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NOTES ON COUNTABLE EXTENSIONS
OF pω+n-PROJECTIVES

Peter Danchev

Abstract. We prove that if G is an Abelian p-group of length not exceeding
ω and H is its pω+n-projective subgroup for n ∈ N ∪ {0} such that G/H is
countable, then G is also pω+n-projective. This enlarges results of ours in
(Arch. Math. (Brno), 2005, 2006 and 2007) as well as a classical result due to
Wallace (J. Algebra, 1971).

Unless we do not specify some else, by the term “group” we mean “an Abelian
p-group”, written additively as is the custom when dealing with such groups, for
some arbitrary but a fixed prime p. All unexplained exclusively, but however
used, notions and notations are standard and follow essentially those from [7]. For
instance, a group is called separable if it does not contain elements of infinite height.
As usual, for any group A, Ar denotes the reduced part of A.

A recurring theme is the relationship between the properties of a given group and
its countable extension (see, e.g., [1]). The study in that aspect starts incidentally
by Wallace [12] in order to establish a complete set of invariants for a concrete
class of mixed Abelian groups. Specifically, his remarkable achievement states as
follows.

Theorem (Wallace, 1971). Let G be a reduced group with a totally projective
subgroup H so that G/H is countable. Then G is totally projective.

Since any reduced group is summable precisely when its socle is a free valuated
vector space, as application of ([8], Lemma 7) one can derive the following.

Theorem (Fuchs, 1977). Let G be a reduced group with a summable isotype
subgroup H so that G/H is countable. Then G is summable.

Without knowing then the cited attainment of Fuchs, we have proved in [1] an
analogous assertion for summable groups of countable length via the usage of a more
direct group-theoretical approach. In [5] was also showed via the construction of
a concrete example that when the summable subgroup H is not isotype in G, G
may not be summable.

Likewise, in [5] (see [1] too) it was obtained the following affirmation.
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Theorem (Danchev and Keef, 2005 and 2008). Let G be a group with a subgroup
H so that G/H is countable. If

(a) H is σ-summable, then G is σ-summable provided that it is of limit length
and H is isotype in G (when H is not isotype in G, G may not be
σ-summable);

(b) H is a Σ-group, then G is a Σ-group;
(c) H is a Q-group, then G is a Q-group provided that it is separable;
(d) H is weakly ω1-separable, then G is weakly ω1-separable provided that it is

separable.

In [1] and [3] we have shown the following statement as well.

Theorem (Danchev, 2005 and 2006). Let G be a group with a pω+n-projective
subgroup H so that G/H is countable and n ∈ N ∪ {0}. If

(e) H is pure and nice in G, then G is pω+n-projective;
(f) H is pure in the separable G, then G is pω+n-projective.

Note that in [4] we have established such type results for ω-elongations of totally
projective groups by pω+n-projective groups or summable groups by pω+n-projective
groups, respectively.

The purpose of the present brief work is to discuss some questions as those
alluded to above concerning when a given separable group is pω+n-projective
provided that it has a modulo countable proper pω+n-projective subgroup, but by
removing the pureness of the subgroup in the whole group.

We are now in a position to proceed by proving the next extension of point (f)
(see [5] as well).

Theorem. Suppose that G is a group of length at most ω which contains a subgroup
H such that G/H is countable. Then G is pω+n-projective if and only if H is pω+n-
-projective, whenever n ∈ N ∪ {0}.

Proof. The necessity is immediate because pω+n-projectives are closed with respect
to subgroups (see, for example, [10]). As for the sufficiency, according to the classical
Nunke’s criterion for pω+n-projectivity (see [10]), there exists P ≤ H[pn] with H/P
a direct sum of cyclic groups. But observing that (G/P )r/((G/P )r ∩ H/P ) ∼=
((G/P )r +H/P )/H/P ⊆ G/P/H/P ∼= G/H is countable with (G/P )r ∩H/P ⊆
H/P a direct sum of cyclic groups, we appeal to Wallace’s theorem, quoted above,
to infer that (G/P )r is totally projective. Hence G/P is simply presented. Referring
now to [11] (see [7], v. II, too), we deduce that G/P/(G/P )1 = G/P/P−G /P

∼=
G/P−G is a direct sum of cycles, where P−G = ∩i<ω(P + piG) is the closure of P
in G. It is a straightforward argument that pnP−G ⊆ pωG. Since G is separable,
that is pωG = 0, we derive that pnP−G = 0, so employing once again the Nunke’s
criterion we are finished. �

The condition on separability may be avoided if the following strategy is reali-
zable: Since P is bounded, one can write P = ∪m<ωPm, where Pm ⊆ Pm+1 ≤ P
with pkPm = 0 for each m < ω and some k ∈ N. It is readily seen that
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P−G = ∪m<ωKm, where Km = ∩i<ω(Pm + piG). The crucial moment is whe-
ther we may choose a nice subgroup N of G such that N ⊆ Pm and such that
Pm ∩ pmG ⊆ N for each integer m ≥ 1; thus P/N is strongly bounded in G/N in
terms of [2]. Consequently, complying with the modular law from [7], we calculate
that Km ∩ pmG = ∩m≤i<ω(Pm + piG) ∩ pmG = ∩m≤i<ω(Pm ∩ pmG + piG) ⊆
∩m≤i<ω(N + piG) = N + ∩m≤i<ωpiG = N + pωG ≤ P−G [pn]. Furthermore, we
elementarily observe that P−G /(N + pωG) = ∪m<ω[Km/(N + pωG)] where, for each
m < ω, we compute with the aid of the modular law in [7] and the foregoing calcula-
tions that (Km/(N+pωG))∩pm(G/(N+pωG)) = [Km∩(pmG+N)]/(N+pωG) =
(N +Km ∩ pmG)/(N + pωG) ⊆ (N + pωG)/(N + pωG) = {0}. Besides, by what we
have already shown above, G/(N + pωG)/P−G /(N + pωG) ∼= G/P−G is a direct sum
of cyclic groups. Knowing this, we apply the Dieudonné’s criterion from [6] (see
also [2]) to deduce that G/(N + pωG) is, in fact, a direct sum of cycles. Hence and
from Nunke’s criterion in [10], we conclude that G is pω+n-projective, as asserted.
This completes our conclusions in all generality.
Remark. Actually, G/P = (G/P )r since pω+n(G/P ) = 0 by seeing that (G/P )1 =
∩i<ω(piG+ P )/P ⊆ G[pn]/P with P ≤ G[pn] and G1 = 0. However, our approach
in the proof gives a more general strategy even for inseparable groups. Nevertheless,
this general case is still in question.

A group A is said to be C-decomposable if A = B ⊕K, where B is a direct sum
of cycles with fin r(B) = fin r(A).

We also pose the following conjecture.
Conjecture. Suppose G is a group whose subgroup H is C-decomposable and
G/H is countable. Then G is C-decomposable.

In closing, we notice that Hill jointly with Megibben have found in ([9], Proposi-
tion 1) that if G is a reduced group which possesses a torsion-complete subgroup
H such that G/H ∼= Z(p∞), then G is torsion-complete.

So, we are ready to state the following.
Problem. Suppose G is a group with a subgroup H which belongs to the class
K of Abelian p-groups. If (G/H)[p] is finite, then whether or not G also belongs
to K?

Investigate with a priority when K coincides with the class of thick groups,
torsion-complete groups, semi-complete groups, quasi-complete groups or pure-com-
plete groups, respectively.

It is worthwhile noticing that according to the main result, stated above, the
results from [4] can be improved by dropping off some unnecessary additional
limitations.
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