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A NOTE ON THE SOLUTION OF THE TRANSPORTATION
PROBLEM BY THE SIMPLEX METHOD

Joser MACHEK, Praha
(Received January 26, 1959)

The purpose of this note is to establish a connection between the
general simplex method of linear programming and the algorithm
for the solution of the transportation problem developed by F.
NoZi¢xa [1], and reproved by J. BirY, M. FIEDLER, F. NoZifka [2]
by means of graph theory. By establishing this connection we
avoid the necessity of building up a special theory for the algo-
rithm described in [1]. The approach by means of the simplex method
also suggests another method of treating degeneracy.

The transportation problem of linear programming may be stated as follows:
To minimize

m n
(1) ‘ z zxijcia’
. . i=1j=1
under the conditions
m
(2) Dry=a;, j=12...,m,
i=1
n
(3) zxij=bi’ 1=12..,m,
i=1
(4) z; =20, 1=1,2,...,m, =12,...,n,

where a, and b, are given positive numbers, satisfying

(5) ’ z a; = z b;
i=1 i=1

and c,;; are given positive constants.

The condition (5) implies that one of the equations is superfluous and may
n

be omitted. Suppose that it is the last. one, viz. > @,,; = b,s.

§=1
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Denote by . 8( the column vector 8% = (81, Guz> -+» Okn)> £ =1,2, ...,
...,m — 1 (the prime denotes transposition), by & the column vector
8@ = (Op1s Okzs -+ Oem-1)’, £ =1,2,...,n where J,; =1 or 0 according as
=4 or ¢ + j. It is easily seen that the system (2), (3) may be written

% ix“Pw = P,; where

i=1.4=1

)
P,= (82.2)) for 1=1,2,...m—1;7=1,2,..,n

)
Py = (6) for j=1,2,..,m,
(here O denotes a column of m — 1 zeros) and P, is the transpose of the row
(g5 ey Gy by -eey Dy)
Among the columns P;; we may find m + n — 1 linearly independent ones.
Thus we may select from among them a basis of the (m + n — 1)-dimensional
space whose elements are columns of m + n — 1 real numbers.

Suppose first that the problem is non-degenerate, i. e. that the column
P, = (ay, ..., @y, by, ..., by_,) depends linearly on not less than m 4 n — 1
columns P,;. The case in which this assumption is not satisfied will be treated
later. The simplex method applied to this problem consists in, first, obtaining
a solution x® = (2{¥, 283, ..., 283, ..., 2)) with the property

“the system {P;;:2{}) > 0} = 2 is a basis of the space of columns with
m 4+ n — 1 components”,

and then in repeated application of the following optimality criterion:

“let &5%, EP%, .., E]jm+n-1 be the coordinates of P;; in the basis &; for every
(¢, 7) form the difference

myn-1 |

Ay =63 — Z ciibiy” -

r=1
If all A;/’s are non-negative, then the solution is optimal; if, for some (s, §),
A;; is negative, the solution may be improved by giving the corresponding
) a positive value and correspondingly changing the remaining positive
components of the solution x®.”

Due to the special form of the columns P;; the coordinates &7 are very simple,
equal to 1 or 0 or —1 only. Accordingly the optimality criterion takes on a
simple form, so that it is even unnecessary to arrange the computation in the
usual simplex tableaux.

Let us express every P,; in terms of the basis vectors from Z. It is clear
that any value of the first subscript, ¢, must appear among the subscripts of
the elements of 2. The same holds for the second subscripts, §. Thus for our
column P;; there must be an element with the same value of the first sub-
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script, 1, say P;; , in the basis, and an element with the same value of the second
subscript, say P, ;. If now z{)) > 0, we have P,; «Z and thus P;; may be
expressed
Py =Py, + Py ; — Py, .

This is easily seen by recalling the expression for P;; in terms of § and
§®. If P,, is not in the basis, then there must be some P,; and P, in it;
if P, is in the basis, we may write

-P‘i:i:—"Pikl +Pl,a'—‘Pz,k2‘Pz,k, +Pz,k,§
if Py, is not in the basis, we add Py, Py, and Py, , etc. The general express-
ion for P,; is

Py = Pikl +Pz,j - lek, —‘Pzakl +Pz,k,_‘|‘ Pl,k, e

Not more than m -+ n — 1 columns are involved. Thus the optimality criterion
assumes the form

Agy = 65 — Cax, — Cu5 -+ Cup, + G, — -

In the special case when P,; is expressed by means of three columns,

(6) Ay = Ci; — g, + Crr, — C1,5 3

when five columns are needed for the expression of P,;,

(7) Ay = 65— Cix, — €15 + Ciz, + Crp, — Ciy
ete. :

The basis elements are easily recognised; if we arrange the solution as a
matrix the rows of which are numbered by 4 (they correspond to the production
centres) and the columns by j (they correspond to the consumption centres)
then the positions of positive numbers 2} indicate the subscripts of the basis
elements. Thus e. g. if 2§} > 0, i. e., if the first element of the matrix is positive,
P,, is in the basis. Since z;;, z;, stand in the same row, z,;, ;; in the same
column, etc., we see that for P,; to be expressed by means of three vectors only
it is necessary to be able to find a “rectangle” whose one ‘“‘corner point”
i8 (4, 7) and the three other ones are occupied by positive 2{’s. For other P,;’s
(not expressible by three basis vectors only) more complicated paths breaking
at right angles must be constructed, with positive numbers at the corner
points and () = 0.

Thus we may apply the optimality criterion without ever constructing the
simplex tableaux, using only the table of the transportation costs c¢;; and the
table of the first solution x®; this first solution is obtained by assigning largest.
possible shipments to cheapest possible routes as in the index method; assume
for the moment that by this procedure a solution with precisely m + n — 1
positive components is obtained. For any z!) = 0 we seek the rectangular
path connecting it with positive z{’s and form the corresponding differences
of the type (6), (7) etc. The organization of the computation is not discussed
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here — the procedure may be faciliated by special aids or short-cuts. Having:
picked out some negative A,;, say A,,, we form a new solution, x(® =
= (2, ..., 23 with
23) = min {2} : 2{) > 0, &2 > 0},
2 = af) — &5 x,, for {(i,4):2) >0}, a) =0 otherwise.

At length, &) is equal to the least positive 2) for which P,, appeared in the
expression of PM with a coefficient of +1 or, alternatlvely, the laest positive
%) for which c,, appeared in A,, with a negative coefficient. Other z{3’s are
obtamed from the positive 2{}’s by simply adding or subtracting x‘2> from
them where necessary to keep the marginal totals a; and b, unchanged Due
to the choice of z%) precisely one of the z{}’s vanishes; so that the system
{Py;: 23 > 0} = o again forms a basis of the space of columns with m -+
+ n — 1 components (it is known that the system thus obtained is linearly
independent). The whole procedure is then repeated with x(®. Passing to a
new solution and to a new basis we need not compute the new coefficients
7, the next stage of computation is carried out similarly to the preceding
one, using only the table of transportation costs and the solution x®. If at.
some stage of computation all the A,;’s are nonnegative, this signalises that
an optimal solution has been reached. This is the algorithm of [1].

In the case of degeneracy, when at some step of the iterative procedure, say
the k-th one, the minimum “of {z{9 :2(} > 0, & = 1} is attained at two or
more combinations of subscripts, so that the system {P;; : ;¥ > 0} no longer
forms a basis, CEARNES’s method [3] of resolving degeneracy results in the
following rule: From among the possible candidates for replacement, P;;, only
that P,, is deleted from the basis and replaced by P, ,, which first has the small-
est value of &7. (It is clear what this means graphically — in terms of the
paths denoting expressions for P;; in terms of basis columns.) The remaining
columns P,; are kept in the basis. The fact that P;; remains in the basis must
be expressed by marking the (4, j)-th field in the table of solutions. In further
computations this field is treated as though it were occupied by a positive
component of solution, althought actually z(;*" = 0. Thus in constructing
the paths this field may form a corner. A practical rule for deciding which P;;
should be kept in the basis (i. e. which fields should be marked) gives J. HABR
in [4].

It degeneracy occurs immediately at the beginning of the computation,
when the initial solution is being sought by the index method (so that we do
not obtain m -7 — 1 positive components) we must add the number of
columns necessary; i. e. to mark several fields in the table of solutions occupied
by z = 0, so that to any other “‘empty” field there may be found the rect-
angular figure referred to above. These additional columns P,; may be found
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by two procedures. Either by picking out those “empty’’ fields for which the
path connecting them with “occupied” fields does not exist. Or alternatively
we may use the fact that the values a;, b; are not relevant to the dependence
or independence of the columns P,;, and find the initial solution not for the
original problem but for one in which the numbers a;, b, have been slightly
modified. This modification may consist — as suggested in [1] — in adding
a sufficiently small number ¢ to every b; and me to one of the a,’s. When the
first solution has been found, ¢ is put equal to zero, i. e. we return back to the
original problem. The columns P;; corresponding to ;) = ¢ in the modified
problem are kept in the basis, even though e is put equal to zero, i. e. the fields
occupied by e in the first solution are marked. This method of resolving dege-
neracy, however, seems to be less convenient computationally than keeping
the &’s throughout the whole procedure and putting them equal to zero after-
wards.
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Vytah

POZNAMKA K RESENT DOPRAVNIHO PROBLEMU
LINEARNTHO PROGRAMOVANI SIMPLEXOVOU METODOU

JosEF MACHEK, Praha

V této poznamee je z obecné simplexové metody linedrniho programovani
odvozen algoritmus pro ¥eSeni tzv. dopravniho problému, ke kterému dospdl
F. NoZi¢ga v [1] geometrickou cestou.

Dopravni problém linearniho programovani ve své nejjednodussi formé zni:
Jest minimalisovat linedrni formu v mn proménnych z;; (1) na mnoZing ne-
zdpornych YeSeni soustavy linedrnich rovnie (2), (3), kde ¢&isla a;, b; jsou vizana
podminkou (5). Soustavu (2), (3) 1ze zapsat

z zxijPia‘:PO’

i=17=1
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kde P;; je sloupec s m -+ n — 1 slozkami, Pj; = (81, .., Oju Oprs +-oy

o bim—) (=1,2,..,m—1, j=1,2,...n), Ppy= (8;1,..., 6in, 0, ..., 0)
(¢4rka znadf transposici), Py = (@, .-+, @y, by, -+ Ouey), 0o =0 Ppro s =,
04¢ =1 pro s =1¢. :

V &lanku je ukdzano, Ze v nedegerovaném piipadé (kdy P, tvo¥i s kterymi-
koliv m + n — 2 vektory P,; linedrné nezavisly systém) se kriterium opti-
mélnosti Fefeni x = (215, .., Tmy) 8 M + n — 1 kladnymi slozkami redukuje
vzhledem ke zvlidgtnim vlastnostem sloupct P;; na vySetfeni rozdild A;;
typu (6), (7) atd. Zde jsou iky, L,j, Lk, Lk, atd. indexy u prvka Py atd.
base odpovidajici kladnym slozkam YfeSeni x, pomoci nichZ je vyjadien P,;.
Pro vyjadieni prvkid P,; pomoci prvki base neni t¥eba sestavovat simplexo-
vou tabulku, protoze dvojice i,k,, I,j, Ik, atd. lze vyhledat z tabulky feSeni x
s m Fadky a n sloupei. Graficky lze si postup pfedstavit jako vyhleddni cesty,
vychdzejici z pole (7, §) tabulky a opét se do n&j vracejici, ktera se lomf v pra-
vych thlech jen na polich tabulky, v nichZ jsou zapsiny kladné slozky Fesen.
Do kriteria A;; vchéazeji se stfidavymi znaménky hodnoty ¢, odpovidajict
vrcholim této cesty. To je vlastné algoritmus F. Nozidky popsany v [1].

V degenerovaném pifpadé, kdy na nékterém kroku muzeme dostat YeSeni
s méné nez m + n — 1 kladnymi slozkami, je tieba doplnit basi nékterym
prvkem P, byt mu odpovidala nulové slozka feSeni. I pro takové doplnéni
base dava simplexovd metoda pravidlo, jez je v ¢lanku rovnéz pro p¥ipad
dopravniho problému modifikovino.

PeswomMme

BAMETKA K PEIIEHMIO TPAHCIIOPTHOW TIPOBJIEMbI
JUHEARHOIO ITPOTPAMMUPOBAHU S METOOM
CHUMIIJIERCOB

MOCE® MAXER, Ilpara

B uacrosimeir samerke w3 oOIICro METONA CHMIJICKCOB BBIBECH ajropudm
IJIS PELICH ST TaK HA3BBAEMOIl TPAHCUOPTHOR UPOOIEMBL, K ROTOPOMY MOHO-
men @, Hoxmura ([1]) coBcem npyrum (reOMETPUUECKAM) HYTCM.
Tpaucnopraas npobsema B cBoell Haiifosee upoctoit fopme TaKoBa: MUHM-
MU30BATH HA MHOKECTBE BCeX HEOTPUIATENBHBIX pemeHmi cucremsl (2), (3)
mureitryio gopmy (1). (Yuenra B ckoGKaX OTHOCATCA K YPABHEHHAM B I'VTaBHOM
m

rexcre.) Cucremy (2), (3) momuo sammcats B fopme > > 2P, = Py, r7ie
fml fel

P;; — cronfuesoii BeKTOp BOSHMKIIMIL TPAHCHOHMPOBAHMEM CTPOKH (Jy, ...,
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woor Ogny Oipy v vy Op 1), 04y — CEMBOI Kponskepa, =0pmnsa s £ ¢, = 1nang s =1,
u Py — TpamHCIO3unus crpox: (ay, ..., @y, by, - . .) by_1)-

B craree mokasamo, urto mm HEBHIPOJKIEHHON mpolieMsl, (Korpma cronbext
P, numeitno HezaswcuM ma mMOGHX M -+ n — 2 cromxbmax P,;) mpuMeHeHmE
MeToja CUMIJIEKCOB CBOAWTCA K PacCMOTpeHMIO pasHocted A,; Buma (6), (7).
HTA. 37ech iky, byj, Liky, mrn. cyGexpmnrsr siementoB Py, mrn. 6asuca orBeYaro-
I[ero’ MOMOKUTENBHEIM KOMIOHEHTAM HAYaIbHOTO PEMIEHHS X = (Z11, -.., Tmn)+
IpE HOMOIIE KOTOPHIX BEpaaercs P,;. [laa sripaskenus P,; B siemeHnTax 6a3u-
ca He HaJ0 KOHCTPYHPOBATh CHMINIEKCHYIO TabIHIy, Tak Kak mapsl ik, 1,7,
ATH. MOKHO OTHICKATH B TaOJN@Oe pemeHHsa X (¢ M CTPOKAMHA U 7 CTONOHaMM)-
[Tpomenypy mosxHO mpemcraBuTh cefe KaK HaXOMIEHNe NOPOTH, HaYMHAIOIIEM
Ha moyid Tabiaumsl ¥ OUATH BO3Bpamalomeidca Ha ¢, §, KOTOpasg MOKeT yKIIO-
HAThCA B IpPaBHX yIiIaX Ha HONAX, B KOTOPHX 3alMCAHE IOJIOKHUTEIHHBIE
KOMIIOHEHTH peleHNs; B KpuTepui A,; BXOZAT ¢ dUepefylOIIMMY 3HAKAMWM
3HAYEHUHA Cyy, OTBEYAIOIIME HOBOPOTAM 5TOH HOPOTH. OTO B NEHCTBHUTENLHOCTH
anropzudu us [1].

B BrIposxnerHOM cirydae, KOTHA IIOcie HEKOTOPOTO INara MOYKHO HONYYHATE
pemerme ¢ MeHee 9eM M -+ % — 1. NONOKUTENBPHEIME KOMIOHEHTaMH, HAIO
0as3muCc TOIOIHATH, HEKOTOPEIM cronbmeM P,;, X0Tsa OH OTBevYaeT HYJEBOH KOM-
HOoHeHTe Z;;. A TaKoro NOMONHeHMs: B 06IeM METONe CHMIJIEKCOB TOYKE
uMeeTcA TpaBmio. B HacTosmewR ¢crarbe OHO IPHCHOCOGIEHO NI TPAHCIOPTHOM
npo6IieMH.
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