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Casopis pro p&stovani matematiky, ro¥. 99 (1974), Praha

BOUNDARY VALUE PROBLEMS FOR LINEAR PARTIAL DIFFERENTIAL
EQUATION WITH CONSTANT COEFFICIENTS.

HOMOGENEOUS EQUATION IN THE HALF PLANE

JAN CHRASTINA, Brno
(Received May 3, 1972)

Certain types of functional spaces corresponding to each type of partial differential
equations are known which are, in a certain sense, suitable for their investigation.
This is a common approach to this theory. It is also possible, however, to look for
such a space in which suitable boundary problems could be solved for the largest
possible class of equations. The summary of the corresponding results is given in the
book [1] where boundary value problems in the half space for the operator
P(0]0x) &"[0r" + ... + po(8/dx) (Pos ..., p, being polynomials) with p,(x) =1
are studied. The last condition is remowed in the presented paper.

We investigate a nonstandard space of distributions where boundary problems
for an arbitrary differential operator with constant coefficients in a given half plane
can be formulated and solved. Although the results are more complicated than those
in the book [1], it is possible to give quite elementary proofs, which are more concise,
technically simpler and perhaps even more complete. Qur conception seems to be
useful even if the variable x is a vector. These considerations seem to be connected
very closely with the papers [2], [3] where the elliptical case is studied.

The case when p, = 1 and the polynomial p, even has real roots, leads after
Fourier transformation to an equation the solution of which has singularities.
We can see that this case occurs in some types of problems even if p, = 1. It appears,
e.g., in the case of nonhomogeneous equations which will be dealt with in the next
part of the paper.

1. Function and distribution spaces. Let L be the space of all functions w(x)
(-0 < x < ) such that |w| = [|w(x)]dx < oo, with usual topology. Let P
be a polynomial such that P(x) = 0 for real x. We denote by PL the space of all
functions v (v = Pw, w e L) with the norm |v]|, = |v/P|. Put & = UPL with the
topology of inductive limit.
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Let Q be a polynomial such that Q(x) = 0. We denote by Q™% the space of all
distributions u defined in the domain —o0 < x < oo such that Qu € £. The map
u — Qu has a finite-dimensional kernel and the topology in the space Q™' is,
by definition, the weakest separated topology for which the exactly given map

is continuous. Put & = UYQ~1.Z with the topology of inductive limit.
Q

2. Explicit form of a distribution from the space J¢". Distribution u is defined
if the values {u, @) are given for all functions ¢ € Cg with a sufficiently small support.
Choose a real number a and let Q(x) = (x — a)° Qy(x) (s 2 0, Q,(a) * 0). Let
ae Cy be a function such that a(x) = 1 in a neighbourhood of the point x = a.
Then for all functions ¢ € Cg, the support of which is in a small neighbourhcod
of the point x = a, the equation

s—1 () )
(1) G 9> = CQu > + % ?lj—,("—) ),

holds where we denote
@ v-o(o-ay T ay). wh - uste— apy.

Clearly y € Cg and according to the suppositions Qu = ve £. We also see that
the function U = v/Q is determined by the distribution u almost everywhere and
at the same time we can write the equation (1) in the form

(1) (u, @) = |UQY dx + z o ()

Function U will be called an (ordir_wr y) component of the distribution u. It is clear
that a function U(x) (—o < x < o0) is a component of a distribution u € & if and
only if there exists a polynomial Q (Q(x) 5 0) such that v = QU e £.

Unfortunately, the numbers ai,, depend on the choice of function o« and therefore
they are of no invariant significance. It is, however, important that the numbers u ,
(j=s, s +1,...) are already defined by the component U:

(3) u{,_,=(a,ax—‘-a)f)= Ux —aydx (j=s5+1,..)

and generally that the knowledge of the component U and of the numbers u,{_,
(j=cc+1,...; c 2 0) is equivalent to the knowledge of values {u, ¢} for those
functions ¢ for which ¢(a) = ... = ¢“"(a) = 0.

A a rule, for the sake of brevity, the indices , , will be omitted.
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3. Fourier transform. We shall limit ourselves to some brief remarks concerning
the notation. By # we denote the Fourier transform of the distribution u. This
transform is defined for u = we L to be

() = f u(x) e dx .

In other cases the distributions # will be defined on the domain —o0 < ¢ <
as well. The spaces L, PL, ¥, Q~'%, X lead to the spaces L", (PL)A = PL",...

., A *. The topology is defined in the usual way for the transform * to be a homeo-
morphism. E.g., to the space " there belong such distributions # that Q(—iD) # =
= P(—iD) W, where P, Q are the corresponding polynomials, we L, D = Dy is the
derivative in the distributional sense.

4. Distribution depending on parameter. If, e.g., the distribution u = u(f) e o
depends on a parameter ¢, we shall denote its derivatives according to the parameter
in the sense of topology of the space " by (d’/d#)(¢). Analogous notation will
be used for other spaces as well. For example,

(dt! ()) —~ L ili) where we denote (i) = (u(9)" -
Further, we shall need the rules

d/ d’ d/ dJ
< —u(), — ou(t)=¢ —u(t),
pu(t) = P (o a ¢ W= d¢ u)

W,
4 u(t), @ ) = <u(t), oy
dtj 3 b b

where p is a polynomial, ¢ € C¥, ¢ is the derivative in the elementary sense.

5. Conclusions from inductive limit topology. Let the distribution u = u(f)e o
(a £t < b) depend continuously on the parameter t. The interval a <t < b
is compact, therefore there exist polynomials P, Q such that u(f) e Q~'.%, Q u(f) e PL
(a <t < b). At the same time the function Q u(f) depends continuously on the
parameter t in the space PL.

The preceding conclusion holds to a certain extent also for the noncompact
intervals. Let us say that the distribution u(f) (a <t < o) is tempered if there
exists N (N 2 0) such that
4 limu(f)t™ =0

t—= o

in the sense of the corresponding topology. We can see that if the distribution u(r) €
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(a <t < o) is tempered and depends continuously on the parameter ¢, then again
u(t)e Q~'%, Qu(t)e PL (a £t < o) for the appropriate polynomials P, Q.
At the same time the function Q u() is tempered in the space PL.

6. Equations in the spaces /", X" *. We shall deal with the conditions
a LY A
)" p,,(—iD)a—t; a(t) + ... + po(—iD) 4(t) = 0,

d(f)ex* (0=t< o), #t)is tempered.

Moreover, we suppose that p,(x), ..., po(x) (n = 0) are given polynomials, p,(x) =% O,
D = Dj is the derivative in the sense of distribution theory. By Fourier transform
we get an equivalent problem

) 2(x) ;t_ u(i) + ... + pofx) u(t) = 0

u()er (0=t< ), u(t)istempered.

7. Ordinary differential equation with a parameter. Let us consider the conditions
(6) PAX)UM + ... + po(x) U=0, U=U(x,f) (0 <x<00,0=<1t< ),
there exists N (N = 0) such that ‘Iim U(x, )™ =0.

+©

The index V) means the derivative according to the parameter ¢, both the derivative
and the limit being understood in the elementary sense of the classical analysis.
Thus we have an ordinary linear differential equation the coefficients of which are
constants dependent on the parameter x. In the following lemmas we imagine that
this parameter is fixed. The function U will interest us except sets of measure 0 with
regard to the parameter x.

8. Main problem. The aim of this paper is to prove that if (5) holds for the distribu-
tion u(t), then its component U fulfils (6) provided that we adapt it conveniently
on a set of measure 0. Conversely, we wish to prove that if U(x, #) is the component
of a distribution u(f) € # dependent on the parameter ¢ and (6) holds at the same
time, then U is the component of a distribution u(f) for which (5) holds.

9. General lemma. Let .# be a compact topological space. Let ¥, W be normed
vector space where the space ¥~ has a finite dimension. Let T, (Z € #) be a linear
transformation of the space ¥~ into the space W such that every vector T,Y (Z € #,
Ye ¥") depends continuously on the point Z. Then there exists a constant M for
which |Tz| < M (Z e #).

This lemma is evident.
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10. Lemma, Let z, ..., z, be the roots of the polynomial p,z» + ... + po(n 2 0,
Pak 0). Then |z, < C =1+ |puey/Pa| + - + |Po[Pa| (G =1,... 1)

This lemma is well known.

11. Lemma. There exists a constant M, such that for every solution y(t)
(=0 <t < ) of the differential equation p,y™ + ... + poy = O the inequalities
() S MC= (1 + [0 ey (0)] + . + DO (—e0 < 1 < o0, ] =
= 0, 1,...) hold where C is the constant from 10,

Proof. Let ¥ be the vector space of all n-tuples Y = (o, ..., y,~) With the norm
Y]+ = [yo| + -+ + |Va-1|. For every vector Z = (z, ..., z,) let T,Y = y be the
solution of the equation y® — g,y@-1 o (-1)o,y=0(oc, =2z, +... +
+ Zy v0, Oy = 2y ... Z,) determined by the conditions y(0) = y,, ..., yH(0) =
= y,_;. It is easily verified that

(7) Tz()’o; AR ] yn—l) (t/C) = TZ/c(yO’ yl/C, LR yn-l/cn_l) (t) (_‘00 <t< 00) .

Let # be the vector space of all functions w(f) (—oo < t < oo) such that w|, =
= sup |w(t)] (1 + || ™"**) ™1l < 0. (The continuous dependence of the vector
T,Y on the vector Z follows quite simply from the fact that the space of all vectors
of the form T,Y is finite dimensional and therefore any two norms are equivalent in it.
It suffices to take for one of these norms the usual norm ““sup” on a nonvoid interval
(for which the continuous dependence is well known), for the other the norm | . [|4-.)
Let . be the set of those Z for which |z,] £ 1,..., |z,| £ 1. According to 9 there
exists a constant M, for which |T;| < M, (Z € #).

If the polynomial p,z" + ... + poz has the roots zj, ..., z,, then evidently y(f) =
= Ty(¥(0), ..., y™~1(0)) (). Let C be the constant from 10. Then Z/Ce .# and
therefore according to (7) the inequality

sup |y(9)] (1 + [Ce| ™+ ) eI = |y(t[C) |4 =
= | Tze((0), ... "0 ) ()] £ M,[(5(0), ... " (O)[C" )]s =
= M(ly(O)] + ... + [y*~(0)))

holds. This is, however, the required inequality for the case j = 0. The other cases
j =1,2,... are already easy consequences of the preceding one.

12. Lemma. Let the polynomial p,z" + ... + po (n = 0, p, + 0) have the roots
Z4y ..., 2, SUch that

®) Rez; £...<Rez,£0<Rezy;; <... S Rez,

for some m (0 < m < n). Then for every number y,, ..., yn-1 there exists exactly
one solution y(t) (— 0 < t < ) of the differential equation Y™ + o+ Py =0

53



for which y(0) = yo, ..., Y™ 1(0) = y,,_; and such that for every positive ¢ it is
lim y(f) e™* = 0.

1=
\

Proof. Let the curve € circle the roots z,, ..., z, in the plane of the complex
variable z. It is well-known that the function

n—1 n—2
y(,)EL.J‘yo(p,z +otP) F V(PP A P) F e Py,
€ Paz" + ... + Do

is the only solution of the equation p,y™ + ... + poy = 0 for which y(0) = y,, ..
“eey y("_l)(o) = Yr-1-

The condition with the limit holds if and only if z,,, ..., z, are regular points
of the function after the symbol of integral. It occurs if and only if there are suitable
constants a,_q, ..., @, bo = Ap_1, by, ..., b, for which

Yo(Puz" ™  + .4 p)+ oo+ Py G2 4ty
P + ... + Do (z=z)...(z — 2zu)

bo(z" ™t — 612" 2 + .+ (=) Yoy ;) + by(z" R — 012" 4+ L+
+ (—l)m-z 0’,‘,,_1 + see + bm—'l

(z=2zy)..(z — zn)

holds, where we denote 6 = z; + ... + Zp, ..., Opy = 21 ... Z,,. We see that

©® o= 2_;_.4[;1’0(2"'—1 ; _ :1-)0,',,_(12) j— z) + b

1
at the same time it is clear that

) bo = ¥(0) = yo, .-, bp—y = y"7(0) = ypu_y .

Hence the existence and uniqueness follows.

m-ledz (-0 <t< ),

Remark. From equation (9) it follows that the function y() is a solution of the
equation

(=2 (= zm)y=y" =™V + .. + (=) oy = 0.

13. Lemma. Under suppositions 12 there exists a constant My, such that the
inequalities |y()] £ MyC™ (1 + [¢|"1) (|y(0)| + ... + [y DO)) (0 st <
< o0, j =0,1,...) hold for the corresponding solutions. -

Proof. Let ¥ be the vector space of m-tuples Y = (yo, .., Ym—1) With the norm
Y]y = |vo| + ... + |Vm=1]- For every vector Z = (z,, ..., z,) such that (8) holds,
let T,Y = y be the solution of the differential equation y™ + ¢,y* 1 + ... + g,y =
= 0 determined by conditions y(0) = yo, ..., y¥™"1(0) = y, -4, lim y(t)e™* =0

t—*00
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(e > 0). Let # be the vector space of the functions w(t) (0 < ¢t < o) such that
[W]l4 = sup [w(t)] (1 + [t]7™*") < 0. Let # be the set of such vectors Z =
= (245 ...» 2,) that (8) holds, |z, + ... + |z,| £ 1. By (9), (%) the vector T,Ye #"
depends continuously on Z € . The reasoning is then analogous to that of 11.

14. Lemma. Let F(f) (0 < t < ) be a continuous function such that lim F(z) .
t—*o0

.17 = 0 for a suitable positive N'. There exists at least one function y(t) (0 < t <
< ) for which

(10)  py™ + ...+ poy = F, limy(t)t™™ =0 for a suitable positive N .

t— o

Proof. Let us take the function j(t) (—o < t < o0) for which
P + ..+ peF =0, F0)=..=3§""20) =0, 7" V0)=1.

It is possible to write § = 7, + j_ where p,j% + ... + poj+ = 0 holds again
and at the same time j,(f) (— o0 < t < oo) is a function such that lim §,(¢f) ™" = 0
and j_(f) (—oo < t < 0) is a bounded function. freo

The function

a0 = j'§+(t — 1) F(¢) de — ry_(t _ ) F@dr (0<t<w)

0 t

is sought. It follows from the obvious fact that there is

W) = J:y(t — %) F(x) de — f "yt = ) F(z) de

0

where the first summand is a solution of the non-homogeneous equation and the
second is a solution of the corresponding homogeneous one.

15. Lemma. Under the suppositions 12, 14 there exists exactly one function
(1) (0 £ t < o) such that (10) holds, y(0) = yo, ..., Y™ V(0) = y,_;.

This is an easy consequence of 13, 14.

16. Lemma. Let (5) hold. There exists a function y(x, t) such that for every N
(N =0,1,...) there exist polynomials P, Q (Q(x) % 0) for which (d’[d¢¥’) Q u(t) =
=y, t) = (d/dt)) y(,)e PL(0 S t < 00, j = 0, 1, ..., N).

Proof. It is convenient to choose the number N sufficiently large. Then let N > n.
Further choose the constant N’. By 5 there exist polynomials P, Q@ (Q(x) % 0) such
that (d//d#’) Qu(f)e PL(0St <N, j=1,...,N), Qu(f)e PL(0 £ t < ). Let us
denote Q u(t) = v(s,t) and let y(x,) be the function defined by the conditions

55



¥(x,0) = vo(x,0),..., y*"Vx,0) = (d""!/d"" 1) v(x, 0),

(12) . Pa(X) y™ + ... + po(x) y = 0.

We suppose that x is a parameter, ) is the derivative according to the variable t.
(The function y is determined only for almost all values of the parameter x but the
sets of measure 0 are not essential.)

First we shall prove that yJ(+, 1) = (d’/dt)) v(-, 1) (0 < t S N', j = 0).

Let Q be an arbitrary compact interval where

(1 + |Pa-1(x)/Pa(x)| + ... + |Po(%)/Px(x)]) = C(x) < constant .

From the ihequalities in 13 and from the Lebesque theorem on majorant convergence
it follows that for an arbitrary polynomial p,

(6)}
Q2 Q2
Therefore

(m
(Ip,,ydx) +...+fpoydx50 (—o0 <t < ),
2 2

0 & @)
pydx) =| p—vdx = pvdx (t=0,j=0,....n—1).
2 o dv 2

From these equations together with the equation (5) multiplied by the polynomial Q
it follows that the function 4 = y — v satisfies the relations

(n)
(J‘p,,Adx) +...+JpoAdx=0 0=t=sN),
2 T Ja

o)
(Ipddx) =0 (t=0,j=0,..,n—1).
2

Integration yields

f ) A, ) dx + f o Lp,_,(x) A, 1)) dx dt, + ...

: t rty th-2
+-[ fj J‘po(x)A(x,t,,_l)dxdt,,_,'...dtl'=-0 O0=t=N).
0JO (V] 2

This identity holds if we take instead of the interval  its arbitrary subset @ < Q.
Let us fix ¢t and let ® be a subset such that the functions Re p,4, Im p,4 of the
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variable x do not change the sign on it. Then

<2

J~ [p4] dx < ReJ‘ [P dx + ImJ. |pad| dx =
o o e
Re-‘1 p.ddx| + ImJ‘ pa4 dx =

J‘ p.4 dx
) e )

t t th—
gz(fj|p,_ldldxdtl+...+fJ"‘.,.J ’f|poa|dxdt,_,...dtl>.
0J6 0J0 0 2

Since the interval Q can be expressed as a union of four subsets @ of the above
mentioned type, it must be

T
J‘Ipndldx§2<rf|p"_ldldxdt1+... +J...J’p04|dx...dtl <
o] 0J9 0 Q
t
< 2 const. (I f |p4| dx dty + ... +J1J. |p4] dx ... dt,).
0J 0 o Q

This inequality holds for every t (0 <t < N’) and hence it easily follows that
Ja |psd| dx = 0, therefore p,(x) A(x, ) = 0 (x € Q) for every ¢ (0 < t < N’) and for
almost all x and even, with regard to the arbitrariness of the interval Q and the
constant N’, p,4 = 0 almost everywhere.

Thus we proved that y = v + 4 = p, therefore

. d’/
(1)=—,U 0§t<00,j=0.
Y dv ( )
The case when j = 1,2,... can be investigated in an analogous way by means

of relations (5), (12) derived according to ¢. At the same time it is necessary to consider
that our functions y, v fulfil y9¥(x, 0) = (d//d¢) v(x,0) (j = 0, 1,...).

17. Theorem. Let (5) hold. Then for the corresponding component (suitably
modified on a set of measure 0) (6) holds.

Proof. In 16 choose N > n. From the equation (d//d#) @ u(f) = y¥(-, 1) (j = 0)
it follows that we can choose U(x, t) = y(x, t)/Q. (The roots of the polynomial Q
are inessential.) From (12) it follows that p,y™[Q + ... + poy/Q = 0, which is the
first one of the equations (6).

According to 5, (5) the polynomials P, Q(Q(x) % 0) exist such that
lim |Qu(tf) ™|, = 0 for a suitable N. We can suppose P, O, N to be the
t— oo

same as the corresponding items from 16. Then Qu(f) = y(v, 1), therefore
lim [|y(x, t) t™¥||, = 0. By the Riesz theorem it is possible to choose from every
-0
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sequence ty, t,, ..., 0o a subsequence t,,t,,, ..., oo such that for almost all x,

lim y(x, t, t,,_jN =_0. The function y is, however, a solution of the differential

1~ o0

equation (12), therefore it must be, moreover, lim y(x, 7)™ = 0 for almost all x.
t— o

The sets of measure 0 are, however, inessential.

18. Analysis of equations (5). Let (5) hold. Let Q be a polynomial from 16. If a, o, ¢
have an analogous meaning as in 2, then the relation corresponding to (1):

s=1 ()
(13 (i) ¢ = <QuD. V) + T, ?Ljf—“)uf(t)
holds where y € C3, u/(t) = <u(t), a(x — a)’>. The function Q u(t) = y(-, t) satisfies

(12) where instead of derivatives 7 we can write d’/d¢’ therefore according to the
rules from 4 we have

0= <p,,;;% u(t) + ... + pou(t), (p> = <p,,;—; v t) + o+ po ¥t 1), (p> +

+ 2 2 g + ot o) =5 T B3 sy,

where we denote
nlx) = le,"(x —a) (k=0,..,n).

Since the function ¢ is in general arbitrary, the equation

(14) ‘ z Z’pi WO =0 (j=s—1,..,0).
must hold.

It is also evident that

(15) thereexists N (N 2 0) for which limu/(f)t =0 (j=0,1,...).
t= o0

19. Definition. Let Q. be the set of those numbers x = a for which p,(a) =
= ... = po(a) = 0. For x ¢ Q, let zy(x), ..., z(x) (r = r(x), 0 < r(x) < n) be all
roots of the polynomial p,(x) z" + ... + po(x) with the corresponding multiplicity.
For the sake of definiteness, let Re zy(x) < ... < Re z,(x) < 0 < Re zp44(x) <
< ... S Rez(x) (m = m(x), 0 < m(x) < r(x)). Denote by Q, the set of those
numbers x for which m(x) = c. Further, denote Q° = Q,uU...UQ, Q' =Q; U
v...uQ,...2"=Q,.
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20. Solution of equations (6). Choose the functions Go(x), ..., G,—(x)
(—o0 < x < ). According to 15 the function U satisfying the relations (6) is
uniquely determined by the conditions

(16) U(x, 0) = Go(x) (x e 2'),..., U I(x,0) = G,—4(x) (xe@)

From the inequalities in 13 it follows that if the functions G, ..., G,_, are compo-
nents of some distributions, then for every t (0 < ¢ < oo) this function U(x, ¢) is also
a component of a distribution of the space . From the same inequalities it is clear
that there exist polynomials P, Q (Q(x) % 0) for which

(17) QUY(,f)ePL 0<t<o,j=0,...,n)
(18) lim UY(x,8)t™ =0 (j=0,...,n).
t— o0

Now the question is whether the distribution u(f) whose component is U(x, t)
can be chosen so that (5) may hold. It sufficies if we solve this problem locally. Let
us choose the point x = a and suppose that (1), (1)’ hold or, in more detail, (13).
At the same time let us choose the polynomial Q so that (17) holds for a suitable
polynomial P.

21. Form of equations (14), (15). The functions u%, us**, ... are defined by (3).
It is important to realize that the corresponding relations (15) hold not only for
j=s,s+ 1,..., but according to (18) ‘it is, moreover,

(19) lim us.(j)(t) t7" = lim us+1.(])(t) tt"=...=0 (] =0,..., n) .
t—

1=
Now, we have to define the functions u*~!, ..., u°. They satisfy the system of equa-
tions (14):
(14) plus™h™ 4 pOyst =
Pt 4+ T

s—1»

+ plus~®™ 4 4 plustim = F,_,,

pau®® .+ plul +

+ plut® 4 4+ put 4+ ...=F,.

The functions F,_; = —pjus® — . — plu—.., Fo= —pus® — . —

— pyu® — ... which occur there are well-known already. Moreover, let us realize
that according to (19),

(20) ImF(t)t"=0 (j=s5-1,...,0).

t—+ o
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22. Solution of equations (14), (15) if a ¢ Q,,. In this case it is not p§ (=p,(a)) = 0
(J =0,..., n) and from the system (14) the functions u*~%, ..., u® can be successively
determined in such a manner that (15) holds. In more detail: Let a € Q,. Then
according to (20), (15) these functions are uniquely determined by the numbers
w(0), ..., u”™=1(0) (j = s — 1,..., 0) which can be taken arbitrarily.

23. Solution of equations (14), (15) if a e Q,. Then pJ = ... = pj = 0 and the
first equation of the system (14) has the form F,_; = 0, therefore it is a condition
assigned to the functions already known. We prove that it is an identity so that
no nontrivial compatibility relations occur.

First of all we shall write the equation (12) in this form:

(Pr+px—a)+.)y +..+(ph+pi(x—a)+..)y=0.

We know that y(+, 1)’ = (d’/dr)) Q u(r) where Q = (x — a)* Q, (Q4(a) + 0). The
identity which is to be proved follows therefore easily in this way:

0= <(P: +pix—a)+..)y + ... +(ps + Pi(x —a) +..)y, Qi> -

o . o«
= <p,fy('" + ... + DoYs E> + <p,fy(’ + .ot p(z,y,-Q—(x - a)> + ... =
1 1

= {ppu® + ... + pou, o(x — a)*> + <p2u® + ... + plu,ax — af Ty + ... =
= paus™ 4+ .+ phut + pRustt® 44 pAuttl 4. = —F,_,.

It can be proved quite analogously that if p! = ... = p} = 0 as well, then the
second equation of the system (14) has the form F,_, = 0 and it is again the identity,
etc. Thus we can see that there are no compatibility relations of the system (14) and
if the equations with the indices j = s — 1,...,j = s — ¢ are identically fulfilled,
then only the functions u*~%,...,u*"¢ occur in this system. For the functions
u*~c~1, ..., u® we have only the conditions (15).

24. Summary. An arbitrary distribution u(f) for which (5) holds can be obtained
in this manner: Functions Go(x), ..., G,—(x) are chosen which are components
of some distributions from the space 2. Then the component U(x, t) of the distribu-
tion u(?) is defined by the conditions (6), (16). A polynomial Q (Q(x) = 0) is chosen
so that (17) holds. In the neighbourhood of the point x = a the sought distribution
is defined by the equations of the type (1), (1)’, (13), where the functions u(r)
G=s-1,.., 0), hitherto unknown, occur. They can be computed from the
equations (14), (15) where the functions F,_j, ..., F, are already uniquely defined
by the known component U. In more detail: Let a ¢ 2 and for the sake of defini-
teness, a € Q,,. Then the functions u*~?, ..., u° are uniquely determined according
to 15 if we choose arbitrarily the numbers u/(0), ..., u/™~1(0) (j =s — 1, ...,0).
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On the contrary, let a € Q_ and let ¢ be the largest number such that p}’ = .., =
=p;i7'=0 (j=0,...,n). From the equations (14), (15) only the functions
w*”I(t),...,u*"%(t) can be computed (initial conditions at the point ¢ = 0 must
be still chosen) but the functions u*~¢~1(¢), ..., u®(f) are arbitrary in the main.

Corollary. If the component U(x, t) of a distribution satisfies the conditions (6),
then the corresponding distribution u(t) can be chosen in such a manner that (5)
holds.

Corollary. If (5) holds, then for every N (N =0, 1, ...) there exist polynomials
P, Q (Q(x) % 0) such that Q(d’/dr)u(f)e PL (j =0,...,N;0 <t < ). This
derivative is to be understood as the derivative in the space PL.

In 2 we have already noted that the functions #(f) have no invariant significance
by themselves but they are very closely connected with the restriction of the form
{u, @) to certain invariantly defined subspaces of the space Cg. It is advantageous
to understand our results exactly in this manner which is, however, a little clumsy
and therefore we shall not use it explicitly.

25. Definition. A point is called an ordinary point of the distribution u, if it has
such a neighbourhood that in this neighbourhood the distribution u is equal to its
component U. We say that the distribution u € o (with the component U) is equal
to zero on a set Q if U(x) = 0 (x € ) and if all points of the set Q are ordinary
points of the distribution u. If Q is an‘open set, then this definition agrees, with the
usual one.

26. Theorem. Let Q_ be an empty set. Let us denote by Q the union of boundaries
of all sets Q, ..., 2, Let p(x) + 0 (x € Q), let gy, ..., gu—y be distributions of the
space X" such that all points of the set Q are their ordinary points. Then there
exists exactly one distribution u(t) having these properties: It satisfies the equation
(5), every point x € Q is an ordinary point of the distribution u(f) (0 < t < o),
every distribution (d*/df*) u(0) — g, (k =0,...,n — 1) is equal to zero on the
set Qkt1,

Proof. Let us choose the point x = 0 and suppose that in its neighbourhood the
relations (1)’ hold:

s=1 ,0)(g
oo 9> = [Gioyax +2 S gl (k=0..n 1),

The component U is defined by the conditions (6), (16). In the neighbourhood
of the point a € Q, according to the inequalities 13, the function U(s, f) (0 < t < )
is integrable and therefore we can take s = s(a) = 0, u(f) = U(-, t). Let a ¢ Q and
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for the sake of definiteness let a € ,,. Then a € Q! U ... U Q™ and then the equations

W®0)=g] (k=0,....m—1;j=0,...,5s —1)
must hold.

It is clear that the functions u°(t), ..., u*~*() and thus also the distributions u(t)
are uniquely determined by these conditions and equations (14). At the same time
it is necessary to observe that the functions F,_,, ..., F, can be computed by means
of the relations (3).

27. Example. Let us deal with the equation —iD(d/dt) 4 + cii = 0, where n = 1,
pi(x) = x, po(x) = c. x(d[df) u + cu = 0 holds for the function u, xU’ + ¢U =0
holds for the component U and the properties of these equations depend on the
behaviour of the polynomial xz + c.

Let ¢ = 0. Then 0 e Q,, and for x % 0 we have xe @, = @, r(x) = m(x) = 1.
Let us choose the distribution g,. From the equations (6), (16) it follows U = G,.
For the polynomial Q we can take an arbitrary polynomial such that Qg, € Z.
From the equations (14) it follows that for a = 0 it is u} = g} ,, and for a = 0
we have the solution u$ ' = ¢,_y,..., ul, = ¢, u3, = f(t). In general

s—1 s—1
u=g, +j;1cs_1Df(6/j!) +f(t)d, @=4o +‘§1cs_1(ic‘j)f/j! + ().

Let ¢ + 0. Then Q, = 0, for x < 0 it is x € Qy, m(x) = r(x) = 1 and for x > 0
it is xe®Q,, m(x) =r(x) = 1. Clearly U(x, 1) = f(x) e™** (x > 0), U(x,2) =0
(x < 0). First let us choose f(x) = 1. Then the definition equation of the distribution
u(t) can be written globally in the form

G, @ = j e g(x) dx + T (1) 9(a)
0 a.j
where the sum is finite and ranges over a > 0,j = 0, 1, .... We have
i = (u, &) = J e TR dx + ¥ ol(f) (—ig) €
(1] a,j

the integral must be understood in the generalized sense and it could be possible
to express it by means of Bessel functions. The functions c/(f) must be chosen in such
a way that the sum ) is a solution of the equation u,, + cu = 0. From the general

a,j
theory it follows that the numbers c¢/(0) can be chosen arbitrarily. Secondly, let
us choose f(x) = 1/(1 — x). The definition formula for the distribution u(t) can
be written in the form

{u, @) = f :e-ct/c(q,(x) — ox) (p(O))l_d_x—; + .,Z;;c'j'(t) 09(a)
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(where a € C3, «(0) = 1) and in the sum the term c3(f) ¢*(1) must be given since
in our case the corresponding polynomial Q is a multiple of the polynomial x — 1.
We see that

a:[%ﬂﬁm—qml? + X cll) (—ie) .

0 X

The functions ¢}(r) must be still calculated and c}(¢) plays a significant role.

It is clear that it could be possible to choose

dm=Jeﬂwag_9—,4@Eo (G=12.).
0 1 —x
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