element of g„. If c0 4= 0, then 

[X9 Ua~\ = c0X0 - caXa 4= 0 for all a e {l,.. . , n}. If c0 = 0, then there is an index 
a e {1,. . . , n} with ca # 0, hence [X, Ua] = -caXa 4= 0. 

It is obvious that all the 1-dimensional subspaces (X0),(Xl), ...,(Xn) generated 
by the vectors X0,Xl9...,Xn are ideals of g„. 

Lemma 6.3. The ideals (X0)9(Xt), ...,(Xn) are the only 1-dimensional ideals of 
the algebra g„. 

Proof. Suppose (X) to be a 1-dimensional idealof gn. Take the decomposition 
X = X' + X", X' 6 g|p X" e gJJ. By Lemma 6.1, there is a non-zero vector Z e gn 

such that [Z, X] 4= 0. Further, there is a real number k 4= 0 such that [Z, X] = 
« kX « kX' + kX". Formula (26) yields kX" = 0, so X" = 0. Therefore X e g;, 
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X = Ycixi- By Lemma 6.2, there is an index a e { 1 , . . . , n} such that [X, Ua] 4= 0. 
i 

Because (X) is an ideal, there is a real number I such that [X, Ua] = IX. This implies 
lct = 0 for all i * 0, a, and (/ -F 1) c0 = (I - 1) ca = 0, / 4= 0. It means that at 
most one of the numbers c0, cl9..., c„ is non-zero, namely c0 or ca. Because X #= 0, 
exactly one of the numbers c0, c l 9 . . . , c„ does not vanish, thus (X) = (Xf) for some 
i e {0,1, . . . , »} -

Now, let us consider the multiplicative group (Z2)w+1 = {e = (e0, el9..., e„) | ef = 
= ±1} and the permutation group S„+ 1 of the set {0 ,1 , . . . , n}. Their semi-direct 
product will be defined via (e, o) . (<5, T) = (e * 59 o o r), where (e * d)t = e t (0 . Si 
for all (e, o)9 (<5, T) e (Z2) r t+1 x S n + 1 and i = 0, 1, . . . , n. It will be proved that the 
groups (Z 2) n + 1 x Sw+1 and Lare isomorphic. In order to do it let us define a map 
<£ : (Z2)n + 1 x Sn + 1 --> GL(gn) by the formulas 

<f>(e, o)Xt = eiK(r(0 , 

( Ua{a) if <x(0) = 0 , 
<D(e, a) Ua = ^ Ua(a) - Ua(0) if <r(0) * 0 , <r(a) 4= 0 , 

[~Uff(0) if a ( 0 ) # 0 , <r(a) = 0 

for all i = 0, 1, . . . , n and a = 1, ..., n. 

Proposition 6.1. The map <P is an injective group homomorphism and im # = L. 

Proof. Clearly, <3> is injective. An easy calculation shows that 0 is a group homo­
morphism. The inclusion i m ^ c L follows from the formulas (4) and (5). It remains 
only to prove the converse inclusion. 

Let B e L be an arbitrary element. The automorphism B of the algebra gn maps 
every 1-dimensional ideal (Kf), i = 0, 1, . . . , n into a 1-dimensional ideal of g„. 
Thus, Lemma 6.3 yields that there is a permutation f j e S n + 1 and a function e : 
: {0, 1, . . . , n} -> R, e(i) = et such that 

(27) BXi = SiXa{i) for all i. 

Since the transformation B preserves the scalar product g and since all the vectors 
X0, Xl9 ...9Xn are of the same length, we have ef = ± 1 for all i, that is e = (e0, el9... 
. . . , 6 n ) 6 ( Z 2 ) " + 1 . 

Another consequence of Lemma 6.3 says that the subspace ĝ  is invariant by L. 
Therefore, the orthogonal complement g'̂  to gj. is invariant by L, too. It follows 
that there is a real matrix (Bfi

a), a, p = 1, . . . , n such that BUa = %Bfi
aUfi for all 

a = 1, . . . , n. Because B is an automorphism of the algebra g„, it is BfK^-i^), Ua] = 
= [BXa-im9 BUJ for all a, /?. Using formulas (4) we get 

1 if J? = (7(a), 
Bfi

a = \ 0 if p * o(a) , 
- 1 if J? = (T(0). 
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Comparing this result and the relation (27) on the one hand with the definition of 
the mapping # on the other we get B = <P(e, o). 

Corollary. If two transformations B,B' e L agree at all the vectors X0, Xu ..., Xn, 
then they coincide. 

Recall that the transformation S of the vector space Te(Gn) = gn has been intro­
duced in § 4 (see formulas (6)). 

Proposition 6.2. An element BsL belongs to the set L if and only if it is conjugated 
to the transformation S. 

Proof. The part „if" is evident. To prove the converse implication we shall need 
the following. 

Lemma 6.4. Let B = <P(e, o)e Lbe an element of L. Then o is a full cycle and 
B*+\X0) = -X0. 

Proof. Let fc be the least positive integer for which ok(0) = 0 holds. Suppose 
fc < n + 1. Denote U'a = Ua„ where a' = o\0) for all a e {1, ..., fc - 1} (this set 
may be empty), and denote the elements of the set {U1?..., Un] — {U[,..., Ufe-i} 
by Ui...,Un. Vector 

(n-fc + l J S ^ - f c t U'p 
a=l fi-k 

is a fixed non-zero vector of the transformation B. This contradicts the assumption 
BEL. Thus fc = n + 1. Therefore, o is a full cycle and BH+1(X0) = ±X0. It remains 
to get rid of the sign plus. But if Brt+1(X0) = +X0, then the non-zero vector X0 + 
+ B(X0) + ... + Bn(X0) is preserved under the transformation B e L, which is 
a contradiction. 

Let us return to the proof of Proposition 6.2. By the foregoing lemma, every element 
B = $(B, o)eL determines a couple (<5, T) e(Z2)n+1 x S „ H such that B\X0) = 
= 5j.3rt(i) for all i. Put A = &(S, T). Then we have 

B o A(Xt) = B(8tXx{i)) = Bi+1(X0) = 4>(S, T) Xi+l = A o S(Xt) 

for all i = 0, 1,..., n — 1. In virtue of the second part of Lemma 6.4 we have 

B o A(Xn) = Bn+1(X0) = -K 0 = *(5, T) (~K0) = A o S(Xn). 

Therefore, by Corollary of Proposition 6.1, we obtain B o A = A o S. 
Because the transfotmation S is of order 2n + 2, Proposition 6.2 and Theorem 2 

imply the following 

Proposition 6.3. Every regular s-structure on (Gn, g) is of order 2n + 2. 
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7. IRREDUCIBILITY 

Let Gn = G(0) x G(1) x ... x G(r) be the de Rham decomposition of the Rie-
mannian manifold (G„, g). By a result of HANO, see Theorem VI.3.5 in [2], the identity 
component l(Gn)° of the full isometry group of (Gn, g) satisfies 

I(Gn)° = I(G(0))° x /(G^)0 x ... x I(G(r))° . 

Recall that, according to the first part of § 5, we identify the Lie algebra of the Lie 
group l(Gn)° with the algebra gn. 

Proposition 7.1. The Riemannian manifold (Gn, g) is irreducible for all n 2> 1. 

Proof. If n = 1 then dim Gx = 3 and, by Proposition 6.3, the g.s. space (Gx, g) 
is of order 4. Therefore, by Proposition 14.1 in [5], the g.s. space (Gl5 g) is ir­
reducible-

Let n ^ 2. Suppose that G„ is reducible, G„ = G1 x G2. Then the Lie algebra grt 

is a direct sum of some non-trivial ideals g1 and g2. For every X e g„ denote by X1 

and X2 the g1- and g2-components of K, respectively. 

Lemma 7.1. Xt e g1 u g2 for all i = 0, 1, ..., n. 

Proof. According to formulas (4) we have 

(28) Xl = [K1, Ua] , 

(29) Xl = - [K i ,U a ] 

for all a = 1, ..., n. By formulas (29) and (26), there are real numbers cij9 i,j = 
= 0, 1, ..., n such that 

(30) X\ = £ cl7K, for all i . 
1=o 

From (28), (30) and (4) we obtain 
n 

X-0 = L L, C0jXj> ^ a j = C 00^0 "~ C0a-^a 
1 = 0 

for all a. Because n ^ 2, this yields c0a = 0 for all a and KJ = c00X0 = c00(K0 + K0) 
hence (c00 — 1) Xx

0 + c00K0 = 0. It follows c00 = 1 or c00 = 0, which is equivalent 
to X0 e g1 u g2. In the same way, using formulas (29), (30) and (4) we get Ka e 
e g1 u g2 for all a = 1,..., n. 

Lemma 7.2. Xa e g£ => Ua e g£ for all a = 1,..., n and e = 1, 2. 

Proof. Let ae{ l , ...,n} be arbitrary but fixed. Let us suppose e.g. K^eg1. 
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From (4) we have 

for all p. Putting U\ = 2>»*i + SX^* a n d substituting it into the foregoing iden-
i x 

tities we get x{ = 0 and y^ = <5a/, for all i and j3, thus Ua e g1. 
Let us return to the proof of Proposition 7.L By Lemmas 7A and 7.2, every element 

of the basis X09Xl9 ...9Xn9 Ul9..., Un of g„ is an element of g1 or g2. Because 
[K0, Ua] = Ko =)= 0 for all a, all the vectorsX0, Ul9 ...9Un lie in the same summand 
g6. Now, according to Lemma 7.2, all the vectors X0, Xl9..., Xn9 Ul9 ..., Un belong 
to the same non trivial ideal g£ — a contradiction. 

We conclude: For every even integer m ^ 4, the space (G{m_1)jl9 g) satisfies all 
requirements of Main Theorem. 
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