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ON CERTAIN PROPERTIES CHARACTERIZING LOCALLY
SEPARABLE METRIC SPACES

TiBOR NEUBRUNN, JAROSLAV SMITAL and TiBoR SALAT, Bratislava

(Received January 6, 1966)

A metric space (X, ¢) is called locally separable (see [1]) if to each pe X there
exists & > 0 such that (S(p, d), ¢) is a separable metric space (S(p,d) = {x € X;
¢(p, x) < 6}). Each separable space is locally separable. The space (P, ¢), where P
is an uncountable set and g the trivial metric is an example of a locally separable
and non separable space.

If A is a subset of a metric space, then A° will denote the set of all condensation
points of the set A. Further A = (4°). A point x is called a point of condensation
of the set A if the intersection of each neighbourhood of the point x with the set 4
is uncountable. If (X, @) is a separable space, then (see [2] p. 79) A° = A°° holds. It
will be shown that the last property characterises locally separable spaces (among all
metric spaces). A set 4 = X will be called e-isolated (e > 0)in X, if 4 N S(p, &) = {p}
for each pe A.

Theorem 1. A metric space (X, @) is locally separable if and only if A° = A
for each set A < X.

Lemma. Let the metric space (P, @) not be separable. Then there exists &, > 0
and an uncountable set B = P such that B is ¢,-isolated in P.

Proof. It is known (see [2] p. 80) that (P, g) is separable if and only if correspond-
ing to each ¢ > 0 there exists a countable set A = P such that

dist (P, A) = sup g(x, 4) < ¢.
xeP
Hence if (P, @) is not separable there exists ¢ > 0 such that
(1) dist (P, A) = sup g(x, 4) 2 ¢,
xeP

where A < P is an arbitrary countable set,
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Let us choose x, € P and put A = {x,}. In view of (1) there exists x, € P such that
o(x;x0) > /2. Let w, denote the first uncountable ordinal number and let ¢ < w;.
Let us suppose that the points x,, # < ¢ were constucted so that for 5, 7" < ¢,

n' * 1", o(x, x,») > €2 holds. Then 4 = {xo, Xy, ..., ..}, n < & is countable
and in view of (1) there exists x, € P such that ¢(xg, x,) > s/2 for each n < ¢. Thus,
by means of transfinite induction a set B = {xo, X,, ... ..}, £ < o, is obtained

which is evidently uncountable and &,-isolated if we put s1 = 3/2

Proof of theorem 1. a) Let (X, ¢) be a locally separable metric space and let
A < X. It is sufficient to proove the inclusion A° = A°°. The other inclusion follows
from the fact that A€ is closed.

Let x, € A°. From the theorem of Sierpinski concerning the structure of locally
separable spaces (see [1]), we have X = U G, where G, (t € T) are pariwise disjoint

open-closed sets in X and (G,, o) for each te Tis a locally separable space. Hence
Xo € Gy, and there exists 6 > 0 such that S(x,, ) = G,,. As the point x, is a con-
densation point of the set A, the set S(xo, 8) N A, and what is more, the set 4; =
= A n G, is uncountable and x, € A]. 4] denotes the set of all condensation points
of the set A, in X or, (which is the same in view of the closedness of the set G,,) the
set of all condensation points of A4, in G,,. The symbol A{° has a similar meaning.
(G, 0) is separable, 4, = G,,, hence A = A and consequently x, € A < 4.
The inclusion 4° = A is proved.

b) Let (X, ¢) not be locally separable. We shall prove the existence of a set 4 = X
such that A° 4 A°°, There exists a point p € X such that (S(p, 8), ¢) is not separable
for each & > 0. In particular (S(p, 1), ¢ is not separable. In view of our lemma there
exists an uncountable set B, which is ¢,-isolated in S(p, 1), &; > O.

As it is easily seen the set B, as an isolated set has not a condensation point, hence
there exists n, > 2 such that B, n S(p, 1/n,) is countable and consequently:

A; = B, 0 (S(p, 3) — S(p, 1/n,)) = {x e By, 1/n; < o(p, x) < 1}

is uncountable and é,-isolated set in S(p, 1). So we have A = @ (4] denotes the set
of all condensation points of the set 4; in X or in S(p, 1)). Since (S(p, 1/n,), ¢) is
not separable, there exists on the base of the above lemma an uncountable set B,
which is e,-isolated in S(p, 1/n,) (¢, > 0). Quite a similar procedure to the above one
‘leads to the number n, > n, such that the set 4, = {x € B,; 1/n, < o(p, x) <
< 1/n,} is uncountable. Evidently A, is e,-isolated in S(p, 1) and A5 = 9. Using
induction we construct a sequence of natural numbers

2=n<n;<..n<...
and a sequence {A,} of uncountable g:-isolated (g, > 0) sets in S(p, 1) such that
A;=0.Letusput A = G A, Evidently p e ;1". if ge X, q =+ p,let us put ¢(p, q) =
=~ 27 and let us take thek:places S(p, n), S(q, n). Since for all k, begining from certain
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ko, 1/m,—y < n holds, we have |) A, = S(p, n) and consequently

k=ko+1
) AnS(g,n) = (A4, V... U 4) A S(g, ).

We shall show that g ¢ A°.
The case g € A° leads to the inclusion

®) {a} = (40 S n).

From (2) on the base of the known propertles of condensation points (see [3]
p. 140) we get

(AnS(g,n) = (4, 9...0 4. (S(g, n) = (4] U ... U 45) N (S(g, n))°

and since A; = @ (k = 1, 2,...) we have (4 N S(¢, n))° = @ and this is a contradiction
with (3). Consequently g ¢ A° and we have A° = {p}, 4° = @ + A°. The proof is
finished.

It is not difficult to construct examples of metric spaces (which are in view of
theorem 1 not separable) in which there exist sets A such that A° = A4°. We shall
show some such examples.

Example 1. Let m denote the space of all bounded sequences of real numbers
with the metric

o(x, y) = sup [&n = |, x = {&}T7, y= {njrvem.

Let A4, be the set of all sequences of the form {g/n};.; where & = 1 or —1 (k =
=1,2,...). Letus put 4 = | A4,. Then A° = {{0};,} and 4°° = @ * 4°.
n=1

Example 2. Let a be some symbol, let X denote the set of all triples (a, @, 1),
where 0 < ¢ < 27, r = 0, r, @ are real numbers. If » = 0 then we shall identify the
triple (a, ¢, 0) with a. If &, = (a, @y, 1), &, = (a, @5, 72) we define (£, &) =
—r1+"2sif¢1*(Pzandg(fpfz) l"l‘rzliffh—‘h

It is easily seen that ¢ is a metric on X (see [4]). Let A, denote the set of all triples

¢ = (a, ¢, 1/k). Let us put 4 = U A,. Then A° = {(a, ¢,0)} = a. Hence A€ =
k=1

=0 % A%

Example 3. Let X be the set of all real numbers. Let us put g(x, x) = 0 and
e(x, y) = |x| + |y|if x # y. Then X° = {0} and X** = @ * X°.

In a separable metric space there may not exist an uncountable isolated set. In
a locally separable space an uncountable isolated set may evidently exist. As an
example it suffices to take an uncountable set with trivial metric. Whe shall show

that if 4 is isolated in a locally separable space then A° = @ holds. The last property
characteristes the locally separable spaces.
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Theorem 2. A metric space (X, @) is locally separable lf and only if A° = 0 for
each isolated set A in X. :

Proof. a) Let (X, ¢) not be locally separable. Then there exists a point p € X such
that for each 6 > 0 (S(p, &), ¢) is not separable. In S(p, 1) we shall construct the sets
A, (k =1,2,...) in the same way as in the proof of theorem 1. Let us put again

-]
A = U A,. From the construction of the sets 4, it follows that A4 is an isolated set in X.
k=1
In fact,if ge 4 = U A, then g + pand there exists k such that g € 4,. Let us put

a(p, q)=2>0 and let us take S(p, 1), S(q, n). Then there exists m > k such that,
U A, < S(p, n). Consequently

s=m+1
(4) ) S(q’ '1) g} L=}1A’ = S(q, ﬂ) ) QIA, .

Each of the sets A4, is ¢,-isolated (g, > 0), so if we put & = min (1, &1, &2, ..., &n)> WE
have

©) 5@.9n04,= 040 569) - g}

From (4) and (5) immediately follows that g is an isolated point of the set 4 =
-]
= U A,. From the proof of theorem 1 we have that p € A°. Hence A4 is isolated (in X)

s=1
with the property A° % 0.

b) Let A © X, A isolated in X and A° + 0. Let pe A°. Then for each 6 > 0,
B = A n S(p, d) is uncountable and isolated, B = S(p, 8). Let us put

= {xeB; o(x, B — {x}) > 1/n}.

. -]
Evidently B = |J B,, hence a natural number n exists such that B, is uncountable.
n=1

B, is 1[n-isolated and B, = S(p, 8). From these facts it follows that (S(p, 9), @) is
not separable. Since & > 0 was arbitrary chosen (X, ¢) is not locally separable.
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Vytah

O ISTYCH VLASTNOSTIACH, KTORE CHARAKTERIZUJU
LOKALNE SEPARABILNE METRICKE PRIESTORY

TiBoR NEUBRUNN, JAROSLAV SMITAL a TiBOR SALAT, Bratislava

Nech A° je mnoZina vietkych kondenza&nych bodov mnoZiny A v metrickom priesto-
re (X, ). Nasledujuce vlastnosti sif ekvivalentné:

a) (X, ) je lokdlne separabilny.
b) pre kaZdi mnoZinu 4 = X je (4°)° = A"
c) pre kaZdi izolovani mnoZinu 4 < X je A° = 0.

Pe3rome

O HEKOTOPBIX CBOMCTBAX, XAPAKTEPU3VIOIUX JIOKAJIBHO
CEITAPABEJIBHBIE METPUYECKUE ITPOCTPAHCTBA

TUBOP HOMBPYHH (Tibor Neubrunn), SPOCJIAB CMUTAJI (Jaroslav Smital),
1 TUBOP IDAJIAT (Tibor Salt), Bparucnasa

ITycts A° — MHOXeCTBO BCEX TOYEK KOHACH3AaIUH MHOXECTBA A B METPHYECKOM
npocrpascTse (X, ¢). Cienyiomue CBOHCTBA PAaBHOCHIbLHEI:

(a) (X, @) — mokaybHO cenapabeTbHOE MPOCTPAHCTBO.
(6) (A°)° = A° mns Beskoro MHoXecTBa A < X.
(8) A° = 0 1u1a BCAKOTO H30NMPOBAHHOTO MHOXecTBa A = X.
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