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Časopis pro pěstování matematiky, roč. 99 (1974), Praha 

BOUNDARY VALUE PROBLEMS FOR LINEAR PARTIAL DIFFERENTIAL 
EQUATION WITH CONSTANT COEFFICIENTS. 

HOMOGENEOUS EQUATION IN THE HALF PLANE 

JAN CHRASTINA, Brno 

(Received May 3, 1972) 

Certain types of functional spaces corresponding to each type of partial differential 
equations are known which are, in a certain sense, suitable for their investigation. 
This is a common approach to this theory. It is also possible, however, to look for 
such a space in which suitable boundary problems could be solved for the largest 
possible class of equations. The summary of the corresponding results is given in the 
book [1] where boundary value problems in the half space for the operator 
pn(d]dx) dnjdf + ... + p0(d/dx) (p0,..., pn being polynomials) with pn(x) = 1 
are studied. The last condition is removed in the presented paper. 

We investigate a nonstandard space of distributions where boundary problems 
for an arbitrary differential operator with constant coefficients in a given half plane 
can be formulated and solved. Although the results are more complicated than those 
in the book [1], it is possible to give quite elementary proofs, which are more concise, 
technically simpler and perhaps even more complete. Our conception seems to be 
useful even if the variable x is a vector. These considerations seem to be connected 
very closely with the papers [2], [3] where the elliptical case is studied. 

The case when pn ..}= 1 and the polynomial pn even has real roots, leads after 
Fourier transformation to an equation the solution of which has singularities. 
We can see that this case occurs in some types of problems even if pn = 1. It appears, 
e.g., in the case of nonhomogeneous equations which will be dealt with in the next 
part of the paper. 

1. Function and distribution spaces. Let L be the space of all functions w(x) 
(-00 < x < oo) such that ||w|| = J|w(x)|dx < oo, with usual topology. Let P 
be a polynomial such that P(x) 4= 0 for real x. We denote by PL the space of all 
functions v (v = Pw, weL) with the norm \\v\\P = ||t>/P||. Put & = \JPL with the 
topology of inductive limit. p 
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Let Q be a polynomial such that Q(x) ^ 0. We denote by Q - 1 i f the space of all 
distributions u defined in the domain — co < x < oo such that Qu e «£?. The map 
u -> Qu has a finite-dimensional kernel and the topology in the space Q~x<£ is, 
by definition, the weakest separated topology for which the exactly given map 
is continuous. Put Jf = U Q " 1 ^ with the topology of inductive limit. 

Q 

2. Explicit form of a distribution from the space X. Distribution u is defined 
if the values <w, cp} are given for all functions <pe CQ with a sufficiently small support. 
Choose a real number a and let Q(x) = (x - a)s Qt(x) (s ̂  0, Qx(a) 4= 0). Let 
a e CQ be a function such that <x(x) s 1 in a neighbourhood of the point x = a. 
Then for all functions cp e CQ , the support of which is in a small neighbourhood 
of the point x = a, the equation 

(1) <«,*> = <&«,*> + I ^ - P < * 
1=o I! 

holds where we denote 

(2) <A = Q-1 (V - a I* ^ (* - a)A , u{t% = <u, a(x - a)'> . 
\ 1=o I! / 

Clearly ^ e CQ and according to the suppositions Qu = v e 2?. We also see that 
the function U = v/Q is determined by the distribution w almost everywhere and 
at the same time we can write the equation (1) in the form 

(10 <u,9>- [UQ+ dx +% Z^u^. 
J 1=o I! 

Function U will be called an (ordinary) component of the distribution u. It is clear 
that a function U(x) (— oo < x < oo) is a component of a distribution ue X \i and 
only if there exists a polynomial Q (Q(x) -f- 0) such that v = QC7 e JSf. 

Unfortunately, the numbers a^a depend on the choice of function a and therefore 
they are of no invariant significance. It is, however, important that the numbers uJ

aol 

(j = 5, s -f- 1,...) are already defined by the component U: 

(3) < a = <w, «(* - «);> = |ta<* - a)J dx (j = s, s + 1,...) 

and generally that the knowledge of the component U and of the numbers uJ
a<x 

(j SB c, c -f 1,...; c ̂  0) is equivalent to the knowledge of values <w, <p> for those 
functions cp for which q>(a) *= ... = 9(c""'1)(a) — °-

A a rule, for the sake of brevity, the indices aA will be omitted. 
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3. Fourier transform. We shall limit ourselves to some brief remarks concerning 
the notation. By u we denote the Fourier transform of the distribution u. This 
transform is defined for u = w e L to be 

Щ) = Jф) e-'ixdx. 

In other cases the distributions u will be defined on the domain — oo < £ < GO 
as well. The spaces L, PL, S£, Q_1S£, X lead to the spaces Z \ (PL)A = P£\ ... 
..., X A. The topology is defined in the usual way for the transform A to be a homeo-
morphism. E.g., to the space X* there belong such distributions u that Q( — iD) u = 
= P(—iD) V5>, where P, Q are the corresponding polynomials, w e L, D = D^ is the 
derivative in the distributional sense. 

4. Distribution depending on parameter. If, e.g., the distribution u = u(t) e X 
depends on a parameter t, we shall denote its derivatives according to the parameter 
in the sense of topology of the space X by (dj/dtJ) (t). Analogous notation will 
be used for other spaces as well. For example, 

( » ' 
dj 

u(t) where we denote u(t) = (u(t)) A . dtJ 

Further, we shall need the rules 

£iPu(t) = p£ju(t), ^<Pu(t) = cp^u(t), 

'^ u(t), cp\ = <u(f), 9>">, 

where p is a polynomial, cp e C^, 0 ) is the derivative in the elementary sense. 

5. Conclusions from inductive limit topology. Let the distribution u = u(t) e X 
(a <̂  t ^ b) depend continuously on the parameter t. The interval a g t S b 
is compact, therefore there exist polynomials P, Q such that u(t) e Q'1^, Q u(t) e PL 
(a <J t S b). At the same time the function Q u(t) depends continuously on the 
parameter t in the space PL. 

The preceding conclusion holds to a certain extent also for the noncompact 
intervals. Let us say that the distribution u(t) (a — t < oo) is tempered if there 
exists 1V (N = 0) such that 

(4) Km u(t) t"N = 0 
t-*oo 

in the sense of the corresponding topology. We can see that if the distribution u(t) e X 
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(a g t < oo) is tempered and depends continuously on the parameter f, then again 
u(i)eQ~~x&, Qu(t)ePL (a £ t < oo) for the appropriate polynomials P, Q. 
At the same time tlie function Q u(t) is tempered in the space PL. 

6. Equations in the spaces X, X A. We shall deal with the conditions 

(5)A Pn(~iD)^-n a(t) + ... + Po(-iD) u(t) = 0, 
at 

ii(t)eX* (0 = t < oo) , u(t) is tempered . 

Moreover, we suppose that pn(x)9..., p0(x) (n ^ 0) are given polynomials, pn(x) ^ 0, 
D =- D$ is .the derivative in the sense of distribution theory. By Fourier transform 
we get an equivalent problem 

(5) P„(x)£;u(t) + ... + Po(x)u(t) = 0 

u(t) e X (0 = t < oo) , w(f) is tempered . 

7. Ordinary differential equation with a parameter. Let us consider the conditions 

(6) pn(x) U(rt) + ... + p0(x) U = 0, U = U(x, *) (~oo < x < oo, 0 = f < oo) , 

there exists N (N = 0) such that lim U(x, t) t"N = 0 . 
f-*oo 

The index U) means the derivative according to the parameter t, both the derivative 
and the limit being understood in the elementary sense of the classical analysis. 
Thus we have an ordinary linear differential equation the coefficients of which are 
constants dependent on the parameter x. In the following lemmas we imagine that 
this parameter is fixed. The function U will interest us except sets of measure 0 with 
regard to the parameter x. 

8. Main problem. The aim of this paper is to prove that if (5) holds for the distribu­
tion u(t), then its component U fulfils (6) provided that we adapt it conveniently 
on a set of measure 0. Conversely, we wish to prove that if U(x, t) is the component 
of a distribution u(i) e X dependent on the parameter t and (6) holds at the same 
time, then U is the component of a distribution u(t) for which (5) holds. 

9. General lemma. Let JC be a compact topological space. Let TT, iV be normed 
vector space where the space "K has a finite dimension. Let Tz (Z e Jt) be a linear 
transformation of the space 'V into the space W such that every vector TzY(Z e Jf, 
Ye Y) depends continuously on the point Z. Then there exists a constant M for 
which \\TZ\\ <£M(ZeJl). 

This lemma is evident. 
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10. Lemma, Let zl9..., zn be the roots of the polynomial pnZ» + ... + p0 (n = 0, 
pn 4- 0). Then \Zj\ = C = 1 + \pn-M + ... + \Po\pn\ U = 1, .-•> 4 

This lemma is well known. 

11. Lemma. There exists a constant Mn such that for every solution y(t) 
(-co < t < oo) of the differential equation pny

w + ... + p0y = 0 the inequalities 
\yU\t)\ £ MnC

n-^(\ + | t - V c % ( 0 ) | + - . + |y(M~1)(0)|)(-oo < t < oo J = 
= 0, 1,...) hold where C is the constant from 10. 

Proof. Let iT be the vector space of all n-tuples Y = (y0,..., yn_1) with the norm 
ll7!k = M + ..« + |y«-i|- For every vector 2 = (zu ..., z„) let TZY = y be the 
solution of the equation /"> - cr1/

n""1) + ... + ( - l ) n (r,j = 0 (ax = zx + ... + 
+ zn,..., <r„ = z t ... zn) determined by the conditions y(0) = y0,..., /""^(O) = 
= yn_i. It is easily verified that 

(?) T7j<y09...9yn-d(t\c) = Tz/c(y0, ^ / c , . . . , y^/c"-1) (t) (-co < * < oo). 

Let Of be the vector space of all functions w(t) (-oo < t < oo) such that w\w = 
= sup|w(i*)|(l + |*|~n+1) e" , r | < oo. (The continuous dependence of the vector 
TZY on the vector Z follows quite simply from the fact that the space of all vectors 
of the form Tz7is finite dimensional and therefore any two norms are equivalent in it. 
It suffices to take for one of these norms the usual norm "sup'* on a nonvoid interval 
(for which the continuous dependence is well known), for the other the norm ||. ||-r •) 
Let Jl be the set of those Z for whicji \zt\ _ 1,..., \zn\ = 1. According to 9 there 
exists a constant Mn for which |TZ|| = Mn(Ze M). 

If the polynomial pnz
n + ... + p0z has the roots z l 5 . . . , zn, then evidently y(t) = 

= Tz(y(0)9^.,yin"1\0))(t). Let C be the constant from 10. Then ZJCeJt and 
therefore according to (7) the inequality 

supKt)|(l + N-"+1)e-'c" = ||Kt/e)|k = 
- \TzM% • • • ' / - 1 l c , 1 (Oik ^ M.flMo),...,/"-'Wc-1)^ ^ 

^Mn(\y(0)\ + ... + \/''-1\0)\) 

holds. This is, however, the required inequality for the case j = 0. The other cases 
j = 1, 2, . . . are already easy consequences of the preceding one. 

12. Lemma. Let the polynomial pnz
n + ... + p0 (n = 0, ptt * 0) ftaue the roots 

z1?..., zn such that 

(8) Re Zi = ... = Re zM = 0 < Re zm+1 ^ ... ^ Re zn 

for some m (0 ^ m <* n). Then for every number y0,..., j m - i fAare ex^s e*ac'/y 
one solution y(t) (-oo < t < co) ofthe differential equation p«y(B) + ••• + Poy = ° 
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for which y(0) = y0,..., j>(",""1)(0) = ym_i and such that for every positive e it is 
lim y(t) e— = 0. ^ 

t-+co 

Proof. Let the curve # circle the roots zl9..., zn in the plane of the complex 
variable z. It is well-known that the function 

кo-f.í 
2яiJ< 

Уo(PnZn~1 + ••• + Pi) + yi(Pn^"2 + »•• + Pг) + ••• + Pn etz d z 

? pnz
n + ... + p0 

is the only solution of the equation pny
(n) + ... + p0y = 0 for which y(0) = y09... 

. . . ./"-"(O) = yH-t. 
The condition with the limit holds if and only if zm + 1,..., zn are regular points 

of the function after the symbol of integral. It occurs if and only if there are suitable 
constants am_1,..., a09 b0 = am_l5 bl9..., bm for which 

y0(PnZn'1 + ••••+ Pi) + . . . + Pn _ flm-l--*"1 + »•• + <*Q _ 

P„zn + . . . + Po (z - -*i) ••• (z - z«) 

^ ( z 1 " - 1 - (7lz M - 2 + .. . + ( - 1 ) M _ 1 <rm_2) + fclv--m~2 - tr iz m " 3 + . . . + 

+ ( - i y - 2 am.t + ... + bm-1  

(z - z,)...(z - zm) 

holds, where we denote a\ = zx + ... + zm9 ...9am = z1 ... zm. We see that 

(9) K O - i f ^ • " , + -V ;-/ ) + - ; + t - . - * (-.<,<«.). 
Z7TI J % \Z — Z-J . . . \Z — Zm) 

at the same time it is clear that 

(9') b0 = 3<0) = y0, . . . , 6 . - 1 - y(M-1}(0) = ym_x . 

Hence the existence and uniqueness follows. 
Remark. From equation (9) it follows that the function y(t) is a solution of the 

equation 

C - zO-.-O - zm)y - y(m) - ^ y ( m _ 1 ) + ... + ( - i ) m ^ m y = o . 

13. Lemma. Under suppositions 12 there exists a constant Mm such that the 
inequalities \yU)(t)\ S MmCm-1+J(l + |^|m~1) (|K°)I + — + l^"" 1 ^ 0 )!) (° = t < 
< oo, j — 0, 1,...) hold for the corresponding solutions. 

Proof. Let rT be the vector space of m-tuples 7 = (y0,..., y^,-^) with the norm 
\\Y\\ir = |yo| + ... + |yM-i | . For every vector Z = (zl9..., z„) such that (8) holds, 
letr 2 Y= y be the solution of the differential equation >>(,,) + o- 1 j ( n _ 1 ) + ... + any = 
= 0 determined by conditions y(0) = y09..., ^ ( m _ 1 )(0) - j>m_l5 lim y(i) e'et = 0 

r-*oo 
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(s > 0). Let itf be the vector space of the functions w(t) (0 = t < oo) such that 
||w||ir = SUP WOK1 + |?|"~m+1) < oo. Let Jt be the set of such vectors Z = 
= (zl9..., zn) that (8) holds, \zt\ + ... + \zn\ = 1. By (9), (9') the vector TzYe HT 
depends continuously on Z e J(. The reasoning is then analogous to that of 11. 

14. Lemma. Let F(t) (0 = t < oo) be a continuous function such that lim F(t) . 
t*-*oo 

. t~N' = Ofor a suitable positive Nf. There exists at least one function y(t) (0 :g t < 
< oo) for which 

(10) Pny
(n) + • • • + Poy = F > l™ y(i) t~N = 0 for a suitable positive N . 

r->oo 

Proof. Let us take the function y(t) (— oo < t < oo) for which 

A?0 0 + ... + Poy = 0, y(0) = ... = ^"-2>(0) = 0, ^"-"(O) = 1 . 

It is possible to write y = y+ + y_ where pny
{± + ... + p0y± = 0 holds again 

and at the same time y+(f) (— oo < t < oo) is a function such that lim y+(t) t~n = 0 
and y_(t) (-co < t = 0) is a bounded function. ,"*a0 

The function 

/•f /»00 

(11) y(t) = y+(t - T) F(X) dT - y_(f - T) F(T) dT (0 = * < oo) 

is sought. It follows from the obvious fact that there is 
y(t) = J y(t - T) F(r) dr - | j;_(r - T) F(T) dr 

Jo Jo 

where the first summand is a solution of the non-homogeneous equation and the 
second is a solution of the corresponding homogeneous one. 

15. Lemma. Under the suppositions 12, 14 there exists exactly one function 
y(t) (0 ^ t < oo) such that (10) holds, y(0) = y09..., / " ^ ( O ) = ym_t. 

This is an easy consequence of 13,14. 

16. Lemma. Let (5) hold. There exists a function y(x, t) such that for every N 
(N = 0, 1,...) there exist polynomials P, Q (Q(x) =£ 0)for which (dJjdtj) Q u(t) = 
= yU)(% t) = (dJjdtJ) y(; t) € PL (0 g t < oo, j == 0, 1,..., N). 

Proof. It is convenient to choose the number N sufficiently large. Then let N > n. 
Further choose the constant N'. By 5 there exist polynomials P, Q (Q(x) s-fs 0) such 
that (dJjdtJ) Q u(t) e PL (0 = t = N', j = 1,..., N), Qu(t) ePL(0£t< oo). Let us 
denote Q u(t) = v(; t) and let y(x, t) be the function defined by the conditions 

55 



y(x9 0) = v(x9 0),..., yfr-1) x9 0) = (d"-1/^""1) <x> °)> 

(12) - PnWy(n) + ... + PoWy^0. 

We suppose that x is a parameter, (1) is the derivative according to the variable t. 
(The function y is determined only for almost all values of the parameter x but the 
sets of measure 0 are not essential.) 

First we shall prove that yu)(*91) = (d'/d*') v(% t) (0 ^ * g N', j = 0). 

Let Q be an arbitrary compact interval where 

(1 + \pn-l(x)fpn(x)\ + ... + |PoW/PnW|) = C(x) <: constant. 

From the inequalities in 13 and from the Lebesque theorem on majorant convergence 
it follows that for an arbitrary polynomial p9 

pyu)dx = (\ pydx\ ( -co < t < oo, j = 0 ,1 , . . . , n) . 

Therefore 

( Pnyd*) + . . . + Poyd* = 0 ( - o o < f < o o ) , 

M Pydxj == p-— vdx = / pvdx\ (t = 0,j = 0,..., n - 1). 

From these equations together with the equation (5) multiplied by the polynomial Q 
it follows that the function A -= y — v satisfies the relations 

/ T pnA dxj + ... + f p0A dx = 0 (O^tS N')9 

([pAdxY = 0 (f-=0,j = 0 , . . . , n - l ) . 

Integration yields 

J pn(x) A(x91) dx + j J pn-,(x) A(x, t,) dx d^ + ... 
Jn JoJo 

... + r r . . . r~2 f Po(x)A(X9tm-x)dxd*,^...d^=o (o g t ^ No. 
JoJo Jo Jn 

This identity holds if we take instead of the interval Q its arbitrary subset 0 c Q. 
Let us fix t and let © be a subset such that the functions Re pnA9 Im pnA of the 
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variable x do not change the sign on it. Then 

f \p„A\ dx ^ Re f \PnA\ dx + Im I* \pj\ dx = 
JO J 0 J 0 

I f I I f I I f 
= Re pnA dx + Im ^ A dx <J 2 pnJ dx g 

I J e I I J© I | J e 

- - 2 f f f |P„-i-4|dxd^ + ... + f [\.Sn~1[\p0A\dxdtn_1...dt\ 
VJoJe J O J O J O J A / 

Since the interval Q can be expressed as a union of four subsets 0 of the above 
mentioned type, it must be 

i ^ f |p„d|dx5S2(T f |Pn_1A|dxdf1 + . . . + P . . . hPoA\dx...dt 
Jn VJoJft J o J f t 

g 2 const. I l j J^AIdxd/! + . . . + ... |/V-l|dx ... dfj). 

This inequality holds for every t (0 ^ t ^ Nf) and hence it easily follows that 
ja \pnA\ dx = 0, therefore pn(x) A(x, t) = 0 (x e Q) for every t (0 = t ^ N') and for 
almost all x and even, with regard to the arbitrariness of the interval Q and the 
constant N\ pnA = 0 almost everywhere. 

Thus we proved that y = v + A = p, therefore 

yU) = &_v (o ^ t < oo,7 = 0). 

The case when j = 1, 2, . . . can be investigated in an analogous way by means 
of relations (5), (12) derived according to t. At the same time it is necessary to consider 
that our functions y, v fulfil yu)(x, 0) = (djjdtj) v(x, 0) (j = 0, 1,...). 

17. Theorem. Let (5) hold. Then for the corresponding component (suitably 
modified on a set of measure 0) (6) holds. 

Proof. In 16 choose N > n. From the equation (d^dt1) Q u(t) = /'>(., t) (j = 0) 
it follows that we can choose U(x, t) = y(x, t)JQ. (The roots of the polynomial Q 
are inessential.) From (12) it follows that pny

(n)JQ + ... + p0yJQ = 0, which is the 
first one of the equations (6). 

According to 5, (5) the polynomials P, Q (Q(x) =}= 0) exist such that 
lim ||Qu(f) t"N\\P = 0 for a suitable N. We can suppose P, Q, N to be the 
f-->oo 

same as the corresponding items from 16. Then Q u(t) = y(% t), therefore 
lim \\y(x, t) t~N\\P = 0. By the Riesz theorem it is possible to choose from every 
f-+00 
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sequence tu f2,..., -»oo a subsequence tni, tni,..., -»oo such that for almost all x, 
lim y(x, tnj) tn

N =^0. The function y is, however, a solution of the differential 
f~>00 

equation (12), therefore it must be, moreover, lim y(x, t) t~N == 0 for almost all x. 
t-*oo 

The sets of measure 0 are, however, inessential. 

18. Analysis of equations (5). Let (5) hold. Let Q be a polynomial from 16. If a, a, cp 
have an analogous meaning as in 2, then the relation corresponding to (1): 

(B) <u(t), cpy = <Q u(t), *> + z s^M uj(t) 
1 = 0 j \ 

holds where \j/ e C0, u
J(t) = (u(t), a(x - a);>. The function Q u(t) = y(% t) satisfies 

(12) where instead of derivatives iJ) we can write dJjdtJ therefore according to the 
rules from 4 we have 

0 = /pn~ u(t) + ... + p0u(t), q>\ = (Pn— y(% t) + ... + p0y(; t), cp\ + 

+ ? ^ (Pn »Mnx<) + - + PO «'«) = z 1 4 ^ i i ^ wi+"(k)(o • 

1=o J! 

where we denote 

i = o j*'! i = o j! *=o i 

Pk(x) = ZPK* - ")' (fc = 0 , . . . , n ) . 

Since the function <p is in general arbitrary, the equation 

(14) • t Spi«;+',w(t) = 0 (j = s - l , . . . ,0 ) . 
k = 0 J 

must hold. 

It is also evident that 

(15) there exists N (N = 0) for which lim uj(t) t"N = 0 (; = 0, 1,...) . 
t-+ao 

19. Definition, Let Q^ be the set of those numbers x = a for which pn(a) = 
= ... = p0(a) = 0. For x £ G^ let z^x),..., zr(x) (r = r(x), 0 = r(x) ^ n) be all 
roots of the polynomial Pn(x) zn + ... + p0(x) with the corresponding multiplicity. 
For the sake of definiteness, let Re zt(x) ^ ... g Re zm(x) ^ 0 < Rezm+i(x) g 
g . . . g R c zr(x) (m = m(x), 0 ^ m(x) ^ r(x)). Denote by Qc the set of those 
numbers x for which m(x) = c. Further, denote Q° = Q0 u ... u Qn, Q

1 = Qt u 
u ... u Qn9..., fi

w = Qn. 
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20. Solution of equations (6). Choose the functions G0(x)9 ..., Gn^i(x) 
(— oo < x < co). According to 15 the function U satisfying the relations (6) is 
uniquely determined by the conditions 

(16) U(x9 0) = G0(x) (x e G 1),..., U^H"x\x9 0) = Gn-t(x) (x e Qn) 

From the inequalities in 13 it follows that if the functions G0,..., Gn^x are compo­
nents of some distributions, then for every t (0 g t < oo) this function U(x91) is also 
a component of a distribution of the space X. From the same inequalities it is clear 
that there exist polynomials P, Q (Q(x) ^ 0) for which 

(17) QUU)(%t)ePL (0 = t < oo,j = 0 , . . . , n ) 

(18) lim Uu\x9 t) rn = 0 (j = 0,..., n) . 
t->ao 

Now the question is whether the distribution u(t) whose component is U(x, t) 
can be chosen so that (5) may hold. It sufficies if we solve this problem locally. Let 
us choose the point x = a and suppose that (1), (1)' hold or, in more detail, (13). 
At the same time let us choose the polynomial Q so that (17) holds for a suitable 
polynomial P. 

21. Form of equations (14), (15). The functions us, u s + 1 , . . . are defined by (3). 
It is important to realize that the corresponding relations (15) hold not only for 
j = 5, s + 1,..., but according to (18)it is, moreover, 

(19) lim us-U)(t) t~n = lim us+1*u\t) r " = ... = 0 (j = 0,..., n) . 
U-+00 f-+oo 

Now, we have to define the functions u5"1,..., u°. They satisfy the system of equa­
tions (14): 

5 - 1 > 
(14) p y - ^ + .-. + Р o V - ^ F , 

+ PW2 + 
+ PU*'1'™ + ••• + po"s"ł,в = F.-г , 

_ y - 2 > ( л ) + + _ 0 м S - 2 + 

rf«°'<"> +...+p°0u° + 

+ p'H1»("> + . . . + P O " 1 + . . . = F 0 . 

The functions F s _ x = - ^ M * ' ( " > - ... - pl

0u* - ..., F0 = -pX-(n> - ... -
— p0u" — ... which occur there are well-known already. Moreover, let us realize 
that according to (19), 

(20) lim Fj(t) r " = 0 (j = s - 1,..., 0 ) . 
f~>00 
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22. Solution of equations (14), (15) if a $ Q^. In this case it is not p°s (*=pj(a)) = 0 
(j a 0,..., n) and from the system (14) the functions u5""1,..., u° can be successively 
determined in such a manner that (15) holds. In more detail: Let a e Qm. Then 
according to (20), (15) these functions are uniquely determined by the numbers 
u^O),..., uJ,(m"1)(0) (j = s - 1,..., 0) which can be taken arbitrarily. 

23. Solution of equations (14), (15) if a e Q^. Then p°n = ... = p°0 = 0 and the 
first equation of the system (14) has the form Fs_x = 0, therefore it is a condition 
assigned to the functions already known. We prove that it is an identity so that 
no nontrivial compatibility relations occur. 

First of all we shall write the equation (12) in this form: 

(Pi + Pl(x ~ a) + ...) y(n) + ... + (P0 + p2
0(x - a) + ...) y = 0 . 

We know that y(% t)U) = (dJjdtJ) Q u(t) where Q = (x - a)s Ql (Qt(a) * 0). The 
identity which is to be proved follows therefore easily in this way: 

0 = /(pl + P2
n(x - a) + . . . ) / + . . . + (p1 + pl(x - a) + ...) y, - ^ \ = 

- (pbin) + ... + p J y , ^ + (p2
ny

(n) + ... + Po2y,^C* - a)\ + ... = 

= <pyn) + ... + P0u, <x(x - a)s} + <pWn) + ... + p\u, <X(X - a)s+1} + ... = 

= pWM + ... + plus + ptus+1>™ + ... + p2
0u

s+1 + ... = - F s _ x . 

It can be proved quite analogously that if p1 = ... = pl = 0 as well, then the 
second equation of the system (14) has the form Fa_2 = 0 and it is again the identity, 
etc. Thus we can see that there are no compatibility relations of the system (14) and 
if the equations with the indices j = s — 1, ...,j = s — c are identically fulfilled, 
then only the functions u s~\ ..., us~~c occur in this system. For the functions 
us~c~x,..., u° we have only the conditions (15). 

24. Summary. An arbitrary distribution u(t) for which (5) holds can be obtained 
in this manner: Functions G0(x),..., G^^x) are chosen which are components 
of some distributions from the space X. Then the component U(x, t) of the distribu­
tion u(t) is defined by the conditions (6), (16). A polynomial Q (Q(x) s£ 0) is chosen 
so that (17) holds. In the neighbourhood of the point x = a the sought distribution 
is defined by the equations of the type (l), (1)', (13), where the functions uJ(t) 
(j = s — 1,..., 0), hitherto unknown, occur. They can be computed from the 
equations (14), (15) where the functions Fs„l9 ...,F0 are already uniquely defined 
by the known component U. In more detail: Let a^Q^ and for the sake of defini-
teness, aeQm. Then the functions u*""1,..., u° are uniquely determined according 
to 15 if we choose arbitrarily the numbers uJ(0),..., uJ,(m~x\Q) (j = s - 1,..., 0). 
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On the contrary, let ae Q^ and let c be the largest number such that P° = ... = 
= pcrx = 0 (j = 0, . . . , n). From the equations (14), (15) only the functions 
u s - 1 ( f ) , . . . , us~c(t) can be computed (initial conditions at the point t = 0 must 
be still chosen) but the functions us~c~1(t),..., u°(t) are arbitrary in the main. 

Corollary. If the component U(x, t) of a distribution satisfies the conditions (6), 
then the corresponding distribution u(t) can be chosen in such a manner that (5) 
holds. 

Corollary. If (5) holds, then for every N (N = 0, 1,...) there exist polynomials 
P> Q (Q(x) * 0) such that Q(dJjdtJ)u(t)ePL (j = 0,... ,N; 0 = t < oo). This 
derivative is to be understood as the derivative in the space PL. 

In 2 we have already noted that the functions uJ(t) have no invariant significance 
by themselves but they are very closely connected with the restriction of the form 
<w, (py to certain invariantly defined subspaces of the space C0. It is advantageous 
to understand our results exactly in this manner which is, however, a little clumsy 
and therefore we shall not use it explicitly. 

25. Definition. A point is called an ordinary point of the distribution u, if it has 
such a neighbourhood that in this neighbourhood the distribution u is equal to its 
component U. We say that the distribution u e Jf (with the component U) is equal 
to zero on a set Q if U(x) = 0 (x e Q) and if all points of the set Q are ordinary 
points of the distribution u. If Q is an'open set, then this definition agrees with the 
usual one. 

26. Theorem. Let Q^ be an empty set. Let us denote by Q the union of boundaries 
of all sets Q0,..., Qn. Let pn(x) + 0 ( x e Q), let g0,..., gn^t be distributions of the 
space J f such that all points of the set Q are their ordinary points. Then there 
exists exactly one distribution u(t) having these properties: It satisfies the equation 
(5), every point xe Q is an ordinary point of the distribution u(t) (0 ^ t < oo), 
every distribution (dkjdtk)u(0) - gk (k = 0, . . . , n - 1) is equal to zero on the 
setQ*+1. 

Proof. Let us choose the point x = 0 and suppose that in its neighbourhood the 
relations (1)' hold: 

<9k, <P> = fag* dx + J)1 5?^H g{ (k = 0, ..., n - 1) . 
J 1*0 /! 

The component U is defined by the conditions (6), (16). In the neighbourhood 
of the point aeQ, according to the inequalities 13, the function L/(-, t) (0 ^ t < oo) 
is integrable and therefore we can take s = s(a) = 0, u(t) ~= U(; t). Let a^Q and 
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for the sake of definiteness let a e Qm. Then a e Q1 u ... u Qm and then the equations 

u*<k)(0) = g{ (k = 0,..., m - l;j = 0,..., s - 1) 
must hold. 

It is clear that the functions u°(t),..., us"1(i') and thus also the distributions u(t) 
are uniquely determined by these conditions and equations (14). At the same time 
it is necessary to observe that the functions Fs_l5..., F0 can be computed by means 
of the relations (3). 

27. Example. Let us deal with the equation —iD(djdi) u + cu = 0, where n = 1, 
jp1(x) = x, Po(x) = c. x(d/dr) u + cu = 0 holds for the function u, xU' + cl7 = 0 
holds for the component U and the properties of these equations depend on the 
behaviour of the polynomial xz + c. 

Let c = 0. Then O e ^ and for x 4= 0 we have x e Q± = Q1, r(x) = m(x) = 1. 
Let us choose the distribution g0. From the equations (6), (16) it follows U = G0. 
For the polynomial Q we can take an arbitrary polynomial such that Qg0 e $£. 
From the equations (14) it follows that for a 4= 0 it is uJ

a = g{\ a a and for a = 0 
we have the solution us~a = cs_1?..., u^a = cl9 u°a = f(t). In general 

u = g0 + I'c.-iDWO +/(')«» * = £o + z V i O W + /(') • 
1=i 1=i 

Let c #= 0. Then Q^ = 0, for x = 0 it is x e Q0, m(x) = r(x) = 1 and for x > 0 
it is x e Ql9 m(x) = r(x) = 1. Clearly U(x, t) = f(x) c""ct/x (x > 0), U(x, t) = 0 
(x < 0). First let us choose f(x) = 1. Then the definition equation of the distribution 
u(t) can be written globally in the form 

<u, cp> = f V " ' * <Kx) dx + X ci(r) 9^>(a) 
Jo «J 

where the sum is finite and ranges over a > 0, j = 0, 1,.... We have 

u = <u, e^> = [^e-ct!x-*x dx + X ci(r) (-ay e*a ; 
Jo «.1 

the integral must be understood in the generalized sense and it could be possible 
to express it by means of Bessel functions. The functions cJ

a(t) must be chosen in such 
a way that the sum J] is a solution of the equation uxt + cu = 0. From the general 

aj 

theory it follows that the numbers cJ
a(0) can be chosen arbitrarily. Secondly, let 

us choose f(x) = 1/(1 - x). The definition formula for the distribution u(t) can 
be written in the form 

<«, </>> = f *e-«K(<p(x) - «(x) <p(0))-^- + X ci(t) <p"Xa) 
Jo 1 - X a,j 
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(where a e CQ, a(0) = 1) and in the sum the term cj(f) cpU)(i) must be given since 
in our case the corresponding polynomial Q is a multiple of the polynomial x — 1. 
We see that 

a = re-
ctlx(e*x - a(x)) - ^ - + £ ca(0 (-«)' c*fl . 

Jo 1 — X flj 

The functions c;j(f) must be still calculated and c\(t) plays a significant role. 

It is clear that it could be possible to choose 

C? (t) = j * V « " «(x) - ^ - , c{(t) = 0 (j = 1, 2,...) . 
Jo 1 - x 
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