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ON THE OSCILLATORY INTEGRATION OF SOME ORDINARY
DIFFERENTIAL EQUATIONS

Octavian G. Mustafa

Abstract. Conditions are given for a class of nonlinear ordinary differential
equations x′′ + a(t)w(x) = 0, t ≥ t0 ≥ 1, which includes the linear equation
to possess solutions x(t) with prescribed oblique asymptote that have an
oscillatory pseudo-wronskian x′(t)− x(t)

t
.

1. Introduction

A certain interest has been shown recently in studying the existence of bounded
and positive solutions to a large class of elliptic partial differential equations which
can be displayed as

(1) ∆u+ f(x, u) + g(|x|)x · ∇u = 0 , x ∈ GR ,

where GR = {x ∈ Rn : |x| > R} for any R ≥ 0 and n ≥ 2. We would like to
mention the contributions [3], [1], [8] – [11], [13, 14], [18] and their references in
this respect.

It has been established, see [8, 9], that it is sufficient for the functions f , g to be
Hölder continuous, respectively continuously differentiable in order to analyze the
asymptotic behavior of the solutions to (1) by the comparison method [15]. In fact,
given ζ > 0, let us assume that there exist a continuous function A : [R,+∞)→
[0,+∞) and a nondecreasing, continuously differentiable function W : [0, ζ] →
[0,+∞) such that

0 ≤ f(x, u) ≤ A
(
|x|
)
W (u) for all x ∈ GR, u ∈ [0, ζ]

and W (u) > 0 when u > 0. Then we are interested in the positive solutions
U = U

(
|x|
)

of the elliptic partial differential equation

∆U +A
(
|x|
)
W (U) = 0 , x ∈ GR ,

for the role of super-solutions to (1).
M. Ehrnström [13] noticed that, by imposing the restriction

x · ∇U(x) ≤ 0 , x ∈ GR ,
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upon the super-solutions U , an improvement of the conclusions from the literature
is achieved for the special subclass of equations (1) where g takes only nonnegative
values. Further developments of Ehrnström’s idea are given in [3, 1, 11, 14].

Translated into the language of ordinary differential equations, the research
about U reads as follows: given c1, c2 ≥ 0, find (if any) a positive solution x(t) of
the nonlinear differential equation
(2) x′′ + a(t)w(x) = 0 , t ≥ t0 ≥ 1 ,
where the coefficient a : [t0,+∞) → R and the nonlinearity w : R → R are conti-
nuous and given by means of A, W , such that

x(t) = c1t+ c2 + o(1) when t→ +∞(3)

and

W(x, t) = 1
t

∣∣∣∣x′(t) 1
x(t) t

∣∣∣∣ = x′(t)− x(t)
t

< 0 , t > t0 .(4)

The symbol o(f) for a given functional quantity f has here its standard meaning.
In particular, by o(1) we refer to a function of t that decreases to 0 as t increases
to +∞.

The papers [2, 1, 22, 21, 20] present various properties of the functional quantity
W, which shall be called pseudo-wronskian in the sequel. Our aim in this note is
to complete their conclusions by giving some sufficient conditions upon a and w
which lead to the existence of a solution x to (2) that verifies (3) while having
an oscillatory pseudo-wronskian (this means that there exist the unbounded from
above sequences (t±n )n≥1 and (t0n)n≥1 such that t02n−1 < t+n < t02n < t−n < t02n+1
and W(t+n ) > W(t0n) = 0 > W(t−n ) for all n ≥ 1). We answer thus to a question
raised in [1, p. 371], see also the comment in [2, pp. 46–47].

2. The sign of W

Let us start the discussion with a simple condition to settle the sign issue of the
pseudo-wronskian.
Lemma 1. Given x ∈ C2([t0,+∞),R

)
, suppose that x′′(t) ≤ 0 for all t ≥ t0.

Then W(x, ·) can change from being nonnegative-valued to being negative-valued at
most once in [t0,+∞). In fact, its set of zeros is an interval (possibly degenerate).
Proof. Notice that

d2

dt2
[
x(t)

]
= 1
t
· d
dt

[
tW(x, t)

]
, t ≥ t0 .

The function t 7→ tW(x, t) being nonincreasing, it is clear that, if it has zeros, it
has either a unique zero or an interval of zeros. �

The result has an obvious counterpart.
Lemma 2. Given x ∈ C2([t0,+∞),R

)
, suppose that x′′(t) ≥ 0 for all t ≥ t0.

Then, W(x, ·) can change from being nonpositive-valued to being positive-valued at
most once in [t0,+∞). Again, its set of zeros is an interval (possibly reduced to
one point).
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Consider that x is a positive solution of equation (2) in the case where a(t) ≥ 0
in [t0,+∞) and w(u) > 0 for all u > 0. Then, we have

dW
dt

= −W
t
− a(t)w

(
x(t)

)
, t ≥ t0 ,

which leads to

(5) W(x, t) = 1
t

[
t0W0 −

∫ t

t0

sa(s)w
(
x(s)

)
ds
]
, W0 =W(x, t0) ,

throughout [t0,+∞) by means of Lagrange’s variation of constants formula.
The integrand in (5) being nonnegative-valued, we regain the conclusion of

Lemma 1. In fact, if T ∈ [t0,+∞) is a zero of W(x, ·) then it is a solution of the
equation

(6) t0W0 =
∫ T

t0

sa(s)w
(
x(s)

)
ds .

On the other hand, if the pseudo-wronskian of x is positive-valued throughout
[t0,+∞) then it is necessary to have

(7) (t0W0 ≥)
∫ +∞

t0

sa(s)w
(
x(s)

)
ds < +∞ .

It has become clear at this point that whenever the equation (2) has a positive
solution x such that W0 ≤ 0, the functional coefficient a is nonnegative-valued and
has at most isolated zeros and w(u) > 0 for all u > 0, the pseudo-wronskian W
satisfies the restriction (4). Now, returning to the problem stated in the Introduction,
we can evaluate the main difficulty of the investigation: if the positive solution x
has prescribed asymptotic behavior, see formula (3) or a similar development, then
we cannot decide upfront whether or not W0 ≤ 0. The formula (6) shows that there
are also certain difficulties to estimate the zeros of the pseudo-wronskian.

3. The behavior of W

Let us survey in this section some of the recent results regarding the pseudo-wrons-
kian.

It has been established that its presence in the structure of a nonlinear differential
equation
(8) x′′ + f(t, x, x′) = 0 , t ≥ t0 ≥ 1 ,
where the nonlinearity f : [t0,+∞)×R2 → R is continuous, allows for a remarkable
flexibility of the hypotheses when searching for solutions with the asymptotic
development (3) (or similar).

Theorem 1 ([22, p. 177]). Assume that there exist the nonnegative-valued, conti-
nuous functions a(t) and g(s) such that g(s) > 0 for all s > 0 and xg(s) ≤ g(x1−αs),
where x ≥ t0 and s ≥ 0, for a certain α ∈ (0, 1). Suppose further that∣∣f(t, x, x′)

∣∣ ≤ a(t)g
(∣∣∣x′ − x

t

∣∣∣) and
∫ +∞

t0

a(s)
sα

ds <

∫ +∞

c+|W0|t1−α0

du

g(u) .
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Then the solution of equation (8) given by (5) exists throughout [t0,+∞) and has
the asymptotic behavior

(9) x(t) = c · t+ o(t) , x′(t) = c+ o(1) when t→ +∞

for some c = c(x) ∈ R.

To compare this result with the standard conditions in asymptotic integration
theory regarding the development (9), see the papers [2, 1, 24] and the mono-
graph [19].

Another result is concerned with the presence of the pseudo-wronskian in the
function space L1((t0,+∞),R).

Theorem 2 ([1, p. 371]). Assume that f does not depend explicitly of x′ and
there exists the continuous function F : [t0,+∞)× [0,+∞)→ [0,+∞), which is
nondecreasing with respect to the second variable, such that∣∣f(t, x)

∣∣ ≤ F(t, |x|
t

)
and

∫ +∞

t0

t
[
1 + ln

( t
t0

)]
F
(
t, |c|+ ε

t0

)
dt < ε

for certain numbers c 6= 0 and ε > 0. Then there exists a solution x(t) of equation
(8) defined in [t0,+∞) such that

x(t) = c · t+ o(1) when t→ +∞ and W(x, ·) ∈ L1 .

The effect of perturbations upon the pseudo-wronskian is investigated in the
papers [2, 22, 21].

Theorem 3 ([22, p. 183]). Consider the nonlinear differential equation

(10) x′′ + f(t, x, x′) = p(t) , t ≥ t0 ≥ 1 ,

where the functions f : [t0,+∞) × R2 → R and p : [t0,+∞) → R are continuous
and verify the hypotheses∣∣f(t, x, x′)

∣∣ ≤ a(t)
∣∣∣x′ − x

t

∣∣∣ , ∫ +∞

t0

ta(t) dt < +∞

and

lim
t→+∞

1
t

∫ t

t0

sp(s) ds = C ∈ R− {0} .

Then, given x0 ∈ R, there exists a solution x(t) of equation (10) defined in [t0,+∞)
such that

x(t0) = x0 and lim
t→+∞

W(x, t) = C .

In particular,

lim
t→+∞

x(t)
t ln t = C .

A slight modification of the discussion in [21, Remark 3], see [2, p. 47], leads to
the next result.
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Theorem 4. Assume that f in (10) does not depend explicitly of x′ and there exists
the continuous function F : [t0,+∞)× [0,+∞)→ [0,+∞), which is nondecreasing
with respect to the second variable, such that∣∣f(t, x)

∣∣ ≤ F (t, |x|) and
∫ +∞

t

sF
(
s, |P (s)|+ sup

τ≥s
{q(τ)}

)
ds ≤ q(t) , t ≥ t0 ,

for a certain positive-valued, continuous function q(t) possibly decaying to 0 as
t→ +∞. Here, P is the twice continuously differentiable antiderivative of p, that
is P ′′(t) = p(t) for all t ≥ t0. Suppose further that

lim sup
t→+∞

[
t
W(P, t)
q(t)

]
> 1 and lim inf

t→+∞

[
t
W(P, t)
q(t)

]
< −1 .

Then equation (10) has a solution x(t) throughout [t0,+∞) such that
x(t) = P (t) + o(1) when t→ +∞

and W(x, ·) oscillates.

Finally, the presence of the pseudo-wronskian in the structure of a nonlinear
differential equation can lead to multiplicity when searching for solutions with the
asymptotic development (3).

Theorem 5 ([20, Theorem 1]). Given the numbers x0, x1, c ∈ R, with c 6= 0, and
t0 ≥ 1 such that t0x1 − x0 = c, consider the Cauchy problem

(11)
{
x′′ = 1

t g(tx′ − x) , t ≥ t0 ≥ 1 ,
x(t0) = x0 , x′(t0) = x1 ,

where the function g : R→ R is continuous, g(c) = g(3c) = 0 and g(u) > 0 for all
u 6= c. Assume further that∫ 2c

c+

du

g(u) < +∞ and
∫ (3c)−

2c

du

g(u) = +∞ .

Then problem (11) has an infinity of solutions x(t) defined in [t0,+∞) and develo-
pable as

x(t) = c1t+ c2 + o(1) when t→ +∞
for some c1 = c1(x) and c2 = c2(x) ∈ R.

The asymptotic analysis of certain functional quantities attached to the solutions
of equations (2), (8) and (10), as in our case the pseudo-wronskian, might lead
to some surprising consequences. Among the functional quantities that gave the
impetus to spectacular developments in the qualitative theory of linear/nonlinear
ordinary differential equations we would like to refer to

K(x)(t) = x(t)x′(t) , t ≥ t0 ,
employed in the theory of Kneser-solutions, see the papers [6, 7] for the linear and
respectively the nonlinear case and the monograph [19], and

HW(x) =
∫ +∞

t0

x(s)w
(
x(s)

)
ds .
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The latter quantity is the core of the nonlinear version of Hermann Weyl’s
limit-point/limit-circle classification designed for equation (2), see the well-docu-
mented monograph [5] and the paper [23].

4. The negative values of W

We shall assume in the sequel that the nonlinearity w of equation (2) verifies
some of the hypotheses listed below:
(12)

∣∣w(x)− w(y)
∣∣ ≤ k|x− y| , where k > 0 ,

and
(13) w(0) = 0 , w(x) > 0 when x > 0 ,

∣∣w(xy)
∣∣ ≤ w(|x|)w(|y|)

for all x, y ∈ R. We notice that restriction (13) implies the existence of a majorizing
function F , as in Theorem 2, given by the estimates∣∣f(t, x)

∣∣ =
∣∣a(t)w(x)

∣∣ ≤ ∣∣a(t)
∣∣ · w(t)w

( |x|
t

)
= F

(
t,
|x|
t

)
.

We can now use the paper [24] to recall the main conclusions of an asymptotic

integration of equation (2). It has been established that whenever
+∞∫
t0

tw(t)
∣∣a(t)

∣∣ dt <
+∞, all the solutions of (2) have asymptotes (3) and their first derivatives are
developable as
(14) x′(t) = c1 + o

(
t−1) when t→ +∞ .

Consequently,W(x, t) = −c2t
−1 +o(t−1) for all large t’s. In this case (the functional

coefficient a has varying sign), when dealing with the sign of the pseudo-wronskian,
of interest would be the subcase where c2 = 0. Here, the asymptotic development
does not even ensure that W is eventually negative. Enlarging the family of

coefficients to the ones subjected to the restriction
+∞∫
t0

tεw(t)
∣∣a(t)

∣∣ dt < +∞, where

ε ∈ [0, 1), the developments (3), (14) become
(15) x(t) = ct+ o

(
t1−ε

)
, x′(t) = c+ o

(
t−ε
)
, c ∈ R ,

yielding the less precise estimate W(x, t) = o(t−ε) when t→ +∞. We have again
a lack of precision in the asymptotic development of W(x, ·) with respect to the
sign issue. We also deduce on the basis of (3), (15) that some of the coefficients a
in these classes verify (7), a fact that complicates the discussion.

The next result establishes the existence of a positive solution to (2) subjected
to (4), (15) for the largest class of functional coefficients: ε = 0. By taking into
account Lemmas 1, 2 and the non-oscillatory character of equation (2) when the
nonlinearity w verifies (13), we conclude that for an investigation within this class
of coefficients a of the solutions with oscillatory pseudo-wronskian it is necessary
that a itself oscillates. Also, when a is non-negative valued we recall that the
condition ∫ +∞

t0

a(t) dt < +∞
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is necessary for the linear case of equation (2) to be non-oscillatory, see [16], while
in the case given by w(x) = xλ, x ∈ R, with λ > 1 (such an equation is usually
called an Emden-Fowler equation, see the monograph [19]) the condition

(16)
∫ +∞

t0

ta(t) dt = +∞

is necessary and sufficient for oscillation, see [4]. In the case of Emden-Fowler
equations with λ ∈ (0, 1) and a continuously differentiable coefficient a such that
a(t) ≥ 0 and a′(t) ≤ 0 throughout [t0,+∞), another result establishes that equation
(2) has no oscillatory solutions provided that condition (16) fails, see [17].

Regardless of the oscillation of a, it is known [1, p. 360] that the linear case
of equation (2) has bounded and positive solutions with eventually negative
pseudo-wronskian.

Theorem 6. Assume that the nonlinearity w verifies hypothesis (13) and is non-
decreasing. Given c, d > 0, suppose that the functional coefficient a is nonnegative-
-valued, with eventual isolated zeros, and

∫ +∞

t0

w(t) a(t) dt ≤ d

w(c+ d) .

Then, the equation (2) has a solution x such that W0 = 0,

(17) c− d ≤ x′(t) < x(t)
t
≤ c+ d for all t > t0

and

(18) lim
t→+∞

x′(t) = lim
t→+∞

x(t)
t

= c .

Proof. We introduce the set D given by

D =
{
u ∈ C

(
[t0,+∞),R

)
: ct ≤ u(t) ≤ (c+ d)t for every t ≥ t0

}
.

A partial order on D is provided by the usual pointwise order “≤”, that is, we
say that v1 ≤ v2 if and only if v1(t) ≤ v2(t) for all t ≥ t1, where v1, v2 ∈ D. It is
not hard to see that (D,≤) is a complete lattice.

For the operator V : D → C([t0,+∞),R) with the formula

V (u)(t) = t
{
c+

∫ +∞

t

1
s2

∫ s

t0

τa(τ)w
(
u(τ)

)
dτ ds

}
, u ∈ D , t ≥ t0 ,



30 O. G. MUSTAFA

the next estimates hold

c ≤ V (u)(t)
t

= c+
∫ +∞

t

1
s2

∫ s

t0

τa(τ) · w(τ)w
(u(τ)

τ

)
dτ ds

≤ c+ sup
ξ∈[0,c+d]

{
w(ξ)

}
·
∫ +∞

t

1
s2

∫ s

t0

τw(τ) a(τ) dτ ds

= c+ w(c+ d)
[1
t

∫ t

t0

τw(τ) a(τ) dτ +
∫ +∞

t

w(τ) a(τ) dτ
]

≤ c+ w(c+ d)
∫ +∞

t0

w(τ) a(τ) dτ ≤ c+ d

by means of (13). These imply that V (D) ⊆ D.
Since c · t ≤ V (c · t) for all t ≥ t0, by applying the Knaster-Tarski fixed point

theorem [12, p. 14], we deduce that the operator V has a fixed point u0 in D. This
is the pointwise limit of the sequence of functions

(
V n(c · IdI)

)
n≥1, where V 1 = V ,

V n+1 = V n ◦ V and I = [t0,+∞).
We deduce that

u′0(t) =
[
V (u0)

]′(t) = u0(t)
t
− 1
t

∫ t

t0

τa(τ)w
(
u0(τ)

)
dτ <

u0(t)
t

,

when t > t0, and thus (17), (18) hold true.
The proof is complete. �

5. The oscillatory integration of equation (2)

Let the continuous functional coefficient a with varying sign satisfy the restriction∫ +∞

t0

t2|a(t)| dt < +∞ .

We call the problem studied in the sequel an oscillatory (asymptotic) integration
of equation (2).

Theorem 7. Assume that w verifies (12), w(0) = 0 and there exists c > 0 such
that

(19) Lc+ > 0 > Lc− ,

where

Lc+ = lim sup
t→+∞

t
∫ +∞
t

sw(cs) a(s) ds∫ +∞
t

s2|a(s)| ds
, Lc− = lim inf

t→+∞

t
∫ +∞
t

sw(cs) a(s) ds∫ +∞
t

s2|a(s)| ds
.

Then the equation (2) has a solution x(t) with oscillatory pseudo-wronskian such
that

(20) x(t) = c · t+ o(1) when t→ +∞ .
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Proof. There exist η > 0 such that Lc+ > η, Lc− < −η and two increasing,
unbounded from above sequences (tn)n≥1, (tn)n≥1 of numbers from (t0,+∞) such
that tn ∈ (tn, tn+1) and

tn

∫ +∞

tn

sw(cs) a(s) ds+ kη

∫ +∞

tn

s2|a(s)| ds < 0(21)

and

tn
∫ +∞

tn
sw(cs) a(s) ds− kη

∫ +∞

tn
s2|a(s)| ds > 0(22)

for all n ≥ 1.
Assume further that ∫ +∞

t0

τ2|a(τ)| dτ ≤ η

k(c+ η)

and introduce the complete metric space S = (D, δ) given by

D =
{
y ∈ C([t0,+∞),R) : t|y(t)| ≤ η for every t ≥ t0

}
and

δ(y1, y2) = sup
t≥t0

{
t|y1(t)− y2(t)|

}
, y1, y2 ∈ D .

For the operator V : D → C
(
[t0,+∞),R

)
with the formula

V (y)(t) = 1
t

∫ +∞

t

sa(s)w
(
s
[
c−

∫ +∞

s

y(τ)
τ

dτ
])
ds , y ∈ D, t ≥ t0 ,

the next estimates hold (notice that |w(x)| ≤ k|x| for all x ∈ R)

(23) t
∣∣V (y)(t)

∣∣ ≤ k ∫ +∞

t

s2∣∣a(s)
∣∣[c+ η

∫ +∞

s

dτ

τ2

]
ds ≤ η

and

t
∣∣V (y2)(t)− V (y1)(t)

∣∣ ≤ k ∫ +∞

t

s2∣∣a(s)
∣∣( ∫ +∞

s

dτ

τ2

)
ds · δ(y1, y2)

≤ k

t0

∫ +∞

t

s2∣∣a(s)
∣∣ ds ≤ η

c+ η
· δ(y1, y2) .

These imply that V (D) ⊆ D and thus V : S → S is a contraction.
From the formula of operator V we notice also that

(24) lim
t→+∞

tV (y)(t) = 0 for all y ∈ D .

Given y0 ∈ D the unique fixed point of V , one of the solutions to (2) has the

formula x0(t) = t
[
c−

+∞∫
t

y0(s)
s ds

]
for all t ≥ t0. Via (24) and L’Hospital’s rule, we
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provide also an asymptotic development for this solution, namely

lim
t→+∞

[x0(t)− c · t] = − lim
t→+∞

t

∫ +∞

t

y0(s)
s

ds = − lim
t→+∞

ty0(t)

= − lim
t→+∞

tV (y0)(t) = 0.

The estimate∣∣∣ty0(t)−
∫ +∞

t

sw(cs) a(s) ds
∣∣∣ ≤ k ∫ +∞

t

s2∣∣a(s)
∣∣[ ∫ +∞

s

|y0(τ)|
τ

dτ
]
ds

≤ kη · 1
t

∫ +∞

t

s2∣∣a(s)
∣∣ ds , t ≥ t0 ,

accompanied by (21), (22), leads to

(25) y0(tn) =W(x0, tn) < 0 and y0(tn) =W(x0, t
n) > 0 .

The proof is complete. �

Remark 1. When Equation (2) is linear, that is w(x) = x for all x ∈ R, the
formula (19) can be recast as

L+ = lim sup
t→+∞

t
∫ +∞
t

s2a(s) ds∫ +∞
t

s2|a(s)| ds
> 0 > lim inf

t→+∞

t
∫ +∞
t

s2a(s) ds∫ +∞
t

s2|a(s)| ds
= L− .

We claim that for all c 6= 0 there exists a solution x(t) with oscillatory pseudo-wrons-
kian which verifies (20). In fact, replace c with c0 in the formulas (21), (22) for
a certain c0 subjected to the inequality min{L+,−L−} > η

c0
. It is obvious that,

when L+ = −L− = +∞, formulas (21), (22) hold for all c0, η > 0. Given c ∈ R−{0},
there exists λ 6= 0 such that c = λc0. The solution of Equation (2) that we are

looking for has the formula x = λ · x0, where x0(t) = t
[
c0 −

+∞∫
t

y0(s)
s ds

]
for all

t ≥ t0 and y0 is the fixed point of operator V in D. Its pseudo-wronskian oscillates
as a consequence of the obvious identity

λ · W(x0, t) =W(x, t) , t ≥ t0 .

Example 1. An immediate example of functional coefficient a for the problem of
linear oscillatory integration is given by a(t) = t−2e−t cos t, where t ≥ 1.

We have∫ +∞

t

s2a(s) ds = 1√
2

cos
(
t+ π

4

)
e−t and

∫ +∞

t

s2|a(s)| ds ≤ e−t

throughout [1,+∞) which yields L+ = +∞, L− = −∞.

Sufficient conditions are provided now for an oscillatory pseudo-wronskian to be
in Lp

(
(t0,+∞),R

)
, where p > 0. Since lim

t→+∞
W(x, t) = 0 for any solution x(t) of

equation (2) with the asymptotic development (20), (14), we are interested in the
case p ∈ (0, 1).
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Theorem 8. Assume that, in the hypotheses of Theorem 7, the coefficient a verifies
the condition

(26)
∫ +∞

t0

[
t∫ +∞

t
s2|a(s)| ds

]1−p

t2|a(t)| dt < +∞ for some p ∈ (0, 1) .

Then the equation (2) has a solution x(t) with an oscillatory pseudo-wronskian in
Lp and the asymptotic expansion (20).

Proof. Recall that y0 is the fixed point of operator V . Then, formula (23) implies
that ∣∣y0(t)

∣∣ ≤ k(c+ η) · 1
t

∫ +∞

t

s2∣∣a(s)
∣∣ ds, t ≥ t0 .

Via an integration by parts, we have
1

[k(c+ η)]p

∫ T

t

∣∣y0(s)
∣∣p ds ≤ T 1−p

1− p

[ ∫ +∞

T

s2∣∣a(s)
∣∣ ds]p

+ p

1− p

∫ T

t

[
s∫ +∞

s
τ2|a(τ)| dτ

]1−p

s2∣∣a(s)
∣∣ ds

for all T ≥ t ≥ t0.
The estimates

T 1−p

1− p

[ ∫ +∞

T

s2∣∣a(s)
∣∣ ds]p = T 1−p

1− p

∫ +∞

T

[
1∫ +∞

T
τ2|a(τ)| dτ

]1−p

s2∣∣a(s)
∣∣ ds

≤ 1
1− p

∫ +∞

T

[
s∫ +∞

s
τ2|a(τ)| dτ

]1−p

s2∣∣a(s)
∣∣ ds

allow us to establish that

1
[k(c+ η)]p

∫ T

t

∣∣y0(s)
∣∣p ds ≤ 1 + p

1− p

∫ +∞

t

[
s∫ +∞

s
τ2|a(τ)| dτ

]1−p

s2∣∣a(s)
∣∣ ds .

The conclusion follows by letting T → +∞.
The proof is complete. �

Example 2. An example of functional coefficient a in the linear case that verifies
the hypotheses of Theorem 8 is given by the formula

t2a(t) = b(t) =



ak(t− 9k) , t ∈ [9k, 9k + 1] ,
ak(9k + 2− t) , t ∈ [9k + 1, 9k + 3] ,
ak(t− 9k − 4) , t ∈ [9k + 3, 9k + 4] ,
ak(9k + 4− t) , t ∈ [9k + 4, 9k + 5] ,
ak(t− 9k − 6) , t ∈ [9k + 5, 9k + 7] ,
ak(9k + 8− t) , t ∈ [9k + 7, 9k + 8] ,
0 , t ∈ [9k + 8, 9(k + 1)] ,

k ≥ 1 .
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Here, we take ak = k−α − (k + 1)−α for a certain integer α > 2−p
p .

To help the computations, the k-th “cell” of the function b can be visualized
next.

�
�
�

@
@

@

@
@

@

�
�
�

@
@
@

�
�
�
�
�
�

@
@

@
9k + 1

9k + 3 9k + 5

9k + 7

It is easy to observe that∫ 9k+4

9k
b(t) dt =

∫ 9k+8

9k+4
b(t) dt = 0 for all k ≥ 1 .

We have∫ +∞

9k+2
b(t) dt =

∫ 9k+4

9k+2
b(t) dt = −ak ,

∫ +∞

9k+6
b(t) dt =

∫ 9k+8

9k+6
b(t) dt = ak

and respectively∫ +∞

9k+2

∣∣b(t)∣∣ dt = 3ak + 4
+∞∑

m=k+1
am ,

∫ +∞

9k+6

∣∣b(t)∣∣ dt = ak + 4
+∞∑

m=k+1
am .

By noticing that

L+ = lim
k→+∞

(9k + 6)
∫ +∞

9k+6 b(t) dt∫ +∞
9k+6 |b(t)| dt

, L− = lim
k→+∞

(9k + 2)
∫ +∞

9k+2 b(t) dt∫ +∞
9k+2 |b(t)| dt

,

we obtain L+ = 9α
4 and L− = − 9α

4 .
To verify the condition (26), notice first that

Ik =
∫ 9(k+1)

9k

[
t∫ +∞

t
|b(s)| ds

]1−p

t2
∣∣a(t)

∣∣ dt
≤
∫ 9(k+1)

9k

[
9(k + 1)∫ +∞

9(k+1) |b(s)| ds

]1−p

ak dt, k ≥ 1 .

The elementary inequality ak ≤ (2α − 1)(k + 1)−α implies that

Ik ≤
cα

(k + 1)(1+α)p−1 , where cα = 9
(9

4

)1−p
(2α − 1) ,

and the conclusion follows from the convergence of the series
∑
k≥1

(k + 1)1−(1+α)p.
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