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ČASOPIS PRO PĚSTOVÁNÍ MATEMATIKY 
Vydává Matematický ústav ČSAV, Praha 

SVAZEK 99 * PRAHA 20. 3. 1974 * ČÍSLO 1 

ON THE SOLUTION OF BOUNDARY VALUE PROBLEMS 
FOR LINEAR PARABOLIC EQUTAIONS OF HIGHER ORDER 

VLADIMIR 6URIKOVI£, Bratislava 

(Received February 17, 1971) 

1. Introduction. In his paper [2] R. K. JUBERG has treated the Dirichlet problem 
for the homogeneous linear differential equation Dxu + Dtu = 0 on the rectangle 
(0, 1) x (0, T> with data u(x9 0) = 0 for x e (0,1), u(091) = a(t)9 w(l, t) = b(t)9 

Dxu(091) = c(t)9 Dxu(l91) = d(t) for t e (0, T> (Dz = djdz). Reducing this problem 
to solving a system of Voltera type integral equations with bounded and dif-
ferentiable kernels, the author proved the existence and uniqueness of solution. 

The present paper deals with two modifications of Dirichlet problem for the non-
homogeneous parabolic equation Dxu + Dtu = <p(x91) on (0,1) x (0, T>. We study 
some properties of the fundamental solution of the operator Dxu + Dtu allowing 
to determine limits and derivatives of certain parametric integrals. Further, the 
Green function is constructed and with its help we seek 'an explicit representation of 
the solutions of the considered problems. The method introduced below affords an 
information on the behaviour of solutions at the points (0, 0) and (1, 0). The proce­
dure may be directly applied to the equation D2

xu + (—l)n Dtu = <p(x91). 

2. The formulation of problems and some notions. Let Rn mean the ^-dimensional 
Euclidean space and let A be the closure of A c Rn. By Q09 Q and Qt we shall denote 
the Cartesian products (0,1) x (0,T), (0,1) x (0,T> and (-co, oo) x <0, oo) re­
spectively. Let A be an open set of R2. The set of all functions v(x91) e C0(A) with 
continuous derivatives Dxv(x91) and Dtv(x91) on A9 where m is a positive integer, 
will be denoted by Nm(A). 

We consider the following two boundary value problems 

(1) L(u; x91) = Dxu + Dtu = q>(x91) , (x, t) e Q 

(2) u(x9 0) = g(x) , 0 < x < 1 

(3;) 2>rX0,0-« /0 . Di~lu(l9t) = bj(t)9 0<t£T 

Di^ufrt)-^), Di+iu(l9t) = d£t), 0<t£T 



for j = 1, 2, where <p(x, t), g(x), a/t), bj(t), Cj(t) and dj(t) are real functions of certain 
classes defined below. 

The real functi6n u(x, t) is said to be a solution of problem (1), (2), (3I), 7 = 1,2 
if u e C0\Q - {(0, 0), (1, 0)}] and Dxu e C0(Q) for v = 1, 2, 3, Dtu e C0(Q) and 
u(x, t) satisfies conditions (1), (2), (3j). 

Let A <=. R1 and/(x) be a real function on A. Let B mean a bounded and closed 
subset of A. If to each such defined JB there is a constant K(B) depending only on B 
such that 

\f(x)-f(y)\^K(B)\x-y\*+»!\ n = = 0 , 2 , £ > 0 

for every x,yeB and 0 < s + n/4 < 1, then the function f(x) is called locally (e + w/4)-
Holder continuous function on A. The set of all such functions is denoted by Sn(x, A). 
If the function/depends on the parameter k (f = f(x; X)) and if the Holder constant 
K(B) does not depend on X, the function/(x; X) is said to be locally (e + n/4)-H6lder 
continuous with respect to x on A uniformly with respect to L We denote the set of 
all such functions by Sn(x, A; X). 

Under the fundamental solution of equation L(u; x,t) = 0 in Q we understand 
a continuous function r(x, t; £, T) for (x, t; %,T)E Q x Q, (x, t) =# (£, T) with 
the derivatives Dtr, Dxr, D2

xr, D3
xr, Dxr such that the integral 

u(x, t) = Г dт Г Г(x, t; Ç, x)f(ţ, т) dÇ 
Jo J 0 

is a solution of the equation L(u; x, t) = f(x, t) on Q for any feC0(Q)n 
n S0[x, (0,1); t]. 

A continuous function Gj(x, t; £, T) for (x, V„ £, T) G Q X Q, t > T, having the first 
derivative respect to t and the derivatives with respect to x up to the 4-th order, is 
called the Green function of the problem (1), (2), (3,-), j = 1, 2, if 

Gj(x, t; £, T) = r(x, t; £, T) + Vj(x, t; £, T) , 

where F is the fundamental solution of L(u; x, t) = 0 in Q and Vj satisfies the fol­
lowing conditions: 

a. LfypX, t) = 0 for t > T. 

b. Vj\tsst = 0 for (x; £, T) G <0,1> X Q if at leats one of the points x, £ lies in the 
open interval (0,1). 

c. Dx-%\x=0 = D'-'GJI^ = Dj
x
+1Gj\x=0 = Dr'G,!,--! = 0. 

3* The fundamental solution and its properties. Consider functions Fv, v = 0 , 1 , . . . 
defined for (x, t; £, r)eQt x Ql9 (x, t) # (t;, T) by the formula 

(4) r v ( x , n ^ = {^' '^'T ) If **]**] 

2 



where 

(5) kv(x, t; £, T) = ^ r ov exp {-iQ(x - £) - Q\t - T)} do 
2TT J - ^ 

and i means the imaginary unit. 
In this section we investigate some properties of limits, integrals and derivatives of 

Fv. The results are obtained by means of O. A. LADYZHENSKAYA'S estimate given 
in[ l ] 

(6) | ^ r 0 ( x , t; Z, T)| = c.(v) (t - x)-^'* exp {-c2[(x - ?f\(t - t)]1/3} 

for (x, t; £, T) e &! x Ql5 T < f, where the constant ct depends on v and c2 > 0 is 
an absolute constant. This estimate may be transformed to 

(7) |z>;r0(x, t-„ i, t)| = 

^Cl(v) (t-ry \~t^v\ exTC2LTr7-J | = 
= K(v)(f- T)-" |X - ^ l ^ - - - 1 

for (x, t, £, t)e Qt x .Qj, T < f, £ 4= x and JI = (1 + v)/4, where v = 0 1, ... and 
K(v) is a constant depending only on v. In [2] tlie identities 

/ •O /»oo * /• oo -i 

(8) F0(x, 1; 0, 0) dx = F0(x, 1; 0, 0) dx - F0(x, 1; 0, 0) dx = -
J -oo J o --* J -oo •--

are established. 

Lemma 1. Let v = 0, 1,... and A = {(x, t, £, T j e ^ x ^ : (£, T) #= (x, *)}. Therc 

a. The function Fv(x, f; £, T) is continuous on A and the identities Fv = D*F0, 
( - i yDfr 0 = vtr0 = (-lyDv

tr0 = (-iyD?r0 and Dv
xr0 = ( - i y D}r0 

hold. 

b) Fv(x, t; £, T) is almost uniformly bounded on A in the sense that to each 8 > 0 
there is N(8) > 0 such that |Fv(x, t;, £, T)| < N(<5) in A for (x - £)2 + (t - T)2

 = <52. 

c. 1/ v = 0, 1, 2, 3 t/ie integral j$a |Fv(x, f; ^, T)| d£ dT is uniformly convergent 
with respect to P(x, t) e Qt that is, to each e > 0 there is 8 > 0 swcft fftaf 

f |D;F0(x,n^T)|d^dT<6 
J Qr\S(P,6) 

for all PeQlt S(P, 8) denotes the circle (£ - x)2 + (T - t)2 ^ 82 in Qt. 



Proof, a. For t — T = 8, 8 > 0 we have 

|0T exp {-ig(x - Q - <>4(f - T)}| £ ev exp {-<>4<5} 

which ensures the locally uniform convergence of fcv on Qx x Q± for T < t. Hence 
and by lim Tv(x, t; f, r) = 0 for £ =f= x (see (6)) the continuity of Tv on AL and the 

demanded identities follow. 

b. For (x - £)2 + (t - T)2
 = <52 again by the estimate (6) 

|Tv(x, t; £, T)| = Ci(v) sup <p(;y) , 
ye«>,*> 

where <p(y) = y~(1+v)/4 exp { — c2(8
2 — y2)2/3 y'lf3} . The last inequality proves 

the almost uniform boundedness of JTV. 

c. Consider the rectangle O: Qx 3 0 = {(£, r) : \x — E\ ̂  5, |f — T| ^ 5} => 
3 S(P, 5). Then by (7) for v/4 < fi < (1 + v)/4 and v = 0,1, 2, 3 

ÍÍ |Г¥(x, V, £ т)| dí dт й 2 K(v) [(-tø - v) (1 - / Í ) ] - 1 ő 1 + 3 "-" . 
S(P.Í) 

The statement c is proved. 

Lemma 2. Letfe C0(SS). Then the integral 

Iv(x, t; T) S J Tv(x, f; £, T ) / ( £ , T) d£, v = 0,1, 2 , . . . 

lias the following properties: 

a. /v is continuous on S x <0, T>, T 4= * and 

(9) D:/0(x,t;T) = /v(x,f;T) 

for (x, t; T) e (0,1) x <0, T> x <0, T> T * t. 

b. /), /0(x, f; T) is continuous on <0,1> x (0, T) x <0, T>, T =M and 

(10) />, /0(x, t; T) - f D, T0 (x, f; £ t)/(& T) d£ == - /4(x, f; T) 

for(x,t;x)eQ x < 0 , T > , T = M . 

c. 77ie uniform limit 

Urn /0(x, f; T) « / (X, T) (lim /0(x, f; T) - /(x, t)) 
ř-*t+ 

exists in any rectangle Rt =-* <a, 6> x <0, T) (/?2 = (a, b} x (0, T», where 
0 < a < b < 1. 



Proof. Putting \x = (1 -f v)/4 in (7) we get an integrable majorant for Fv, v = 
= 0,1, . . . independent of x and locally independent of t and T for t + T. Then from 
Lemma la and theorems for the differentiation of parametric integrals we have the 
assertions a, b. 

To prove the statement c of this lemma write 

I0(x, t; т) = f(x, x) f Г0(x, t; Ç, x) d£ + 

+ ľ Г0(x, t; Ç, x) [/(£, т) - f(x, т)] d£ = 17. + U2 x < t. 

If we transform the first integral by the substitution (x — £)/(* — x)1'* — — z then 
(ro(z,l;0,0) = ro(-z,l;0,0)) 

Cr0(x, t; I, x) d{ = Cr0[xl(t - x)1'*, 1; 
Jo Jo 

rto2 

Zj(t - x)1'4-, 0] (t-x)~ V* d£ - r0(z, 1; 0,0) dz, 
J - O l 

where cox = xj(t - T)1/4 , CQ2 = (1 - x)/(* - T)1 /4 . In view of (8), lim Ux = 

= /(x, T) (lim U± = /(x, r)) uniformly with respect to (x, t) e Rt ((x, t) e R2). Divide 

the second integral U2 in two parts integrating on the interval <x — 5, x 4- 5>, 
where 8 > 0, x e <a, 6> such that x — 5, x + S e <0,1> and on the set <0,1> -
— <x — <5, x + S}. From the continuity of/(x, t)9 for e > 0 and sufficiently small S 

P+V0(x, *; f, T) [/(£, T) - /(x, T)] dfl ^ 8 f Vo(*, *; {, T)| d£ ^ 
Jx-« I Jo 

£ e I*" |r0(z, l ;0,0) |dz ^elC, K>0. 
J - o o 

The remaining part of U2 is a continuous function of x, f, T and lim U2 = 0 
(lim l/2 = 0) uniformly on Rt (R2). This completes the proof. ,~*T+ 

Remark l . At any point (x, t) e Q the function J0 may be continuously extended 
forT = tby/o(x,f;0=/(x,t). 

Lemma 3. Let 
•t /•! 

Ty(x, t) ш П Гy(x, t; É, x)f(Ç, x) dÇ dт 



Then 

a. For fe C0(H) and v = 0, 1, 2, 3, Tv is continuous on Q and 

(11) Dl T0(x, 0 = Tv(x, 0 , (x, t) e (0, 1) x <0, T> . 

b. Forfe C0(Q) n S0[x, (0, 1); t], T4 is continuous on Q and 

(12) D$ T0(x, 0 = T4(x, t) , (x, t) e (0, 1) x <0, T> . 

c. For e C0(Q) n 50[x, (0, 1); f], the derivative DtT0(x, t) exists, is continuous 
and 

(13) Dt T0(x, t) = f(x, t) - f F4(x, t; & T) / (£ , T) de; dT = /(x, *) - T4(x, t) 

for (x, f) G (2 . r0(x, t; £, T) is the fundamental solution of L(u; x, t) = 0. 

Proof. Since Tv(x, t) = J0 Iv(x, t; T) dT and the estimate 

| / v (x , r ;T ) | ^K (v ) ( f -T )^ , K(v)>0 

holds for v/4 < /* < (1 + v)/4, v = 0,1, 2, 3 and (x, t; T) 6 <0, 1> x <0, T> x 
x <0, T>, T 4= r, the first assertion follows from Lemma 2a. 

The part b will be proved if we find an integrable majorant of I4(x, t; T) with respect 
to T. Let y e (0,1) be an arbitrary point then by (9) 

h(x, t; T) = DxI3(x, t; T) = f(y, T) [F3(x, t; 0, T) - F3(x, t; 1, T)]/V==3C + 

+ f V4(x, t; £, T) [/(£, T) - f(y, T)] A^X 

for (x, r; T) e (0, 1) x <0, T> x <0, T>, T 4= *. In virtue of Lemma lb the 
difference T3(x, t; 0, T) — T3(x, t; 1, T) is a bounded function of (f, T) at every point 
x e (0,1) and has zero limit as T -> f-. The last integral may be estimated as follows: 

I jV,,; e. t) m, t) - /(„ ,a dtj s ̂  £ |;,_{|tU-, s 
<K\(t~xY, \~(y)<n<\ 

where Xj., K are constants independent of x, t, T. 

Prove c. Since D, I0(x, t; T) = ~IA(x, t; T) (see (10)), it is 

(14) \D, I0(x, t; T)| <K(t-x)-", 1 - ±e < /i < 1, 
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whence we have the continuity of DtT0 on Q. Let t e (0, T) and h > 0 such that 
t + h < T and investigate the difference 

(15) i {T0(x, * + h) - T0(x, 0} = - | J Io(*> * + ft; T) dt - | /0(x, t; T) dri = 

-j pt + h /».? 

I0(x, * + h; T) dT + Dt I0(x, t*; T) dT , 
hjt Jo 

where f < t* < t + ft. In view of the continuity of 70(x, t; T) on Q x <0, T> (see 
Lemma 2a and Remark 1) and the estimate (14), letting h -• 0 in (15) we obtain 

D, T0(x, r) = 70(x, f; 0 - T4(x, 0 = f(x, 0 - T4(x, t) . 

Lemma 3 is proved. 

Lemma 4. Put 

Jv(x, t; £) s í/(x)rv(x, ř; & T) dx 

Then 

a. For any feCo(<0,T>) and v = 0, 1,... t/ie integral Jv is continuous on 
Q x <0, 1>, £ 4= x and ffte equation 

(16) £l^o(x. r; 0 = Jv(x, t; 0 

holds for (x, t; 0 e (0, 1) x <0, T> x <0,1>, { #= x. 

b. For fe C0(<0, T», £>,JV is continuous and 

(17) D, Jv(x, *; 0 = f f(T) Dt Tv(x, r; & T) dT = - Jv+4(x, t; £) 

for(x,t;£)eQ x <0,1>, £ * x. 

Proof. The proof follows from the estimate (7) for 0 < /i < 1. 

Lemma 5. a. For any fixed point ye(0,1> and (x, f )e(-oo, oo) X (0, T> 

(18) p(x, >>) - j V0(x, *; £ 0) d£ -= P[Z)f T0(x, t; y9 T) - Df T0(x, t; 0, T)] dT , 

where 
1 if 0 < x < y 

Kx> y) =* *{i */ * = ° or * = y 
0 if x < 0 or x > y . 



b. Let Jv mean the integral from Lemma 4. JF//eCo(<0, T» then for every 
te(0,T> 

(19) lim Jt(x, t; z) = 0, z e <0,1) 
* - • * + 

lim Jx(x, *; z) = 0, z e (0,1> . 
x-*z — 

c. Let n = 2 or n = 3. Then forfe S2„_4[t, (0, T>] at every point t e (0, T> 

(20) lim J2B- x(x, t; z) = ±(1 - |n - 2|)/(f), z e <0,1) 
X-+Z + 

lim /^ . . (x , *; z) = - i ( l - |n - 2|)/(f), z e (0,1> . 
x _ > z -

Proof. a. For x =j= j and x + 0 the convergence of the integrals in (18) follows by 
(7) and for x = y or x = 0 by the identity D\ T0(y, t; y, T) = D\ r0(0, t; 0, T) = 0. 
Let y e (0,1> be a fixed point. Integrating the equation 

J Dx T0(x, t; £, T) df = D\ T0(x, t; y , T) - D\ T0(x, f; 0, T) , * * T 

with respect to T from 0 te t - e, e > 0 we obtain 

(21) f {D\ T0(x, t; y, T) - D\ T0(x, t; 0, T)] dT = 

" r e\fDt r°^t; * T) d^idt- r ^ t ; ^ * ~s) **" rr°k*; ̂ o) ̂  
for (x, t) e Si. By the substitution (x - £ ) / e 1 / 4 = - z , 

/•.v ftt>2 
T0(x,.; & * - 8) d£ = ro(z, 1; 0,0) dz, 

Jo J - o i 

where cot = x / e 1 / 4 , co2 = (y — x ) / e 1 / 4 . Hence and by (8), letting e -> 0-f in (21) we 
get the relation (18). 

b. Since l im rt(x, t; z, T) = 0 uniformly with respect to T e <0, t — e>, e > 0, 

formulas (19) fo l low from estimate (6) for v = 1. 

c. The function f(t\ t e (0, T> may be continuously extended to the closed interval 
<0,T>. ForO S z < * < landO g x < t <> Tweget 

l*2.-i| - |[/(0 - / W ] *^-i(*> t; z, T)| £ 
£K(t- T)*- 1 , 0 < e < l , X > 0 

(n = 2, 3), whence lim J0
r #2ll^ t dT = 0 at every point t e (0, T>. 

*-*x + 
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In virtue of (18) for y = z * 0 (D\ r0(z, t; z, T) = 0) 

lim J Dl r0(x, t; z, T) dT = | r0(z, t; f, 0) df - | D\ r0(z, t; 0, T) dT = \ 
*-*+Jo Jo Jo 

If z = 0 the formula (18) yields 

lim Dl r0(x, t; 0, T) dT = 
*-o+J0 

= 1 - rr0(o,*;£,o)d£- rD|r0(o,r,y,T)dt = i - i - = i . 
Jo Jo 

Since 

Jщ-i{x, t; z) = - ľ Я2 n_. dт + f(t) L„ , 

where L2 = j 0 D3

X r0(x, t; z, T) dT and L3 = -Z) x r 0(x, *; z, 0), the formula (20) 
is true for x -• z + . The reasoning for 0 < x < z ^ 1 is analogous. 

4. The Green function. Theorem 1. The function 

(22j) Gj(x, t; (, T) = f \T0(x, t; £, + 2fc, T) + ( -1 ) ' F0(x, t; - £ + 2fc, T)] , 
Jfc=-oo 

I = 1, 2 

and i7s derivatives Dy
xGj, v = 1,2,... are continuous for (x,t;£,T)eQ x D% 

(£, T) 4= (x, r) and Gj constitutes the Green function of problem (1), (2), (3y). 

Proof. Investigate the convergence of the series 

(23,) u0
j\x, t; S, T) = ( - iy F0(x, t; - £, T) + 

I [r0(x, f; { + 2fc, T) + (-1)^ F0(x, t; - £ + 2fc, T)] 
jfc=-co 

Jfc-I-O 

(G/x, f; {, T) = F0(x,f; {, T) + u(
0
j)(x, t; {, T)). For 0 £ x g 1, 0 = £ g 1 and 

fc = ±1 , ±2, . . . , |x -F t - 2fc| = 2|fc| - |±{ - x| ^ 2|fc| - 2. By (6) we get the 
estimate 

|D ; r 0 (x , r ;±£ + 2fc,T)|^ 

c-.(v) (t - T)~<1+V>/4 exp {-24/3 c2(t - T ) - 1 / 3 (|fc| - 1)4/3} 

for v = 0 , 1 , . . . and T < t. Thus number series 

^ ( v J a - ^ + ^ f exp{-24/3c2T~1/3(/ - 1)4/3} 

is a convergent majorant of 

(24) X [Dl Г0(x, t; í + 2*. т) + (-1)> D; Г 0(X, ť, - £ + 2fc, т)] , j = 1,2 

9 
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if 0 < a < f - T ^ T . Hence the continuity of Dxu
(
0
J) follows on [<0, 1> x 

x (0,T>] x [<0, 1> x <0,T)], T < t. We easily see that i n S x S the function 
Dx F0(x, t; — £, T) IS discontinuous only for x = f = 0, f = T. The terms D* F0(x, f; 
±£ + 2fc, T) of the series (24) for fc = 1, — 1 are continuous o n S x S except the 
function Dv

x F0(x, t; - £ + 2, T) which is discontinuous for x = £ = 1, f = T. The 
following majorant of (24) for fc + 1, - 1 

s(t, T) = 4c,(v) (t - T)" ( 1 + V> / 4 f exp {-24/3 c2(t - T)~1 / 3 (/ - 1)} = 
1 = 2 

= 4 c 1 ( v ) ( . - r ) - < 1 + ^ a / ( l - a ) , 

where q = exp {-24/3 c2(* — T ) ~ 1 / 3 } , has the zero limit as t -> T + or T -» *- . 
Consequently all derivatives D^w^ are continuous on Q x Q, (x, f) 4= (£, T). By 
Lemma la the continuity of Dv

xGj on Q x Q, (£, T) #= (x, t) is evident for v = 0, 1,... 
From the preceding argument and Lemma la we see that the equation 

L(u(
0

j); x, t) = 0 is not satisfied only at the points (0, t; 0, t)9 (1, t; 1, t) e Q x Q. Let 
x or ^ be from the open interval (0, 1) then by the estimate (6) one obtains 
lim u0

 }(x, t; £, T) = 0. The properties c. of the Green function follow for 

Gj(x, t; $, T) from the identity 

(25) Dv
x GJ(X, t; {, x)\x=z = !=-£ t r e'{[cos Q(Z - £ - 2k) + 

+ ( - i y cos Q(Z + { - 2fc)] - i[sin Q(Z - { - 2k) + ( -1 ) ' sin Q(Z + { - 2k)]} . 

. exp[ -e 4 ( f -T) ]do ; 

which may be obtained by the direct differentiation of (22,-) and by Eulerian identity. 
This concludes the proof. 

Remark 2. In the compact set Q x Q the Green function Gj contains three singular 
terms F0(x, t; £, T), F0(x, t; — £, T) and F0(x, t; —£ + 2, T) and the function u(

0
J) is 

continuous on Q x H and U x Q. 

Theorem 2. Lef Ĝ  be the Green function (22 j). Then for w(x, f) e N4(Q) the identity 

(26) W(x,0 = £(-1)* rDju(l,T)D?-*GX*,*; l,r)dt -
*=° Jo 

- 1 ( - o* f r ^ w(°» *> J>?~* G / * > *; o. T ) dT + 
*=° Jo 

+ f «(£, 0) G/x, *; & 0) « + f f G/x, t; & T) L(II; {, T) dc; dT 
J o JoJ o 

fs *rwe on Q. 

10 



Proof. In virtue of the decomposition Gj = F0 + u0
J) and Remark 2 and Lemmas 

2a, 3a, 4a we may assert that all integrals in (26) are continuous functions on Q. 

Let u(x91) and v(x91) be arbitrary functions of NjH) and let M(v; £9 T) = D4t> — 
— Dtv. Integrating the identity 

UM(V;Z9T) - vUu;^9x) = ^ [ £ ( - 1 ) * D^uD^v] - £> tM 
fc = 0 

over the closed domain S we get by the Green formula 

IT [u M(t>; £, T) - t; L(II; £, T)] dc; dT = f K({, T) d£ + S({, T) dT , 
J J Si J dQ 

3 

where R(£9 T) = uv and S(£9 T) = £ ( -1)* Dk
4uDl~kv and 3D is the boundary of Q. 

fc = 0 

Consider the positive oriented rectangle Q' = (0 ̂  £ ^ 1) x (0 ̂  T S t — fi)> 
e > 0 with the vertices ^ ( 0 , 0), A2(U 0), M^O, t - e), M2( l , t - e) such that its 
one side passes through the point P(x91) e Q. In this rectangle we may put v(£9 T) = 
= Gj(x91; £, T) and the Green formula gives 

(27) - (T Gj L(u; Z, T) d£ dT = £ ( - l)fe f D'uD^Gj dx -
JJn' * = 0 J ^ 2 M 2 

- £ ( -1)* f DkuDl~kGj dT + f aGy d{ - f «F0 d{ -
* = 0 J^iMi ' J-4i-42 JMIM2 

- J ti(f, t - e) f#>(*>t; {, t - e) d£ . 

The integral 1(e) = {jMlMl uT0 d£ may be transformed to 

7(e) = u(x + z ye , t - e) F0(z, 1; 0, 0) dz , (x, r ) e ( 2 0 , 
J —<»i 

where o^ = x/e1/4, co2 = (1 - x)/e1/4 by substituting - z = (x - K) e1/4. With re­
spect to the mean value theorem we obtain 

/*«>2 

/(e) - u(x91) = ^ e zD^ w(x + 0z */c, f - 0e) F0(z, 1; 0, 0) dz -
J -«>i 

/•a>i 

- e Dx u(x + 0z */e, f - 0e) F0(z, 1; 0, 0) dz -
J -a>2 

/ /• oo /•a>2 \ 

- u ( x , 0 ( - ) r 0 ( z , l ; 0 , 0 ) d z , O < 0 < 1 . 
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If we denote N = max (|u|, \D^u\9 \D<u\) then 
n 

|/(e) - «(x, 0| < N t/e !K \z r0(z, 1; 0,0)| dz + 
J - 0 0 

+ CiV |r0(z, 1; 0, 0)1 dz + N| ( + \r0(z, 1; 0,0) dz 
J—oo \ J - o o J C&2/ 

and by the formula (27) for e -* 0+ we reach the assertion of this theorem. 

Remark 3. The analogous formula to (26) may be shown for an arbitrary function 
H(x9 f; f, T) = r0 + h (instead of Gj)9 where h has the following properties: 

a. L(h; X , I ) E 0 for t > T. 

b. lim h(x91; £, T) = 0 for (x; <!;, T) e <0,1> x (3 if at least one of the points 

x and I; lies in the open interval (0,1). 

5. The solution of boundary problems. The following theorem gives a formula for the 
explicit representation of the solution of problem (1), (2), (3,.). 

Theorem 3. Let the right hand side of (1) <p(x91) be a function of the class 
C0(-J2) n S0[x, (0,1); t] and the boundary functions belong to the following classes: 
0 ( X ) G C O « O , 1 » ; aj(t)9 bj(t) e S2[t9 (0, T>] and Cj(t)9 dj(t)e So[*,(0,T>] for 
j sas 1, 2. Then the function 

(28,) 

«X*> 0 = (-1) ' [T«XT) »tJGj{*> f> 0, T) + cj(x) D2~J Gj(x91; 0, T)1 dT + 

+ ( - i y + 1 fT*AT) D r J G/x, *; 1, T) + dj(x) D\~J Gj(x91; 1, T)1 dT + 

+ f 9(0 GX*> *> z> ° ) d £ + f' f GX*>'; £> 0 <K£>*)d£d T 

J o JoJ 1 
is a solution of problem (1), (2), {Sj)forj = 1, 2. 

Proof. First of all we see that there exists a continuous extension of aj9 bj9 Cj and 
di9 j «- 1, 2 on the closed interval <0, T>. 

The functions JDJ r0(x, *; - £ , T) and D\ T0(x, f; ± f + 2fc, T) for fc = ± 1, ±2 , . . . 
and v -= 0 , 1 , . . . are continuously differentiable on Q x £2 up to an arbitrary order 
and satisfy the homogeneous equation L(u; x, t) = 0 on Q for every fixed (£, T) e S. 
With respect to formulas (10), (13), (17) and to the decomposition Dv

xGj = Dv
xr0 + 

+ &lu0
J) it is obvious that Uj(x91) satisfies condition (1). 
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Letting t -> 0+ in (28 )̂ we get condition (2) by Lemmas 2c, 3a and 4a. 

For the proof of conditions (3j) j = 1, 2 we shall need the following identity: 

(29) DlDyGj(z9t;Z9T) = 

= HZlL1 f P ff'+*- r|p {yt CQS ̂  _ { _ 2fc) + ( - iy cos Q(Z + { - 2fc)] -
27C * = - o o J _ 0 0 

- i [ ( - 1)V1 sin e(z - £ - 2fc) + (-1)> sin Q(Z + £ - 2fc)]} exp [~e4(f - T)] dg 

which may be obtained analogously to formula (25) by (22j). If the parameters 
(v, vl9 j9 z) attain the values (0, 0, 1, 0), (0,0,1, 1), (2,0,1,0), (2,0,1,1) and(l, 0,2,0), 
(1, 0, 2, 1), (3, 0, 2, 0), (3, 0, 2,1) then the derivative (29) is equal to zero for r < t. 
Hence and by Lemmas 2a, 3a for the same values of parameters (v, vl9 j9 z) as above 
the derivatives of the both last integrals in (28 )̂ with respect to x up to the order 
v = 0,1, 2, 3 converge to zero as x -> 0+ or x -• 1 — for every t e (0, T>. From the 
continuity of Jy on Q x <0,1>, £ 4= x and from (16) we have 

(30) Dl f/Xx) DYGj{x, t; S, r) dr -+ 0 if x -• 0+ or x -*• 1-

(/,. represents any one of the functions aj9 bj9 cj9 dj of (28,.)) for all values 
(v, vl9 j9 z) = (0, 1, 1, z), (0, 3, 1, z), (2,1,1, z), (2, 3, 1, z) and (1, 0, 2, z), 
(1, 2, 2, z), (3, 0, 2, z), (3, 2, 2, z), where z = 1 - f and f = 0, 1 (£ 4= z). If £ = z 
then Lemma 4a enables us only to interchange the differentiation and integration in 
(30). For the calculation of the limits of the integrals in (287) if x -» 0 + and x -• 1 -
we have to use Lemma 5b,c. (There are two singular integrals in (30). If z = 0 then 
both integrals for fc = 0 — see (22,-) — are singular and if z = 1 the first integral for 
fc = 0 and the second integral for fc = 1 are singular.) The remainder of integral (30) 
is a continuous function on D x 3 and we find out as well as in the previous case that 
its limit is zero. Thus the function u/x91) given in (28j) satisfies condition (3^). 

The function u/x91) is sufficiently smooth. Indeed, the continuity of derivatives 
Dv

xUj for v = 0,1, 2, 3, 4 and Dtuj9 j = 1, 2 in Q follows successively by Lemma 2a,b 
and 3a,b,c and 4a,b and by the continuity of utf* on Q x 3 . Letting t -» 0+ in (28 )̂ 
for x e (0,1) and then x -* 0+ and x -> 1 — for t e (0, T> we get the continuity of 
Uj(x91) on D — {(0, 0), (1, 0)} by Lemma 2c and 5a,b,c. Theorem 3 is proved. 

Remark 4. In Theorem 3 we have proved the continuity of Uj(x91) in 
D — {(0, 0), (1, 0)}. For the continuity of u/x91) in the whole closed domain D we 
have to put further conditions on the boundary functions. For instance, it is sufficient 
to assume that #(x) and ax(t)9 bx(t) have a compact support in <0,1> and <0, T} 
respectively. Really, substituting (x — £)/f1/4 by — z we obtain for a sufficiently small 
e > 0 

řo(x,í;0) = ľø(É)Гo(:M;č,0)d£ = 
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/•l-« f<D2 

9(0 r0(x, t; Z, 0) d£ = g(x + tx'*z) T0(z, 1; 0,0) dz, 
J * J -© i 

where cox = (x - e)/f1/4, co2 = (1 - e - x)/f1/4, x e <0, 1>, t e (0, T> and 

J0(x, *; 0) -» 0 as (x, 0 -> (0, 0) or (x, t) -* (1,0) for (x, 0 e Q. In virtue of (6) for 

(x, 0 e Q, { e <0,1> a n d / ( 0 e C 0 «0, T » we get 

|f/(T)D?GXx,ř;{,T)dT 
IJo 

• f t»i 

= a/ř) , Vц = 0, 1, 2 

1/7% 
I J o J o 

<p(Č, т) G/x, t; Ç, т) d£ dт < •Ш. 

where lim a / 0 = lim /?//) = 0, j = 1,2. Let { = 0,1 then J 0 / ( T ) D| G/x, f; f, T) dT 
f->0 + f-+0 + 

is a continuous function at the point (1 - {, 0) (see Lemma 4a). Furthermore 

by (18) for y = 1 and x e (0,1) 

I f I ff 

| J 3(x, f; 0)| = fll(i) D | P0(x, t; 0, T) dT + ^ ( T ) - at(t)\ \D\ P0(x, t; 0, T)| dT = 

I Jo I Jo 
= h(0| || j \ 3 ro(*> ;̂ l, T) dT I + ^ + l j + 7(0 

where K > 0, 0 < \x < 1 and lim y(t) = 0. Thus J 3(x, t; 0) -» 0 if (x, 0 -> (0, 0). 
f - 0 + 

Analogously J 3 (x, t; 1) — 0 as (x, 0 -> (1> 0). 

R e m a r k 5. The above procedures are directly applicable to the boundary value 

problems 

Ln(u; x, 0 = D2

x

nu + ( - l)nDtu = (p(x, t) , (x, t)eQ 

u(x, 0) = g(x) , x e (0, 1) 

D?+J-x u(0, 0 = avj(t) , D2^-1 u(\, 0 = bv,(0 , 

te(0,T>, v = 0, 1, . . . , n - 1, j = 1,2. 
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