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CASOPIS PRO PESTOVANI MATEMATIKY

Vyddvd Matematicky dstav CSAV, Praha
SVAZEK 92 * PRAHA 10. 5. 1967 % CISLO 2

SOLUTION OF NONLINEAR FUNCTIONAL EQUATIONS
IN LINEAR NORMED SPACES

Joser KoLomY, Praha
(Received April 14, 1964)

In this paper some conditions for the existence and uniqueness of solution of non-
linear functional equations in linear normed spaces are given. These theorems are
based on local approximation of the nonlinear mappings by linear continuous
mappings and on some open mapping theorems. First of all we introduce some well-
known notations and definitions.

Let X, Y be linear normed spaces and let f: X — Y. We define m(f) on V< X
as the infimum, and M(f) on ¥ = X as the supremum of the quantity |f(u,) —
— f(uz)|| Jus — u,] ! taken over all u,, u, € V with u; + u,. We shall say that Yis
complete for f: X — Y if for each Cauchy sequence {x,} € X, the sequence {f(x,)}
has a limit in Y. If a nonlinear mapping f : X — Y is continuous and compact, then f
is said to be completely continuous. We shall say that the mapping f : X — Yis closed,
if for each {x,} € X, x, = x and f(x,) = y = f(x) = y.

Definition. We shall say that the mapping ¢ : X - X, where X, X, are linear
normed spaces, is open, if ¢(G) is open in ¢(X) for each open set G = X.

Lemma 1. Let X, X, be linear normed spaces. Let ¢ : X — X, be a linear mapping.
Then ¢ is open if and only if there exists a positive constant M with the following
property: If y € ¢(X), then there exist x € X such that ¢(x) = y and |[x| < M|y

Lemma 2. (Open mapping Theorem.) Let X, X, be linear normed spaces, X com-
plete. Let ¢ : X — X, be a linear continuous mapping. Let p(X) be a set of the second
category in X,. Then ¢ is open and ¢(X) = X,.

Let us consider the equation
(1) F(x)=0.

We shall prove the following
Theorem 1. Let F be a mapping of X into Y, where X, Y are linear normed spaces.

Let Z be a Banach space and f, g mappings such that f:Y—~ Z,g:Z — X. Let ¢
be a linear continuous mapping of Z onto Z and E a closed subset of Z. Furthermore,
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let the following conditions be fulfilled: 1) For every u, v € E the inequality

&) |f Flo(w)) — £ F(9(0)) — o(u = o)]| < wu — o] -

holds, where the mapping f is such that m(f) = a > 0 on the set F(g(E)) < Y,
f(0) = 0. 2) The closed ball D = {zeZ: |z — z,| < r} is contained in E, where z,
is defined by the equality z'® = ¢(z, — z,), zo being an arbitrary element of E,
2 being defined by z(® = fF(g(z,)), r Z B(1 — )" ||lz; — zo], B=aM < 1
(M being a constant from lemma 1). If M(g) < + oo on E then the equation (1)
has at least one solution x* in g(D) = X. The sequence {x,} defined by

(3) X, = g(zn), 2V = @(z, — z,-y), z™ = fF(g(z,))
converges in the norm topology of X to x* and
() Ix* — x| < (1 = B)™* M(g) |21 — 2| -

Proof. According to Baire’s theorem and lemma 2, ¢ is an open mapping from Z
onto Z. Since z(® ¢ Z, it follows from lemma 1 that there exist z, € Z such that z(® =
= ¢(z; — z,). Now, from the third equality in (3) we have z'") = f F(g(z,)). Again,
according to lemma 1 there exists a z, € Z such that z) = ¢(z, — z,) and
|22 = 21| £ M||2®]. In view of 2 = f F(g(z,)) = 2* — f F(g(z0)) + f F(g(z,)) =
= ¢@(zy — zo) — f F(9(z0)) +.f F(9(z1)). We obtain using (2) (zo, z; € E) that
2] = af|zy = zo|. Thus we have

lz2 — 2. = M|z = Mafzy — 2] = Blzs = zo] < .

Hence z, € D. Let us suppose that z;eD, (1 £ k< n — 1). We shall prove that
z,€D. Since z"~ Ve Z and ¢ is an open mapping from Z onto Z, according to
lemma 1 there exist z,e€Z such that 2"~ = ¢(z, — z,-,) and |z, — z,- 1|| <

< M[|z""Y|. The equality z*~ = ¢(z,_, — z,-,) — f F(g(z,_ 2)) + fF(9(z,-1
together with (2) implies |z"~ V| < «||z,-, — z,_,|. Hence

lza = zo-sl S Blza-s = zos] S oo S B0 — 2o -
Since

Joa = 22l S TRz = 2 < o1 = B e = w0l 57,
we have z, € D. Thus z, € D for every n (n > 1). Furthermore,
: k k
Izass — 2] §‘.§1“z"” = Zngiy éi;lﬂiﬂz, =z <
<pl— Bz - z4] < pa-n 21 - zo|| 5

(5) “"n+k X = [9(zass) — 9(z,)]| £ M(9) |zasx — 2| =
S ME) P = )t |z, - 2.
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We see that the sequences {x,}, {z,} are Cauchy in X, Z respectively. There exists
lim z, = z* and z* € D. Setting x* = g(z*) we obtain

n— oo

le* = %]l = loG*) = a(z)] < M(g) |2 = 2] -0 as n-oo.

Hence x, —» x* and x* € g(D) <= X. It follows from (2) that the mapping f F(g) is
continuous on E. Employing |z™| < «f""!|z; — z,| we conclude that z™ — 0
and f F(g(z,)) > 0as n — oo. In view of the continuity of f F(g) we have f F(g(z,)) —
- f F(g(z*)), because z,— z*. Hence fF(g(z*)) = fF(x*)=0. Since m(f) =
= a > 0 on F(g(E)) and f(0) = 0, we obtain that 0 = | f F(x*) — f(0)| = m(f).
. |F(x*)|. Hence F(x*) = 0. From (5) we obtain immediately (4). This concludes the
proof.

Theorem 2. Under the assumptions of theorem 1 (with the exception of the
assumption M(g) < oo on E which is omitted here) let F be such that m(F) = b > 0
on g(E) = X. Then the equation (1) has a unique solution x* in g(D) = X. The
errors [Ix* - x,;" satisfy

© Ix* = %] < B(le] + 2 [ab(1 — B |21 — =] .
Proof. We shall prove that M(g) < 400 on E. Let u, v e E, then

1 Flo(@)) - £ FaO)] S lo(u — o) — £ o) + FFG@)] +
+ ol Ju - o] < (& + o) Ju - o] -

Since m(f) = a > 0 on F(g(E)) = Y and m(F) = b > 0 on g(E) = X, we have

If Flgw)) — f F(a(®))| 2= ablg(u) — g(v)]. Hence [g(u) ~ g(v)] < (ab)™*.
(@ + ||@|) |u — v] for every u, v € E. Thus

() M(g) = (= + [o) (ab)™* on E.

According to theorem 1, there exists at least one point x* € g(D) such that F(x*) = 0.
Assume that F(x}) =0, F(x3) =0, x}eg(D), x; €g(D), x{ + x3. Then 0 =
= |F(x}) = F(x3)] 2 b|x} — x3|. Thus x} = x3 on g(D). (6) follows from (4)
and (7).

Now we state a theorem establishing the global solutions of nonlinear problems.
This result is related close to [4].

Theorem 3. Let F be a mapping of X into Y, where X, Y are linear normed sp;ces.
Let Z be a Banach space and f, g mappings such thatf: Y— Z, g :Z — X. Let ¢
be a linear continuous mapping of Z onto Z. Furthermore, let the following con-
ditions be fulfilled: 1) For every u, v'e Z the inequality (2) holds. 2) The mappings
F,f are such that m(F)=b>0on X, m(f)=a>0on Y, f(0) =0 and p =
=aM < 1 (M is a constant from lemma 1). Then the equation (1) has a unique
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solution x* in X. Moreover, |x* — x,| = 0 as n — oo({x,} is defined by (3)) and the
error ||x* — x,|| satisfies (6).

Proof. Is similar to that of theorem 1.

Theorem 4. Let X, Y, Z be linear normed spaces, F : X - Y, f: Y > Z, .g Z - X.
Let @ by a linear continuous mapping of Z into Z having a continuous inverse ¢~ '.
Let z, € Z be such that (2) holds for every u,ve D, where D = {zeZ : ||z — z,| £
<2 (1 B Jo~1] |29, 8 = alo-"] < 1, 2 = 7 Flg(zy) and m(7) ~
=a > 0 on the set F(g(D)) < ¥, f(0) = 0, M(g) < +oo on D. If either a) Z is
complete, or b) X is complete for g and fF isclosed, then the equation (1) has a unique
solution x* in g(D) = X. The sequence {x,} defined by x, = g(z,), where z,,, =
= z, — ¢~ * f F(g(z,)), converges in the norm topology of X to x* and the inequality
(4) holds with B = all™!|.

Proof. Define the mapping ¥(z) by ¥(2) = f F(4(2)) — ¢(z — z,) for ze Z. It is
clear thaty : Z — Z. The equality z,., = z, — ¢~ f F(g(z,)) is equivalent to z, ., =
= zo — ¢~ Y(z,), (n = 0). We shall prove that z,e D foreveryn (n = 0,1, 2,...).
Since ||z, — zo| = o[ [W(z0)| = lo™*] If o) = lo™"] |2] =

< (1 = B)r < r, we have z, € D. Let Suppose that z, (1 < k < n — 1) are contained
in D. We shall prove that z, € D. According to (2)

120 = zaca]| S Jo 7] W(za-2) = ¥(za-1)] <
< e~ |f F(9(za-2)) — f F(9(za-1)) = @(2a-2 — Za-1)|| S Bllza-1 — Za2| -

Using this inequality we obtain that |z, — z,_,|| £ p"||z, — 2| and

lza = 2ol S 3 #les = ] < (1 = B o = 2ol S (L= B2 (= ).

Hence z,e D for every n (r = 0, 1, 2, ...). Further

o gz lzaes = zavis] < B = B |2 = 2a-a] <
S - B |z = 2] -

The sequence {z,} is Cauchy in Z. Since M(g) < +co on D, we see that {x,} is also
the Cauchy sequence in X. Assumming a) we denote lim z, = z* and x* = g(z*).

n-» o

Then z* € D and ||x, — x*| = [¢(z,) — 9(z*)] £ M(g) |z, — z*|. Thus x, - x* in
the norm topology of X and x* € g(D) < X. We shall prove that x* is a unique
solution of (1) in g(D). Note that |fF(g(z,))| = |e(zas1 — z2)| < [lo] -
Nzas1 = z,} S Bo] |21 = 20| = O as n-— 0. According to (2), the mapping
JF(g):Z - Z is continuous on D < Z. Since z,— z* we have fF(g(z,) —
- f F(g(z*)) = f F(x*). From f F(g(z,) - 0 it follows that f F(x*) = 0. From the
conditions m(f) > 0.on F(g(D)) < Y, f(0) = 0, we obtain that F(x*) = 0. Suppose
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that F(x}) = 0, F(x3) =0, x}, x3 €g(D), x} % x3. Then there exist z},z3€D
such that x} = g(z}), x3 = g(z3) and F(g(z})) = 0, F(g(z3)) = 0. Assuming f(0) =
= 0, we have also f F(g(z})) = 0, f F(g(z2)) = 0. According to (2),

If F(a(21)) — f F(9(22)) — o(zt — 23)] = [0z} — 23] < «f=F - 23] .
On the other hand,

I=t = 221 5 lo~*1 lotat - 2Dl 5 o™} Iat = 231 < =% - 23] .

Thus z} = z3 and therefore g(z}) = g(z3) = x§ = x3. We have seen that {z,} is
a Cauchy sequence in Z. Assuming b) we see that {g(z,)} has a limit in X. Set
lim g(z,) = x*. Since f Fg(z,) - 0, g(z,) = x* for n - oo and fF is closed, we

n-o

have f F(x*) = 0. Similarly as above we obtain that F(x*) = 0, and x* is the unique
solution of (1) in g(D) < X. This completes the proof.

Theorem 5. Let F be a mapping defined on the bounded set D(F) = X, F : D(F) —»
>Y, f:Y>2Z,9g:Z- X, o:Z— Z, where X, Y,Z are linear normed spaces.
Let f, @ be linear mappings, ¢ continuous, and such that there exist inverses f ™!,
¢~ '; ¢~ continuous. Let zo € Z be such that the inequality (2) holds for every
u,veD, where D={zeZ:|z—zo| <7}, r=(—B)"t|e | |fFla(zo))l
B = a|le™!| < 1. Let g(D) = D(F), M(g) < +o on D.If either a) Z is complete,
or b) X is complete for g and fF is closed, then the conclusions of theorem 4 remain
valid.

Proof. Is similar to the proof of theorem 4.

Remark 1. Let X, Y be linear normed spaces. Then Y is complete for f: X — Yif
either a) Y is complete and M(f) < +oo on X, or b) f is a completely continuous
mapping.

The above theorems can be modified so as to obtain some simpler consequences
which may be useful for mvestlgatxon of solutlons of nonlinear integral and dlfferen-
tial equations.

On taking X, Y Banach spaces, Z = X, g = I (I is the 1dent1ty mappmg) we obtain
the following

Corollary 1. Let X, Y be Banach spaces, F: X —» Y, ¢ is a linear continuous
mapping from X onto X, f : Y — X linear having the inverse f ~*. Let E be closed
subset of X. Furthermore, let the following conditions be fulfilled: 1) For every
u,ve E the inequality | f(F(u)) — f(F(v)) — @(u — v)| < «flu — v|| holds. 2) The
closed ball D = {x€ X : |x — x,| S r}, where x, is defined by the equality x'® =
= ¢(x; — x,), xo being an arbztrary element of E, x© = f(F(x,)),r 2 f(1 — p)~*.

%y = xo], B=aM < 1 (M is a constant from lemma 1), is contained in E.
If m(F) > 0 on E, then the equation (1) has a unique solution x* in D = X. The
sequence {x,} defined by x"~1 = ¢(x, — x,-,), xX™ = f(F(x,)) converges in the

)
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norm topology of X to x* and

® [ = xS B = B ey — %ol -

Remark 2. For ¢ one may set either ¢ = I, ¢ = 9I (9 is a positive number), or,
[F'(x0)]"* = ¢, where F'(x,) denotes the Gateaux derivative of F at the point x,
etc.

Corollary 2. Let X, Y be linear normed spaces, X complete, ¢ a linear continuous
mapping from X onto X, f : Y - X linear having the inverse f ~*. Let E be a closed
convex subset of X such that for every x € E the mapping F : X — Y has the Gdteaux
derivative F'(x). If the closed.ball D = {x € X : |x — x| S r} is contained in E,
where X, is an arbitrary element of E, x® = f(F(x,)), r = B(1 — B)~* [, — x|,
B=aM <1, a =sup ¢ = fF(x)| (M is a constant from lemma 1), then the

xeE

equation (1) has at least one solution x* in D. The sequence {x,} defined by x"~ " =
= @(x, — X,-1), ™ = f(F(x,)) converges in the norm topology of X to the solu-
tion x* and the error ||x* — x,| satisfies |x* — x,| < B"(1 — B)™* [x1 — %o

Corollary 3. Let X be a real Hilbert space (separable and complete), f, : X = X
a linear continuous mapping having the inverse f;'. Let F : X — X be mapping
of X into X having the Gdteaux derivative F'(x) such that (f, F'(x) h, h) = m|h|?,
(m > 0) for every xeD = {xeX:|x — xo| S rs} and heX, where x,€X,
rs 2 (1 = o)~ | F(F(xo))]| a5 = sup I —rF (x)" f=9%,0<9%<2mk Y, k=

= sup Ifs F'(x)| < oo. (I'is ldenttty mapping of X). Then the equation (1) has a

umque solution x* in D. Moreover, |x, — x*| - 0 whenever n - o, ||x* — x,| =
= O(ajp), where x,,1 = x, — f F(x,).

For a similar result see also [1].

Corollary 4. Let X be a Banach space, F: X - X, ¢ : X > X, f: X = X,
where linear continuous mappings ¢, f are such that there exist the inverses
0™, f~1; ™" continuous. Let xo € X be such that the inequality || f F(u) — f F(v) —
— @(u — v)|| < ofju — v]| holds for every u,ve D, where D = {x e X : | x — x,| <
srpr2@ =B o Y IfF&o)|> B= o « < 1. Then the equation (1)
has a unique solution x* in D. Furthermore, |x* — x,| - Oasn — oo, |[x* — x,| =
= O(B"), where x,,, = x, — ¢~ f(F(x,)).

Consider the mapping F of a Banach space X into X having the Giteaux derivative
F'(x)foreveryxeD = {x e X : |x — X, < r}.Letf: X > X bealinear continuous
mapping having the inverse f ~. We introduce the monotone non-negative function
¥(e) defined on 0 S ¢ < r by W(Q) = sup I F'(x) - fF (%) Assume that there

exists a bounded operator [F’(xo)] " Set p = ]I[F’(x )]~!|| and suppose that g,
is a supremum of all ¢ for which ¥(¢) < p. Then the following corollary is valid.
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Corollary 5.1f x, € X is such that | F(x,)| < (1 ~ W(o) #~*) go then the equation
(1) has a unique solution x* in D, where D = {x € X : |x — x,| < go}. The sequence
{x,} defined by x,., = x, — [F'(xo)]~* f(F(x,)) converges in the norm topology
of X to x* and the inequality (8) holds, where B = 1= y(g,). -

Remark 3. Some of these results were previously published without proofs in [2].
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Vytah

RESENI NELINEARNICH FUNKCIONALNICH ROVNIC
V LINEARNICH NORMOVANYCH PROSTORECH

Joser KoLomy, Praha

V dldnku se dokazuji nékteré véty pro feSeni nelinedrnich funkciondlnich rovnic
v linedrnich normovanych prostorech. Tyto véty jsou zaloZeny na lokdlni aproximaci
nelinedrnich zobrazeni linedrnimi spojitymi zobrazenimi a na n&kterych vétdch
o otevieném zobrazeni.

Necht X, Y jsou linedrni normované prostory, f : X — Y. Definujme m(f) a M(f )
na mno%ing V< X takto: m(f) = inf |f(u,) — f(o)] - Jus — ua] ™%, M(F) =
= sup ||f(u;) — f(u,)] - [luy — uz| ™" pro vSechna uy, u, €V, uy + u,. Z dokdza-
nych vét uvedeme pouze ndsledujici:

Véta 1. Necht F : X - Y, kde X, Y jsou linedrni normované prostory. Necht Z je
Banachiw prostor a f, g jsou zobrazeni f: Y — Z, g : Z - X. Nechf ¢ je linedrni
spojité zobrazent prostoru Z na Z. Necht ddle jsou splnény ndsledujici podminky:
1) pro kaZdé u, v € E, kde E je uzavfend podmnoZina Z, je

If Flow)) — £ Fg()) — o(u — 0)] < alu — o],
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kde zobrazeni f je takové, e m(f) = a > 0 na F(9(E)) = Ya f(0) = 0. 2) UzavFend
koule D ={zeZ:|z—z | St} < E kde z, je definovdno vztahem z® =
= ¢(zy — 2,) a z, je libovolny proek z E, z'® = fF(g(z,)) r = p(1 — B)*.
Nz1 = zoll, B = aM < 1 (M je konstanta z lematu 1). Jestlize M(g) < + oo na E,
potom rovnice F(x) = 0 md alespori jedno FeSeni x* na mnoziné g(D) < X. Posloup-
nost {x,}, definovand rovnicemi x, = g(z,), z"~ 9 = ¢(z, — z,-,), 2™ = f F(g(z,)),
konverguje k x* v normé X a plati odhad

Ixa = x*| < 871 = B)™" M(g) |21 — 2] -

Pe3iome

PENIEHUE HEJWHEWHBIX ®VHKIIMOHAJIBHBIX YPABHEHHMI
B JIMHEMHBIX HOPMHMPOBAHHBIX ITPOCTPAHCTBAX

HNOCE® KOJIOMBI (Josef Kolomy),, Ilpara

B craThe JOKA3BIBAIOTCA HEKOTOPHIE TEOPEMBI JJIsi PELICHUS HEMHeHHBIX (QyHK-
IMOHAJIbHBIX YpaBHEHWH B JIMHEHHBIX HOPMHUPOBAHHBIX IIPOCTPAHCTBaX. DTH TEOp-
MBI OCHOBaHBI Ha JIOKaJIbHOH anmpOKCHMAIMU HEJIMHEHHbIX 0TOoOpaxeHui JIMHeHHbI-
MH O0TOOpaXKeHHsSIMU ¥ Ha HEKOTOPBIX TeOpeMax 00 OTKPHITOM 0TOOpa)KeHUH.

ITycts X, Y — nuHeliHble HOpMUPOBaHHBIE IPOCTPAHCTBa, f : X — Y. Onpenenum
m(f) m M(f) na muo)ecTBe V < X ciemyrommm o6pasom: m(f) = inf | f(u,) —
— ()] Juy - uy|| ™Y M(f) = sup || f(uy) — f(uy)| |uy — ua]| ™" mnsiBeex uy, u, e
€V, u; % u,. I3 goxa3aHHBIX T€OPEM NPUBEIEM TOJILKO CIECAYIOLIYIO:

Teopema 1. ITycms F:X — V, 20e X, Y — auneiinvie HopmMuposannsie npocmpan-
cmea. Ilycmv Z — npocmpancmeo banaxa u f, g — makue omobpaxcenus, umo
[ Yo 2Z g:Z - X. [Tycmb ¢ — auneiinoe HenpepviéHoe omobpaxicenue npocmpat-
cmea Z na Z. ITycme, daaee, gvinoamenst caedyiowue ycaosua: 1) 0aa kaxncoozo u, ve E,
20e E — 3amxuymoe mHodcecmeo u3z Z, umeem mecmo Hepasencmeo

If Flg®) — f F(g(») — ¢ — v)| < oflu — v,

20e omobpaxcenue f maxoe, umo m(f) =a >0 na F@gE) < ¥ u f0) =0.
2) Zamxnymoii wap D = {zeZ: |z - z,| < r} < E, npuuem z, onpedeseno no
omuowenuio 29 = @(z, — z,), z, — npoussossuviii 31emenm u3 E, 29 = f F(g(z,)),
rZ A~ B |zy — zo|, B=aM < 1, (M — nocmosnnan us semmut 1). Ecau
M(g) < +00 na E, mo ypasnenue F(x) = 0 umeem no Kpaiineii mepe odno peutenue x*
Ha muoxcecmse g(D) = X. IMocaedosamenstocms {x,}, onpedesennas pasencmeamu

n. = g(zu) ’ z(u—l) = (P(zn". z-n—l) H Z(") =fF(g(Z,,)) ]
cxooumcs k x* no Hopme X u umeem mecmo oyenxa

I — x*| < B0 = B~ M(g) |21 — 2] -
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