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Časopis pro pěstování matematiky, roč. 99 (1974), Praha 

AN INEQUALITY INVOLVING POSITIVE KERNELS 

Ivo MAREK, Praha 

(Received November 7, 1972) 

A classical result concerning finite series of positive numbers (see [3], Theorem 328, 
pp. 318-319) can be formulated as follows. 

Let n be a positive integer and let x = (£ l5..., £,n), £j > 0, j = 1,..., n. Let P 
be a permutation matrix, i.e. let Px = y o y} = xij9 j = 1,..., n, where (iu ..., in) 
is an ordered system of all of the integers l,...,n. Then the relation*) 

(1.1) (Px,z) = (Pe,e) 

holds for every z = (d , . . . , (n), £,- > 0, j = 1,..., n,for which 

(1.2) Cjij = U l , . . . , n , 

where x = (£l9..., £„), £j > 0, e = (1 , . . . , 1). Furthermore, if P is indecom­
posable,**) then the equality sign in (1.1) takes place if and only if x = z = ce, 
c being a constant. 

Using a result of G. Birkhoff [1] saying that every doubly stochastic matrix 
T = (tjk) can be expressed as a convex combination of permutation matrices Pk 

r = £ V * , o < A t < i , £ ^ = 1, 

fc=l k = l 

we deduce from (1.1) that the relation 

(1.3) (Tx, z) ^ (Te, e) 

*) Here we let (x,z) -=~ £ £ ,U 

**) See Remark 2 of the Appendix. 
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holds for every couple of vectors x and z for which (1.2) is fulfilled. If Tis inde­
composable then the equality sign in (1.3) takes place if and only if x = ce, c being 
a constant. 

Let T be a matrix for which 
n n 

vj^ltjk^Tstkj, o* = °> ^ > o . 
fc=i fc=i 

Then relation (1.3) remains to be valid also for this case. 
Let Tbe an arbitrary nonnegative matrix and let r(T) be its spectral radius. Let u0 

and v0 be some nonnegative eigenvectors of Tand its transposed matrix T respectively 
corresponding to the spectral radius: Tw0 = r(T)u0, T'v0 = r(T)v0, u0 = 
= 0?i> •..,>?»), »o = (vi, ...,vn). 

We easily verify that for the matrix U = (ujk), where ujk = Vjtjkrjk + S5jk, k, j = 
= 1,..., n, 6 > 0, the following relations 

n n 

L ujk = r(T) Vjfjj + <5 = £ ukj 
fc=i fc=i 

hold. Thus we have that 

(1.4) (Ux, z) = (Ue, e) 

holds for every couple x and z for which (1,2) is fulfilled. But (1.4) is equivalent 
to the relation 

L L [v,-«1Cfc + MjktjQ ^t t bjtjkttk + Mjk-] 
i = l f c = l j=l fc=l 

and, since 8 is arbitrary, we obtain 

(i.5) i ivjtjaM^i ivjtjti*. 
j=i k=i j=i fc=i 

The procedure just shown is a slightly modified procedure used by M. Fiedler [2]. 
We summarize the previous results in the following theorem. 

Theorem 1. Let T = (tjh) be an n x n matrix with nonnegative entries tjk, 1 ^ j , 
k ^ n. Let u0 and v0 be any nonnegative eigenvectors of T and its transposed T' 
respectively corresponding to the spectral radius r(T). Let x be an arbitrary vector 
with positive coordinates and z let be such that (1.2) holds. Then the relation 

(1.6) (Vx,z)^r(T)(u0,v0) 

holds, where V = (vjk) and 

vJk = vjtjflk > uo = (*lu • • •> *ln) > *>o = (vi, • •., v„) . 

78 



If moreover T is indecomposable then the equality sign in (1.6) takes place if and 
only if x = ce, c being a constant. 

We note that only the last assertion has to be proved. We shall not do this now 
because our aim is to prove a slightly more general result in Section 2. 

Remark. Note that for T = P, where P is a permutation matrix, the relation (1.6) 
is identical (1.1) because u0 = v0 = e in this case. 

2. 

Let \i be a nonnegative cr-additive regular measure on a cr-algebra 9M of subsets 
of Q, where Q is a closed bounded subset of a Euclidean space Sn. Let <% = S£2(Q, ft) 
be the Banach space of classes of /z-measurable /^-equivalent real-valued functions 
on Q with the inner product 

(iul[v-])=\u(s)v(s)dn(s) 
Jfí 

and the norm ||[u]| |2 = [w], [u]), where u and v are any representatives for [w] 
and [v] in S£2(Q, \I) respectively. In the following we shall not distinguish the 
notation for classes and their representatives. 

Let F = 3~(s, t) be a kernel on Q. We set Tx = y if y(s) = j ^ F(s, t) x(t) dfi(t). 

The following theorem is a consequence of a well known result due to M. G. Krein 
and M. A. Rutman [4], 

Theorem 2. Let T be a compact linear operator mapping <& into <$f having the 
property that xsY, x(s) ^ 0, fi-almost everywhere in Q (//-a.e.) implies that y(s) ^ 0 
jx-a.e. in Q, where y -= Tx. If dim <& is infinite then let the spectral radius r(T) = 
= max {0, sup [|A| : X an eigenvalue of T]} be positive. Then there exist eigen-

functions u0 and v0 of T and its adjoint T* respectively corresponding to r(T) and 
we have that u0(s) = 0 and v0(s) = 0, \i-a.e. in Q: 

Tu0 = r(T) u0 , T*v0 = r(T) v0 . 

Definition. We call the kernel & = 2T(s, t), 3T(S, t) ;> 0 jx x /z-a.e. in Q x Q 
indecomposable if for every couple of nonnegative \i a.e. functions u and v, u ^ 0, 
v ={= 0, there is an iteration Tp such that (Tpu, v) > 0 [6]. We also call T indecom­
posable, or Jf-indecomposable, where X = {u e<& : u(s) = 0 /j-a.e.}. 

Remark. If T in Theorem 2 is an indecomposable integral operator on S£2(Q, p), 
then u0 and v0 are positive /x-a.e. in Q and up to a multiple constant uniquely 
determined [7]. 
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Definition. We say that kernel & = F(s, t) has property (B) if y = Txisa bounded 
function whenever x e &2(Q, //). 

Definition. We say the kernel & = 2T(s, t), s, teQ, satisfies condition (C) if for 
every e > 0 there is a continuous on Q x Q kernel ZTt = ^t(s, t) such that 

J ["f \<r(s, t) - <rt(s, t)\2 d>(.)ldn(s) < e2. 

Our generalization of Theorem 1 is as follows. 

Theorem 3. Let ZT = 3T(s, t) be a kernel having property (C). Let x be any fx-
measurable fi-a.e. positive function on Q. Then we have 

(2.1) f f er(s, t) v0(s) u0(t) *& dn(s) drft) = <T) f u0(s) v0(s) dn(s) , 
JnJn x(t) Jn 

where u0 and v0 satisfy 

(2.2) *T(s, t) u0(t) dji(t) = r(T) u0(s), 0 =f= w0 e S£2(Q, pi) u0(s) = 0 //-a.e. in Q, 

3T(s, t) v0(s) dfi(s) = r(T) v0(t), 0 ^ v0 e S£2(Q, \i), v0(s) = 0 //-a.e. in Q, L 
for r(T) > 0 and u0 = 0, v0 = 0 are quite arbitrary for r(T) = 0. 

If moreover T is indecomposable and has property (B), then the equality sign 
in (2.1) takes place if and only if x(s) = constant \i-a.e. in Q. 

Remarks. Because of our assumption (C) and because of the density of the set 
of all continuous functions on Q in S£2(Q, \x) it is easy to see that it is enough to prove 
the first part of Theorem 3 concerning the inequality (2.1) only for continuous kernels 
and continuous functions x's. 

Obviously the relation (2.1) holds trivially whenever r(T) = 0 and thus there 
is nothing to be proved. 

Since r(T) = 1, and u0 = v0 = e, where e(s) = 1 ju-a.e. in Q for T being defined 
by a doubly stochastic kernel !F, i.e. by kernel 2T for which 

the relation (2.1) turns to be expressed as 

(2.2) (Tx, z) £ (Te, e) , 

80 



where 

(2.3) z(s) = — , jt-a.e. in Q . 
x(s) 

Proof of Theorem 3. Since the integrand in (2.1) is nonnegative there is nothing 
to prove if the integral on the left hand side diverges. Hence, let us assume the left 
hand side in (2.1) to be finite. According to the previous remark we may assume that 
y is a continuous in Q x Q kernel and x is a continuous function in Q. 

First let us assume that 9~ is a doubly stochastic kernel. According to the mean 
value theorem we can find disjoint subsets Qj c: Q in such a way to have 

(2.4) f [3r(s,t)dix(t)dfi(s) = Y £<r(sj,tk)rfQj)i*(Qk)9 
JnJn j=ifc=-i 

where Sj e Qj and tk e Qk, j = 1,..., N, N being a positive integer. 
Obviously we have 

N N 

(2-5) I . *Jt = Z Tfc1 = MJ > 
*=1 * = 1 

where 
rJfc = «T(sj, tk) ,i(Oj) ti(Qk) , iij = |i(fl,) > ° • 

According to (2.5) and (1.5) we have that 

N N j ; N N 

TJk 

JN JУ Z 1S Л 

(2-6) Z ЪьĄ =ľ Ztд 
j = l fc = l . Çfc j = l fc=l 

holds for every vector x = ({ l f . . . , £„), £, > 0, j = 1,..., N. 
Let us choose 8 > 0 arbitrary. Then we can find N large enough to have 

|f \sX*t)&ártt)M»)-Í h*&. 
IJflJn x(t) j=i*=i x(tk 

< e . 
tk) 

According to (2.6) it follows that 

f (3r(s,t)?&d»(t)dv(s)*i I r ; , - e = 
JnJo x(t) j-ik-i 

= f f <T(s, t) d»(t) d»(s) - e = f f a>(s) d/<0 -
J a j a Jnjn 

Since e > 0 is arbitrary, we get that 

f f <r(s, t) ̂  d„<.) d/i(.) = f f dtf.) dn(s) 
JnJo *(0 JaJa 

and this is equivalent to (2.1). 
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Further, we assume that 2T satisfies the following conditions 

(2.7) | V ( s , t) dii(t) = f er(t, s) d»(t) = a(s), seQ, 
Jn J Q 

where a is a nonnegative continuous function. It is easy to find a positive constant 8 
to make the following expression positive 

p(s) = 8 - J 2T(s, t) dfi(t) = 8 - f F(t, s) dfi(t) = 8 - a(s), s e Q . 
Jn J« 

Note that /?(s) > 0, or more precisely, inf /?(s) > 0. We define an operator 2 by 
setting 

(2.8) (Zy) (s) = \[ er(s, t) y(t) d^t) + - /?(s) j(s) , seQ. 
ojn ° 

It is easy to verify that for s e Q 

(Ze) (s) = 1 [>(s) + j V ( s , 0 d/.(0] = i ^ ( s ) + J V ('. s) <Mt)]= <<-) • 

Similarly as in the case of doubly stochastic kernels we can show that the following 
relation holds 

f x(s) [Zz] (s) d/x(s) = f e(s) [Ze] (s) d^(s) , 

where z(s) = l/x(s), or else, 

(2.9) f f 3T(s, t) ̂  dfi(t) dfl(s) ^ f f 3r(s, t) d^O d^(s) . 

This is the required relation for the case considered. 
Finally, let us consider a general continuous kernel ST. Let us set 

U(s, t) = v0(s) P(s91) u0(t) , s,teQ. 
Then 

J U(s, i) d»(t) = r(T) u0(s) v0(s) = | U(t, s) d»(t), seQ. 

Thus the kernel U satisfies (2.7) with a(s) = r(T) u0(s) v0(s) ^ 0. By virtue of (2.9) 
we have that 

f [u(s,t)^d^(t)dn(s)^[ [u(s,t)dn(t)dn(s) 
JnJa x(t) JflJ„ 

and this is equivalent to the required relation (2.1) which was to be proved. 
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To finish the proof of Theorem 3 we have to examine the case of an indecom­
posable operator T. We shall use the same machinery as before. 

Let & = F(s, t) be a doubly stochastic kernel. We assume that 

(2.10) r r 3T(S, t) ^ d/i(f) d ^ ) = f r ^ o *&) *&)=f f M^ <.,<•), 
JnJn xv) JnJn JnJn 

or else 
(VxTV;'e,e) = (Te^e) = { ^ 

(e, e) (e, e) 

where e(s) = lju-a.e. in Q and 

(2.11) Vxu = v o v(s) = x(s) u(s) , se Q , x,v,ue <£2(Q, y) . 

Since x e S£2(Q, \x) is up to positivity quite arbitrary, we also have that (assuming 

m = i) 
1 ^ (V-xTVxe, e) = (VxT*Vx~

le, e) , 
where T* is the adjoint of T. Obviously, i [T + T*] is stochastic and it follows that 

i(Vx[T + T*] Vx
le, e) = i([T + T*] e, e) = ir(T + T*) = 1 . 

According to our assumptions T + T* is compact and symmetric. Thus, 

r(T+ T*) = max ftT + T^ U' P> : u e <?2(Q, n), (u,v)± 0 , t>>o l . 
I &v) J 

This fact together with Jf-indecomposability of T + T* according to the definition 
of Vx implies that y0 = V~re being an eigenvector of T+ T* corresponding to 
r(T + T*) is a multiple of e : Vx~

1e = ce, c> 0. In other words, x(s) = const, ju-a.e. 
in Q, and this was to be proved. 

Further let ^ satisfy (2.7) with some positive function a = a(s). Then for the 
operator Vx defined in (2.11) we have with appropriate /? that 

f x(s) [Zz] (s) dfi(s) = f e(s) [Zz] (s) d^s) , 
Ja Ja 

where Z is defined by (2.8). We deduce that 

$(VX[Z + Z*] V;'e, e) = \((Z + Z*) e, e) = 1 = r(Z + Z*) = \\Z + Z*\\ . 

Since the null space 9t(Z + Z*) = {v e 22(Q, n):(Z + Z*) v - \\Z + Z*\\ v = 0} 
is one dimensional (see [7] and also the Appendix), we conclude that V~le being 
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an eigenfunction of (Z -F Z*) corresponding to the eigenvalue \\Z + Z*|| is a 
multiple of e: V~1e = ce, c > 0. Thus, the assertion is proved in this case too. 

We conclude the*proof of Theorem 3 by observing that for a general indecom­
posable kernel 9~ = 3~(s, t) the kernel 3T^ = 2rx(s, t) = v0(s) 3~(s, t) u0(t) satisfies 
(2.7) and u0 and v0 are positive and uniquely determined up to a multiple factor. 
Thus from 

(VxT1Vx-
1e,e) = (T1e,e), 

where 

Txu = vov(s) = ^x(s, t) u(t) dfi(t) , seQ, 
Ja 

the required relation x(s) = constant /j-a.e. in Q follows. This completes the proof 
of Theorem 3. 

The relation (2.13) contained in the following Corollary is essentially used in some 
applications concerning cone preserving operators (see [2, 6]). 

Corollary. Let T be an integral operator whose kernel 3T = ST(s, t) satisfies 
property (C). Let u0 and v0 be some nonnegative eigenfunctions of T and its adjoint 
T* respectively corresponding to the spectral radius r(T). Then we have 

(2.13) J f 3T(s, t) v0(t) u0(s) dfi(t) dfi(s) = \ \ F(s, t) u0(t) v0(s) dfi(t) dfx(s). 
JQJQ JsiJa 

If moreover ^ is indecomposable and satisfies condition (B) then equality sign 
in (2.13) takes place if and only if u0(s) = c v0(s) fx-a.e. in Q with some c > 0. 

Proof. According to the indecomposability of 3~ we know that u0 and v0 are 
positive /x-a.e. in Q. We then put x(s) = u0(s)jv0(s) and apply Theorem 3. This 
completes the proof. 

3. 

With some minor changes the results of Section 2 can be generalized to ££P(Q, fx) 
spaces with p e (1, -f oo). We formulate a particular result in this direction concerning 
bounded kernels. 

Let p 6 (1, + oo) and 1/p 4- l/P* = 1. Let ST = 2T\s, t) be a bounded nonnegative 
kernel on Q x Q. Let u0 be an eigenfunction of & and v0 an eigenfunction of the 
transposed kernel ^*(s, t) = F(t, s), s,teQ. 

We call F = &~(s, t) to satisfy condition (Cp) if for every e > 0 there is a continuous 
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kernel 2TZ = #~e(s, t) such that 

f T f \r(s, t) - 3TB(s, tY Mt)T? M') < *P • 

We say that a kernel ST = 2T(s, t) is indecomposable if for any couple u e S£P(Q, \x) 
and v e S£P(Q, \x), u =£ 0, v $= 0, there is a positive integer p = p(u, v) such that 

0 < I ... I sr(s91,)... 3T(tp_!, rp) v(s) u(tp) d^(tt) ... dfi(tp) d//(s) . 
Ja J n 

Theorem 4. JVifh f he previous notation we have the following relation 

(3.1) f f ^ ( s , 0 %(*) uo(0 ^ d/i(0 dl<(s) = r(T) f Uo(5) *>o(*) <M*), 

JflJfl *(0 J** 
where x is any fi-measurable positive function on Q. If moreover, ^ is indecom­
posable and such that Tu is bounded for u e S£P(Q, pi) and x is bounded, then 
equality sign in (3.1) takes place if and only if x(s) = constant \i-a.e. in Q. 

4. Appendix. We shall prove an assertion a corollary of which was already used 
in the proof of a part of the main result. 

Let Vbe defined as follows. 

Vx = y o y(s) = f(s)x(s), x e S?\{2,11) and f e S£™(Q, \i), f(s) = 0 /i-a.e. in Q. 
Set S£\Q) instead of S£\Q, p). 

Theorem 5. Let U be a bounded operator on S£2(p) mapping jx-a.e. nonnegative 
functions into \i-a.e. nonnegative ones. Let x0 e S£2(p) be an eigenvector of U. 
Let x0 have the property that x0(s) ^ J3(e) Xn(e)(s) p-a.e., where 

Q(s) = {teQ :f(t) > sup essf - e} 

for sufficiently small e > 0 and where Xn(e) is the characteristic function of Q(e) 
and j8(e) is a positive constant. Furthermore, let for every \x-a.e. nonnegative 
v e S£2(p), v ..)= 0, there be an <x(v) > 0 such that 

(4.1) (Uv) (s) = a(v) x0(s) \x-a.e. 

Let fi(Q(s)) > Ofor all sufficiently small s > 0. Then 

r(T) > r(V) = sup essf, 
where T = U + V. 

Proof. We may assume that f.i(Q(e)) < +00. 
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Let Q > r(T). It is easy to see that for every x e &2(Q)9 x ^ 0 /*-a.e. we have that 

[R(Q9 71) x] (s) = [17 *(<>, 17) *] (s) + [JR(C, V) x] (s) ^a.e. 

where .R(e, A) = (QI — A)~* and A is a bounded linear operator on &2(Q9 /J) and 
I is the identity operator. It follows that 

R(e, т) хом >= *(e. и) ^ход + R(e, v) хй(е) 
> 

( \ * l - > 
> aUfl(í)j -T-r *o + , v , &-(«) = 

Q - r(C7) g - r(V) + e 

^ ^ 4 ^ + ^ r r l *»-*><-*• 
L e - Ky) e - KF) + eJ 

According to Theorem 6.2 in [4] we conclude that 

r(R(Q9 T)) ^ y(Q) . 
Obviously, 

KR(,,7)) = - i — 
e-K*0 

and 
y(e) e - Hy) le - K*0] [e - Ku)] [c - K*0 +«] 

x {a(xfl(0) /*«) [e - Hy)Y +««(*«<«>) /K«) [e - K»0] - «£<? - K^)]} • 

We see that 

y(e) - r - > o 
t? - KK) 

for Q sufficiently large. This means that 

r(R(Q,T))>r(R(Q,V)) 
and since 

^ • r » = ^ ) . 

we deduce that 
1 1 

> Q - r(T) Q - r(V) 

and this implies the required result. Theorem 5 is proved. 

Remark 1. If 17 in Theorem 5 is compact then T = 17 + V is a Radon - Nikolskii 
operator [5]. Thus, each spectral point A for which |A| = r(T) is a pole of the resolvent 
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operator and hence an eigenvalue of T having finite dimensional eigenspace. It is 
a consequence of indecomposability of U and hence of T as well that the eigenspace 
corresponding to r(T) is one-dimensional [7]. 

Remark 2. In our considerations we silently used the concept indecomposable in 
the sense of Sawashima's definition treated in our particular JSf 2-space situation 
with the cone of JS?2-functions nonnegative /i-a.e. If the measure \i is atomic, i.e. 
concentrated in a finite discrete set, one clearly obtains finite dimensional operators 
defined by nonnegative matrices. Thus, Sawashima's definition of indecomposability 
applies. Let us note that with the standard definition of indecomposability or de-
composability respectively saying that A is decomposable if there is a permutation 
matrix P such that 

PAP' = (Á>0) 
\A2 Aj 

where P' is the transpose to P, and At and A$ are square matrices and 0 is zero 
matrix, the uniqueness assertion of Theorem 1 holds if n ^ 2. 
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