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ON THE BEHAVIOR OF THE SOLUTIONS TO AUTONOMOUS

LINEAR DIFFERENCE EQUATIONS WITH CONTINUOUS

VARIABLE

Ch. G. Philos and I. K. Purnaras

Abstract. Autonomous linear neutral delay and, especially, (non-neutral)
delay difference equations with continuous variable are considered, and some
new results on the behavior of the solutions are established. The results
are obtained by the use of appropriate positive roots of the corresponding
characteristic equation.

1. Introduction

During the last few years, a number of articles has been appeared in the liter-
ature, which are motivated by the old but very interesting papers by Driver [7,
8] and Driver, Sasser and Slater [10] dealing with the asymptotic behavior and
the stability of the solutions of delay differential equations. See [2, 4, 5, 12, 13,
17-21, 27-41, 44]. These articles are concerned with the asymptotic behavior (and,
more general, the behavior) and the stability for delay differential equations, neu-
tral delay differential equations and (neutral or non-neutral) integrodifferential
equations with unbounded delay as well as for delay difference equations (with
discrete or continuous variable), neutral delay difference equations and (neutral or
non-neutral) Volterra difference equations with infinite delay. In the above list of
articles, there are only three of them dealing with difference equations with con-
tinuous variable; see [31, 44] and the last section of [33]. For some related results,
the reader is referred to [3, 9, 14, 15, 26, 42, 43]. In the present paper, we continue
the study in [17-21, 27-41] to difference equations with continuous variable.

In the last two decades, the study of difference equations has attracted signif-
icant interest by many researchers. This is due, in a large part, to the rapidly
increasing number of applications of the theory of difference equations to various
fields of applied sciences and technology. For the basic theory of difference equa-
tions, we refer to the books by Agarwal [1], Elaydi [11], Kelley and Peterson [16],
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Lakshmikantham and Trigiante [24], Mickens [25], and Sharkovsky, Maistrenko
and Romanenko [45].

Difference equations with continuous variable are difference equations in which
the unknown function is a function of a continuous variable. We may also refer to
such equations as difference equations with continuous time. Note here that the
term “difference equation” is usually used for difference equations with discrete
variable. Difference equations with continuous variable appear as natural descrip-
tions of observed evolution phenomena in many branches of the natural sciences
(see, for example, the book [45]; see, also, the paper [22]). For some results on
the oscillation of difference equations with continuous variable, we refer to [6, 23,
46-48] (and the references cited therein).

In this paper, we are concerned with the behavior of the solutions of autonomous
linear difference equations with continuous variable. The general case of neutral
delay difference equations with continuous variable is considered in Section 2, while
Section 3 is devoted to the special case of (non-neutral) delay difference equations
with continuous variable. Our results will be obtained via an appropriate positive
root of the corresponding characteristic equation or by the use of two suitable
distinct roots of the characteristic equation. Note that the main result in [31],
applied to the unforced case, as well as Theorem III in [33] are essentially included
(as particular cases) in the results of the present paper.

2. Autonomous linear neutral delay difference equations with

continuous variable

Consider the neutral delay difference equation with continuous variable

(2.1) ∆
[

x(t) +
∑

i∈I

cix(t− σi)
]

= ax(t) +
∑

j∈J

bjx(t− τj) ,

where I and J are initial segments of natural numbers, ci for i ∈ I, a and bj 6= 0
for j ∈ J are real numbers, and σi for i ∈ I and τj for j ∈ J are positive integers

such that σi1 6= σi2 for i1, i2 ∈ I with i1 6= i2 and τj1 6= τj2 for j1, j2 ∈ J with

j1 6= j2. Note that the difference operator ∆ will be considered to be defined as
usual, i.e.,

∆h(t) = h(t+ 1) − h(t) for t ≥ t0 ,

for any real-valued function h defined on an interval [t0,∞).
Let us define the positive integers σ, τ and r by

σ = max
i∈I

σi , τ = max
j∈J

τj and r = max{σ, τ} .

By a solution of the neutral delay difference equation (2.1), we mean a continu-
ous real-valued function x defined on the interval [−r,∞) which satisfies (2.1) for
all t ≥ 0.

Along with the neutral delay difference equation (2.1), we specify an initial

condition of the form

(2.2) x(t) = φ(t) for − r ≤ t ≤ 1 ,
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where the initial function φ is a given continuous real-valued function on the in-

terval [−r, 1] satisfying the “consistency condition”

φ(1) − φ(0) +
∑

i∈I

ci
[

φ(1 − σi) − φ(−σi)
]

= aφ(0) +
∑

j∈J

bjφ(−τj) .

Equations (2.1) and (2.2) constitute an initial value problem (IVP, for short).
By the use of the method of steps, one can easily see that there exists a unique
solution x of the neutral delay difference equation (2.1) which satisfies the initial
condition (2.2); this unique solution x will be called the solution of the initial value
problem (2.1) and (2.2) or, more briefly, the solution of the IVP (2.1) and (2.2).

Together with the neutral delay difference equation (2.1), we associate the fol-
lowing equation

(2.3) (λ− 1)
(

1 +
∑

i∈I

ciλ
−σi

)

= a+
∑

j∈J

bjλ
−τj ,

which will be called the characteristic equation of (2.1). Equation (2.3) is obtained
from (2.1) by seeking solutions of the form x(t) = λt for t ≥ −r, where λ is a
positive real number.

Our first result is the following theorem, which establishes a basic asymptotic
property for the solutions of the neutral delay difference equation (2.1).

Theorem 2.1. Let λ0 be a positive root of the characteristic equation (2.3) such

that

(2.4)
∑

i∈I

|ci|
(

1 +
∣

∣

∣
1 −

1

λ0

∣

∣

∣
σi

)

λ−σi

0 +
1

λ0

∑

j∈J

|bj| τjλ
−τj

0 < 1 .

Set

γ(λ0) =
∑

i∈I

ci

[

1 −
(

1 −
1

λ0

)

σi

]

λ−σi

0 +
1

λ0

∑

j∈J

bjτjλ
−τj

0 .

Then the solution x of the IVP (2.1) and (2.2) satisfies

lim
t→∞

∫ t+1

t

λ−u
0 x(u) du =

L(λ0;φ)

1 + γ(λ0)
,

where

L(λ0;φ) =

∫ 1

0

λ−u
0 φ(u) du

+
∑

i∈I

ciλ
−σi

0

[

∫ −σi+1

−σi

λ−u
0 φ(u) du−

(

1 −
1

λ0

)

∫ 0

−σi

λ−u
0 φ(u) du

]

+
1

λ0

∑

j∈J

bjλ
−τj

0

[

∫ 0

−τj

λ−u
0 φ(u) du

]

.

Note. Condition (2.4) guarantees that 1 + γ(λ0) > 0.

Corollary 2.2 below follows immediately from the above theorem by an appli-
cation with λ0 = 1.



136 CH. G. PHILOS AND I. K. PURNARAS

Corollary 2.2. Assume that

(2.5) a+
∑

j∈J

bj = 0 and
∑

i∈I

|ci| +
∑

j∈J

|bj | τj < 1 .

Then the solution x of the IVP (2.1) and (2.2) satisfies

lim
t→∞

∫ t+1

t

x(u) du =

∫ 1

0
φ(u) du +

∑

i∈I ci

[

∫ −σi+1

−σi
φ(u) du

]

+
∑

j∈J bj

[

∫ 0

−τj
φ(u) du

]

1 +
∑

i∈I ci +
∑

j∈J bjτj
.

Note. The second condition of (2.5) guarantees that 1+
∑

i∈I ci +
∑

j∈J bjτj > 0.

Proof of Theorem 2.1. Let x be the solution of the IVP (2.1) and (2.2), and
define

y(t) = λ−t
0 x(t) for t ≥ −r.

Then, for every t ≥ 0, we obtain

∆
[

x(t) +
∑

i∈I

cix(t− σi) − ax(t) −
∑

j∈J

bjx(t− τj)
]

= ∆
{

λt
0

[

y(t) +
∑

i∈I

ciλ
−σi

0 y(t− σi)
]}

− aλt
0y(t) − λt

0

∑

j∈J

bjλ
−τj

0 y(t− τj)

= λt+1
0 ∆

[

y(t)+
∑

i∈I

ciλ
−σi

0 y(t− σi)
]

+
(

λt+1
0 − λt

0

)

[

y(t)+
∑

i∈I

ciλ
−σi

0 y(t− σi)
]

− aλt
0y(t) − λt

0

∑

j∈J

bjλ
−τj

0 y(t− τj)

= λt
0

{

λ0∆
[

y(t) +
∑

i∈I

ciλ
−σi

0 y(t− σi)
]

+ (λ0 − 1 − a)y(t)

+ (λ0 − 1)
∑

i∈I

ciλ
−σi

0 y(t− σi) −
∑

j∈J

bjλ
−τj

0 y(t− τj)
}

= λt
0

{

λ0∆
[

y(t) +
∑

i∈I

ciλ
−σi

0 y(t− σi)
]

+
[

− (λ0 − 1)
∑

i∈I

ciλ
−σi

0 +
∑

j∈J

bjλ
−τj

0

]

y(t)

+ (λ0 − 1)
∑

i∈I

ciλ
−σi

0 y(t− σi) −
∑

j∈J

bjλ
−τj

0 y(t− τj)
}

= λt
0

{

λ0∆
[

y(t) +
∑

i∈I

ciλ
−σi

0 y(t− σi)
]

− (λ0 − 1)

×
∑

i∈I

ciλ
−σi

0

[

y(t) − y(t− σi)
]

+
∑

j∈J

bjλ
−τj

0

[

y(t) − y(t− τj)
]

}

.
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Thus, the fact that the solution x satisfies (2.1) for t ≥ 0 is equivalent to the fact
that y satisfies

(2.6) ∆
[

y(t) +
∑

i∈I

ciλ
−σi

0 y(t− σi)
]

=
(

1 −
1

λ0

)

∑

i∈I

ciλ
−σi

0 [y(t) − y(t− σi)]

−
1

λ0

∑

j∈J

bjλ
−τj

0 [y(t) − y(t− τj)] for t ≥ 0

On the other hand, the initial condition (2.2) is written in the following equivalent
form

(2.7) y(t) = λ−t
0 φ(t) for − r ≤ t ≤ 1 .

Next, let us introduce the function Y defined by

Y (t) =

∫ t+1

t

y(u) du for t ≥ −r .

We observe that

Y ′(t) = y(t+ 1) − y(t) = ∆y(t) for t ≥ −r .

So, we can immediately see that

∆
[

y(t) +
∑

i∈I

ciλ
−σi

0 y(t− σi)
]

=
[

Y (t) +
∑

i∈I

ciλ
−σi

0 Y (t− σi)
]′

for t ≥ 0 .

Moreover, for any i ∈ I and every t ≥ 0, we get

y(t) − y(t− σi) =

−1
∑

s=−σi

[y(t+ s+ 1) − y(t+ s)] =

−1
∑

s=−σi

∆y(t+ s) =

−1
∑

s=−σi

Y ′(t+ s) .

Consequently,

y(t) − y(t− σi) =
[

−1
∑

s=−σi

Y (t+ s)
]′

for i ∈ I and t ≥ 0 .

Analogously, we have

y(t) − y(t− τj) =
[

−1
∑

s=−τj

Y (t+ s)
]′

for j ∈ J and t ≥ 0 .

After the above observations, we see that (2.6) can equivalently be written as

[

Y (t) +
∑

i∈I

ciλ
−σi

0 Y (t− σi)
]′

=
{(

1 −
1

λ0

)

∑

i∈I

ciλ
−σi

0

[

−1
∑

s=−σi

Y (t+ s)
]

−
1

λ0

∑

j∈J

bjλ
−τj

0

[

−1
∑

s=−τj

Y (t+ s)
]}′

for t ≥ 0 .
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The last equation is equivalent to

Y (t) +
∑

i∈I

ciλ
−σi

0 Y (t− σi) =
(

1 −
1

λ0

)

∑

i∈I

ciλ
−σi

0

[

−1
∑

s=−σi

Y (t+ s)
]

−
1

λ0

∑

j∈J

bjλ
−τj

0

[

−1
∑

s=−τj

Y (t+ s)
]

+K for t ≥ 0 ,

where the real constant K is given by

K = Y (0) +
∑

i∈I

ciλ
−σi

0 Y (−σi) −
(

1 −
1

λ0

)

∑

i∈I

ciλ
−σi

0

[

−1
∑

s=−σi

Y (s)
]

+
1

λ0

∑

j∈J

bjλ
−τj

0

[

−1
∑

s=−τj

Y (s)
]

.

By the use of the function Y , the initial condition (2.7) takes the equivalent form

(2.8) Y (t) =

∫ t+1

t

λ−u
0 φ(u) du for − r ≤ t ≤ 0 .

Furthermore, by using (2.8) and taking into account the definition of L(λ0;φ), we
obtain

K =

∫ 1

0

λ−u
0 φ(u) du +

∑

i∈I

ciλ
−σi

0

[

∫ −σi+1

−σi

λ−u
0 φ(u) du

]

−
(

1 −
1

λ0

)

∑

i∈I

ciλ
−σi

0

[

−1
∑

s=−σi

∫ s+1

s

λ−u
0 φ(u) du

]

+
1

λ0

∑

j∈J

bjλ
−τj

0

[

−1
∑

s=−τj

∫ s+1

s

λ−u
0 φ(u) du

]

=

∫ 1

0

λ−u
0 φ(u) du +

∑

i∈I

ciλ
−σi

0

[

∫ −σi+1

−σi

λ−u
0 φ(u) du

]

−
(

1 −
1

λ0

)

∑

i∈I

ciλ
−σi

0

[

∫ 0

−σi

λ−u
0 φ(u) du

]

+
1

λ0

∑

j∈J

bjλ
−τj

0

[

∫ 0

−τj

λ−u
0 φ(u) du

]

=

∫ 1

0

λ−u
0 φ(u) du
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+
∑

i∈I

ciλ
−σi

0

[

∫ −σi+1

−σi

λ−u
0 φ(u) du −

(

1 −
1

λ0

)

∫ 0

−σi

λ−u
0 φ(u) du

]

+
1

λ0

∑

j∈J

bjλ
−τj

0

[

∫ 0

−τj

λ−u
0 φ(u) du

]

= L(λ0;φ) .

So, we conclude that (2.6) can equivalently be written, in terms of the function
Y , as follows

(2.9) Y (t) +
∑

i∈I

ciλ
−σi

0 Y (t− σi) =
(

1 −
1

λ0

)

∑

i∈I

ciλ
−σi

0

[

−1
∑

s=−σi

Y (t+ s)
]

−
1

λ0

∑

j∈J

bjλ
−τj

0

[

−1
∑

s=−τj

Y (t+ s)
]

+ L(λ0;φ) for t ≥ 0 .

Now, we define

z(t) = Y (t) −
L(λ0;φ)

1 + γ(λ0)
for t ≥ −r .

By taking into account the definition of γ(λ0), we can easily verify that (2.9)
reduces to the following equivalent equation

z(t) +
∑

i∈I

ciλ
−σi

0 z(t− σi) =
(

1 −
1

λ0

)

∑

i∈I

ciλ
−σi

0

[

−1
∑

s=−σi

z(t+ s)
]

(2.10)

−
1

λ0

∑

j∈J

bjλ
−τj

0

[

−1
∑

s=−τj

z(t+ s)
]

for t ≥ 0 .

On the other hand, the initial condition (2.8) becomes

(2.11) z(t) =

∫ t+1

t

λ−u
0 φ(u) du −

L(λ0;φ)

1 + γ(λ0)
for − r ≤ t ≤ 0 .

We use the definitions of the functions y, Y and z to conclude that all we have to
prove is that

(2.12) lim
t→∞

z(t) = 0 .

In the rest of the proof we will establish (2.12).
Let us consider the real constant µ(λ0) defined by

µ(λ0) =
∑

i∈I

|ci|
(

1 +
∣

∣

∣
1 −

1

λ0

∣

∣

∣
σi

)

λ−σi

0 +
1

λ0

∑

j∈J

|bj | τjλ
−τj

0 ,

which, by condition (2.4), satisfies

(2.13) 0 < µ(λ0) < 1 .
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Moreover, we put

M(λ0;φ) = max
−r≤t≤0

∣

∣

∣

∫ t+1

t

λ−u
0 φ(u) du−

L(λ0;φ)

1 + γ(λ0)

∣

∣

∣
.

Then, because of (2.11), we have

(2.14) |z(t)| ≤M(λ0;φ) for − r ≤ t ≤ 0 .

We will show that M(λ0;φ) is a bound of the function z on the whole interval
[−r,∞), i.e., that

(2.15) |z(t)| ≤M(λ0;φ) for all t ≥ −r .

To this end, let us consider an arbitrary real number ǫ > 0. We claim that

(2.16) |z(t)| < M(λ0;φ) + ǫ for every t ≥ −r .

Otherwise, since (2.14) guarantees that |z(t)| < M(λ0;φ)+ ǫ for −r ≤ t ≤ 0, there
exists a point t0 > 0 so that

|z(t)| < M(λ0;φ) + ǫ for − r ≤ t < t0 , and |z(t0)| = M(λ0;φ) + ǫ .

Then, by taking into account the definition of µ(λ0) and using (2.13), from (2.10)
we obtain

M(λ0;φ) + ǫ = |z(t0)|

=
∣

∣

∣

∑

i∈I

ciλ
−σi

0

[

− z(t0 − σi) +
(

1 −
1

λ0

)

−1
∑

s=−σi

z(t0 + s)
]

−
1

λ0

∑

j∈J

bjλ
−τj

0

[

−1
∑

s=−τj

z(t0 + s)
]∣

∣

∣

≤
∑

i∈I

|ci|λ
−σi

0

[

|z(t0 − σi)| +

∣

∣

∣

∣

1 −
1

λ0

∣

∣

∣

∣

−1
∑

s=−σi

|z(t0 + s)|
]

+
1

λ0

∑

j∈J

|bj|λ
−τj

0

[

−1
∑

s=−τj

|z(t0 + s)|
]

≤
[

∑

i∈I

|ci|
(

1 +
∣

∣

∣
1 −

1

λ0

∣

∣

∣
σi

)

λ−σi

0 +
1

λ0

∑

j∈J

|bj | τjλ
−τj

0

]

[

M(λ0;φ) + ǫ
]

= µ(λ0)
[

M(λ0;φ) + ǫ
]

< M(λ0;φ) + ǫ ,

which is a contradiction. This contradiction proves our claim, that is, (2.16) holds
true. Since (2.16) is satisfied for each real number ǫ > 0, it follows that (2.15) is
always valid. Furthermore, by using (2.15) and taking into account the definition
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of µ(λ0), from (2.10) we obtain, for every t ≥ 0,

|z(t)| =
∣

∣

∣

∑

i∈I

ciλ
−σi

0

[

− z(t− σi) +
(

1 −
1

λ0

)

−1
∑

s=−σi

z(t+ s)
]

−
1

λ0

∑

j∈J

bjλ
−τj

0

[

−1
∑

s=−τj

z(t+ s)
]∣

∣

∣

≤
∑

i∈I

|ci|λ
−σi

0

[

|z(t− σi)| +
∣

∣

∣
1 −

1

λ0

∣

∣

∣

−1
∑

s=−σi

|z(t+ s)|
]

+
1

λ0

∑

j∈J

|bj |λ
−τj

0

[

−1
∑

s=−τj

|z(t+ s)|
]

≤
[

∑

i∈I

|ci|
(

1 +
∣

∣

∣
1 −

1

λ0

∣

∣

∣
σi

)

λ−σi

0 +
1

λ0

∑

j∈J

|bj| τjλ
−τj

0

]

M(λ0;φ)

= µ(λ0)M(λ0;φ) .

That is,

(2.17) |z(t)| ≤ µ(λ0)M(λ0;φ) for all t ≥ 0 .

Having in mind (2.15) and (2.17), we can use (2.10) to conclude, by the induction
principle, that z satisfies

(2.18) |z(t)| ≤ [µ(λ0)]
ν
M(λ0;φ) for all t ≥ (ν − 1)r (ν = 0, 1, . . . ) .

But, it follows from (2.13) that limν→∞ [µ(λ0)]
ν

= 0. Hence, it is easy to see that
(2.18) implies (2.12).

The proof of the theorem is complete.

Theorem 2.3 below gives a useful inequality for the solutions of the neutral
delay difference equation (2.1).

Theorem 2.3. Let λ0 be a positive root of the characteristic equation (2.3) such

that (2.4) holds. Let γ(λ0) be as in Theorem 2.1, and define

µ(λ0) =
∑

i∈I

|ci|
(

1 +
∣

∣

∣
1 −

1

λ0

∣

∣

∣
σi

)

λ−σi

0 +
1

λ0

∑

j∈J

|bj |τjλ
−τj

0 .

Then the solution x of the IVP (2.1) and (2.2) satisfies

∣

∣

∣

∫ t+1

t

λ−u
0 x(u) du

∣

∣

∣
≤ P (λ0)‖φ‖ for all t ≥ 0 ,

where

P (λ0) =
1 + µ(λ0)

1 + γ(λ0)
max

{

1,
1

λ0

}

+µ(λ0)
[1 + µ(λ0)

1 + γ(λ0)
max

{

1, λr
0

}

+max
{ 1

λ0
, λr

0

}]
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and

‖φ‖ = sup
−r≤t≤1

∣

∣φ(t)
∣

∣ .

The constant P (λ0) is greater than 1.

By applying Theorem 2.3 with λ0 = 1, we can arrive at the following particular
result:

Corollary 2.4. Assume that (2.5) is satisfied. Then the solution x of the IVP

(2.1) and (2.2) satisfies

∣

∣

∣

∫ t+1

t

x(u) du
∣

∣

∣
≤ p‖φ‖ for all t ≥ 0 ,

where

p =

(

1 +
∑

i∈I |ci| +
∑

j∈J |bj | τj
)2

1 +
∑

i∈I ci +
∑

j∈J bjτj
+

∑

i∈I

|ci| +
∑

j∈J

|bj| τj

and ‖φ‖ is defined as in Theorem 2.3. The constant p is greater than 1.

In Theorems 2.1 and 2.3, we have used a positive root λ0 of the characteristic
equation (2.3) such that (2.4) holds. The following lemma due to Kordonis and the
first author [19] provides sufficient conditions (on the coefficients and the delays
of the neutral delay difference equation (2.1)) for the characteristic equation (2.3)
to have a positive root λ0 satisfying (2.4).

Lemma 2.5 ([19]). Assume that

1

r + 1

[

1 +
∑

i∈I

ci

(

1 +
1

r

)σi
]

+ a+
∑

j∈J

bj

(

1 +
1

r

)τj

> 0

and

∑

i∈I

|ci|
[

1 +
(

2 +
1

r

)

σi

](

1 +
1

r

)σi

+
(

1 +
1

r

)

∑

j∈J

|bj |τj

(

1 +
1

r

)τj

≤ 1 .

Then, in the interval ( r
r+1 ,∞), the characteristic equation (2.3) has a unique

(positive) root λ0; this root is such that (2.4) holds.

Proof of Theorem 2.3. Consider the constant L(λ0;φ) defined as in Theorem
2.1. Then we get

|L(λ0;φ)| ≤

∫ 1

0

λ−u
0 |φ(u)| du

+
∑

i∈I

|ci|λ
−σi

0

[

∫ −σi+1

−σi

λ−u
0 |φ(u)| du +

∣

∣

∣
1 −

1

λ0

∣

∣

∣

∫ 0

−σi

λ−u
0

∣

∣φ(u)
∣

∣ du
]
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+
1

λ0

∑

j∈J

|bj|λ
−τj

0

[

∫ 0

−τj

λ−u
0 |φ(u)| du

]

≤
[

∫ 1

0

λ−u
0 du+

∑

i∈I

|ci|λ
−σi

0

(

∫ −σi+1

−σi

λ−u
0 du+

∣

∣

∣
1 −

1

λ0

∣

∣

∣

∫ 0

−σi

λ−u
0 du

)

+
1

λ0

∑

j∈J

|bj|λ
−τj

0

(

∫ 0

−τj

λ−u
0 du

)]

‖φ‖ .

We observe that

max
u∈[0,1]

λ−u
0 = max

{

1,
1

λ0

}

and consequently
∫ 1

0

λ−u
0 du ≤ max

{

1,
1

λ0

}

.

Moreover, we see that

max
u∈[−r,0]

λ−u
0 = max {1, λr

0}

and so we have
∫ −σi+1

−σi

λ−u
0 du ≤ max {1, λr

0} for i ∈ I ,

∫ 0

−σi

λ−u
0 du ≤ σi max {1, λr

0} for i ∈ I

and

∫ 0

−τj

λ−u
0 du ≤ τj max {1, λr

0} for j ∈ J .

After the above observations, we find

∣

∣L(λ0;φ)
∣

∣ ≤
{

max
{

1,
1

λ0

}

+
[

∑

i∈I

|ci|
(

1 +
∣

∣

∣
1 −

1

λ0

∣

∣

∣
σi

)

λ−σi

0

+
1

λ0

∑

j∈J

|bj |τjλ
−τj

0

]

max
{

1, λr
0

}

}

‖φ‖ .

Hence, by the definition of µ(λ0), it holds

(2.19)
∣

∣L(λ0;φ)
∣

∣ ≤
[

max
{

1,
1

λ0

}

+ µ(λ0)max
{

1, λr
0

}

]

‖φ‖ .

Now, let x be the solution of the IVP (2.1) and (2.2), and define the functions y,
Y and z as in the proof of Theorem 2.1. Moreover, consider the constant M(λ0;φ)
defined as in the proof of Theorem 2.1. As it has been shown in the proof of
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Theorem 2.1, the function z satisfies (2.17). By the definition of the function z, it
follows from (2.17) that

(2.20) |Y (t)| ≤
|L(λ0;φ)|

1 + γ(λ0)
+ µ(λ0)M(λ0;φ) for every t ≥ 0 .

Since

max
u∈[−r,1]

λ−u
0 = max

{ 1

λ0
, λr

0

}

,

we have
∫ t+1

t

λ−u
0 du ≤ max

{ 1

λ0
, λr

0

}

for − r ≤ t ≤ 0 .

Thus, by taking into account the definition of M(λ0;φ), we obtain

M(λ0;φ) ≤ max
−r≤t≤0

[

∫ t+1

t

λ−u
0

∣

∣φ(u)
∣

∣ du
]

+
|L(λ0;φ)|

1 + γ(λ0)

≤
[

max
−r≤t≤0

(

∫ t+1

t

λ−u
0 du

)]

‖φ‖ +
|L(λ0;φ)|

1 + γ(λ0)

≤
(

max
{ 1

λ0
, λr

0

})

‖φ‖ +
|L(λ0;φ)|

1 + γ(λ0)
.

So, (2.20) gives

(2.21) |Y (t)| ≤
1 + µ(λ0)

1 + γ(λ0)
|L(λ0;φ)| + µ(λ0)

(

max
{ 1

λ0
, λr

0

})

‖φ‖ for t ≥ 0 .

By combining (2.19) and (2.21), we obtain, for each t ≥ 0,

∣

∣Y (t)
∣

∣ ≤
{1+µ(λ0)

1+γ(λ0)

[

max
{

1,
1

λ0

}

+µ(λ0)max
{

1, λr
0

}

]

+µ(λ0)max
{ 1

λ0
, λr

0

}}

‖φ‖

=
{1+µ(λ0)

1+γ(λ0)
max

{

1,
1

λ0

}

+µ(λ0)
[1+µ(λ0)

1+γ(λ0)
max {1, λr

0}

+ max
{ 1

λ0
, λr

0

}]}

‖φ‖ .

Hence, because of the definition of P (λ0), we have

|Y (t)| ≤ P (λ0) ‖φ‖ for all t ≥ 0 .

By taking into account the definitions of the functions y and Y , we immediately
see that the last inequality coincides with the inequality in the conclusion of the
theorem. Finally, as |γ(λ0)| ≤ µ(λ0), we have

1 + µ(λ0)

1 + γ(λ0)
≥ 1 .

Also, it holds

max
{

1,
1

λ0

}

≥ 1 .

So, it is easy to conclude that P (λ0) > 1.
The proof of the theorem is now complete.
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We proceed with a result (Theorem 2.7 below) concerning the behavior of the
solutions of the neutral delay difference equation (2.1); this result will be estab-
lished via two distinct positive roots of the characteristic equation (2.3). Before
stating and proving Theorem 2.7, we give a lemma obtained by the authors in [33],
which provides some useful information about the positive roots of the character-
istic equation (2.3).

Lemma 2.6 ([33]). Suppose that

ci ≤ 0 for i ∈ I , and bj < 0 for j ∈ J .

(I) Let λ0 be a positive root of the characteristic equation (2.3) with λ0 ≤ 1,
and let γ(λ0) be defined as in Theorem 2.1. Then

1 + γ(λ0) > 0

if (2.3) has another positive root less than λ0, and

1 + γ(λ0) < 0

if (2.3) has another positive root greater than λ0 and less than or equal to 1.
(II) If a = 0, then λ = 1 is not a root of the characteristic equation (2.3).
(III) Assume that a = 0 and that

∑

i∈I

(−ci) ≤ 1 .

Then, in the interval (1,∞), the characteristic equation (2.3) has no roots.

(IV) Assume that

(2.22)
∑

j∈J

(−bj) ≥ a

and
∑

i∈I

(−ci) +
∑

j∈J

(−bj)τj ≤ 1 .

Then, in the interval (1,∞), the characteristic equation (2.3) has no roots.

(V) Assume that (2.22) holds, and that

(2.23)
∑

i∈I

(−ci)
(r + 1)σi

rσi
+

∑

j∈J

(−bj)
(r + 1)τj+1

rτj
< 1 + a(r + 1) .

Then: (i) λ = r
r+1 is not a root of the characteristic equation (2.3). (ii) In the

interval ( r
r+1 , 1], (2.3) has a unique root. (iii) In the interval (0, r

r+1), (2.3) has

a unique root. (Note: Assumption (2.23) guarantees that 1 + a(r + 1) > 0 and so

a > − 1
r+1 .)

Theorem 2.7. Suppose that

ci ≤ 0 for i ∈ I , and bj < 0 for j ∈ J .

Let λ0 be a positive root of the characteristic equation (2.3) with λ0 ≤ 1 and such

that

1 + γ(λ0) 6= 0 ,
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where γ(λ0) is defined as in Theorem 2.1. Let also λ1 be a positive root of (2.3)
with λ1 6= λ0.

Then the solution x of the IVP (2.1) and (2.2) satisfies

U(λ0, λ1;φ) ≤
(λ0

λ1

)t[
∫ t+1

t

λ−u
0 x(u) du −

L(λ0;φ)

1 + γ(λ0)

]

≤ V (λ0, λ1;φ)

for all t ≥ 0, where L(λ0;φ) is defined as in Theorem 2.1 and:

U(λ0, λ1;φ) = min
−r≤t≤0

{(λ0

λ1

)t[
∫ t+1

t

λ−u
0 φ(u) du−

L(λ0;φ)

1 + γ(λ0)

]}

,

V (λ0, λ1;φ) = max
−r≤t≤0

{(λ0

λ1

)t[
∫ t+1

t

λ−u
0 φ(u) du−

L(λ0;φ)

1 + γ(λ0)

]}

.

Note. By Lemma 2.6 (Part (I)), we always have 1 + γ(λ0) 6= 0 if λ1 ≤ 1.

We immediately observe that the double inequality in the conclusion of Theorem
2.7 can equivalently be written in the following form

U(λ0, λ1;φ)
(λ1

λ0

)t

≤

∫ t+1

t

λ−u
0 x(u) du −

L(λ0;φ)

1 + γ(λ0)

≤ V (λ0, λ1;φ)
(λ1

λ0

)t

for t ≥ 0 .

Consequently, we have

lim
t→∞

∫ t+1

t

λ−u
0 x(u) du =

L(λ0;φ)

1 + γ(λ0)
,

provided that λ1 < λ0.

Proof of Theorem 2.7. Consider the solution x of the IVP (2.1) and (2.2), and
let y, Y and z be defined as in the proof of Theorem 2.1. As it has been proved
in the proof of Theorem 2.1, the fact that x satisfies (2.1) for t ≥ 0 is equivalent
to the fact that z satisfies (2.10). Also, the initial condition (2.2) can equivalently
be written in the form (2.11). Furthermore, let us define

w(t) =
(λ0

λ1

)t

z(t) for t ≥ −r .

Then we can see that (2.10) reduces to the following equivalent equation

w(t) +
∑

i∈I

ciλ
−σi

1 w(t− σi) =
(

1 −
1

λ0

)

∑

i∈I

ciλ
−σi

0

[

−1
∑

s=−σi

(λ0

λ1

)−s

w(t + s)
]

−
1

λ0

∑

j∈J

bjλ
−τj

0

[

−1
∑

s=−τj

(λ0

λ1

)−s

w(t + s)
]

for t ≥ 0 .(2.24)

On the other hand, the initial condition (2.11) becomes

(2.25) w(t) =
(λ0

λ1

)t[
∫ t+1

t

λ−u
0 φ(u) du −

L(λ0;φ)

1 + γ(λ0)

]

for − r ≤ t ≤ 0 .
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By taking into account the definitions of y, Y , z and w, we have

w(t) =
(λ0

λ1

)t[
∫ t+1

t

λ−u
0 x(u) du −

L(λ0;φ)

1 + γ(λ0)

]

for t ≥ −r .

Moreover, it follows from (2.25) that

U(λ0, λ1;φ) = min
−r≤t≤0

w(t) and V (λ0, λ1;φ) = max
−r≤t≤0

w(t) .

So, what we have to prove is that w satisfies

min
−r≤s≤0

w(s) ≤ w(t) ≤ max
−r≤s≤0

w(s) for all t ≥ 0 .

We will confine our discussion only to proving the inequality

(2.26) w(t) ≥ min
−r≤s≤0

w(s) for every t ≥ 0 .

The inequality

w(t) ≤ max
−r≤s≤0

w(s) for every t ≥ 0

can be shown by an analogous procedure. In the rest of the proof, we will establish
(2.26).

The proof that (2.26) holds can be accomplished, by showing that, for any real
number D with D < min

−r≤s≤0
w(s), it holds

(2.27) w(t) > D for all t ≥ 0 .

For this purpose, let us consider an arbitrary real numberD with D < min
−r≤s≤0

w(s).

Then we obviously have

(2.28) w(t) > D for − r ≤ t ≤ 0 .

Assume, for the sake of contradiction, that (2.27) fails to hold. Then, because of
(2.28), there exists a point t0 > 0 so that

w(t) > D for − r ≤ t < t0 , and w(t0) = D .

Hence, by using the hypothesis that ci ≤ 0 for i ∈ I and bj < 0 for j ∈ J and
taking into account the assumption that λ0 ≤ 1, i.e., that 1− 1

λ0

≤ 0, from (2.24)
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we obtain

D = w(t0) = −
∑

i∈I

ciλ
−σi

1 w(t0 − σi) +
(

1 −
1

λ0

)

∑

i∈I

ciλ
−σi

0

[

−1
∑

s=−σi

(λ0

λ1

)−s

w(t + s)
]

−
1

λ0

∑

j∈J

bjλ
−τj

0

[

−1
∑

s=−τj

(λ0

λ1

)−s

w(t+ s)
]

> D
{

−
∑

i∈I

ciλ
−σi

1 +
(

1 −
1

λ0

)

∑

i∈I

ciλ
−σi

0

[

−1
∑

s=−σi

(λ0

λ1

)−s]

−
1

λ0

∑

j∈J

bjλ
−τj

0

[

−1
∑

s=−τj

(λ0

λ1

)−s]}

= D
{

−
∑

i∈I

ciλ
−σi

1 +
(

1 −
1

λ0

)

∑

i∈I

ciλ
−σi

0

[

σi
∑

ν=1

(λ0

λ1

)ν]

−
1

λ0

∑

j∈J

bjλ
−τj

0

[

τj
∑

ν=1

(λ0

λ1

)ν}

=
D

λ0 − λ1

{

− (λ0 − λ1)
∑

i∈I

ciλ
−σi

1 + (λ0 − 1)
∑

i∈I

ciλ
−σi

0

[(λ0

λ1

)σi

− 1
]

−
∑

j∈J

bjλ
−τj

0

[(λ0

λ1

)τj

− 1
]}

=
D

λ0 − λ1

{

−
[

(λ0 − 1) − (λ1 − 1)
]

∑

i∈I

ciλ
−σi

1 + (λ0 − 1)
∑

i∈I

ci
(

λ−σi

1 − λ−σi

0

)

−
∑

j∈J

bj
(

λ
−τj

1 − λ
−τj

0

)

}

=
D

λ0 − λ1

{[

− (λ0 − 1)
∑

i∈I

ciλ
−σi

0 +
∑

j∈J

bjλ
−τj

0

]

−
[

− (λ1 − 1)
∑

i∈I

ciλ
−σi

1 +
∑

j∈J

bjλ
−τj

1

]}

=
D

λ0 − λ1

[

(λ0 − 1 − a) − (λ1 − 1 − a)
]

= D .

We have thus arrived at a contradiction, which shows that (2.27) is always satisfied.
The proof of the theorem has been completed.
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3. Autonomous linear delay difference equations with continuous

variable

In this section, we will concentrate on the special case of the difference equation
(2.1), where the coefficients ci for i ∈ I are equal to zero, and the initial segment
of natural numbers I and the delays σi for i ∈ I are chosen arbitrarily so that
maxi∈I σi ≡ σ ≤ τ ≡ maxj∈J τj . (For example, it can be considered that I = J ,
and σi = τi for i ∈ I.) In this particular case, the difference equation (2.1) reduces
to the (non-neutral) delay difference equation with continuous variable

(3.1) ∆x(t) = ax(t) +
∑

j∈J

bjx(t− τj) .

As it concerns the delay difference equation (3.1), we have the integer τ ≡ maxj∈J τj
in place of the integer r (which is used in the general case of the neutral delay
difference equation (2.1)). A solution of the delay difference equation (3.1) is a
continuous real-valued function x defined on the interval [−τ,∞), which satisfies
(3.1) for all t ≥ 0.

We will consider the initial value problem (IVP, for short) consisting of the
delay difference equation (3.1) and an initial condition of the form

(3.2) x(t) = ψ(t) for − τ ≤ t ≤ 1 ,

where the initial function ψ is a given continuous real-valued function on the

interval [−τ, 1] satisfying the “consistency condition”

ψ(1) − ψ(0) = aψ(0) +
∑

j∈J

bjψ(−τj) .

The initial value problem (3.1) and (3.2) (more briefly, the IVP (3.1) and (3.2)) has
a unique solution x; that is, there exists a unique solution x of the delay difference
equation (3.1) which satisfies the initial condition (3.2).

The characteristic equation of the delay difference equation (3.1) is

(3.3) λ− 1 = a+
∑

j∈J

bjλ
−τj .

In the special case of the (non-neutral) delay difference equation (3.1), Theorem
2.1, Corollary 2.2, Theorem 2.3 and Corollary 2.4 are formulated as follows:

Theorem 3.1. Let λ0 be a positive root of the characteristic equation (3.3) such

that

(3.4)
1

λ0

∑

j∈J

|bj | τjλ
−τj

0 < 1 .

Then the solution x of the IVP (3.1) and (3.2) satisfies

lim
t→∞

∫ t+1

t

λ−u
0 x(u) du =

L0(λ0;ψ)

1 + 1
λ0

∑

j∈J bjτjλ
−τj

0

,
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where

L0(λ0;ψ) =

∫ 1

0

λ−u
0 ψ(u) du+

1

λ0

∑

j∈J

bjλ
−τj

0

[

∫ 0

−τj

λ−u
0 ψ(u) du

]

.

Note. Condition (3.4) guarantees that 1 + 1
λ0

∑

j∈J bjτjλ
−τj

0 > 0.

Corollary 3.2. Assume that

(3.5) a+
∑

j∈J

bj = 0 and
∑

j∈J

|bj | τj < 1 .

Then the solution x of the IVP (3.1) and (3.2) satisfies

lim
t→∞

∫ t+1

t

x(u) du =

∫ 1

0
ψ(u) du+

∑

j∈J bj

[

∫ 0

−τj
ψ(u) du

]

1 +
∑

j∈J bjτj
.

Note. The second condition of (3.5) guarantees that 1 +
∑

j∈J bjτj > 0.

Theorem 3.3. Let λ0be a positive root of the characteristic equation (3.3) such

that (3.4) holds. Then the solution x of the IVP (3.1) and (3.2) satisfies

∣

∣

∣

∫ t+1

t

λ−u
0 x(u) du

∣

∣

∣
≤ P0(λ0) ‖ψ‖ for all t ≥ 0 ,

where

P0(λ0) =
1 + 1

λ0

∑

j∈J |bj | τjλ
−τj

0

1 + 1
λ0

∑

j∈J bjτjλ
−τj

0

max
{

1,
1

λ0

}

+
( 1

λ0

∑

j∈J

|bj | τjλ
−τj

0

)

×
(1 + 1

λ0

∑

j∈J |bj| τjλ
−τj

0

1 + 1
λ0

∑

j∈J bjτjλ
−τj

0

max{1, λr
0} + max

{ 1

λ0
, λr

0

})

and

‖ψ‖ = sup
−τ≤t≤1

|ψ(t)| .

The constant P0(λ0) is greater than 1.

Corollary 3.4. Assume that (3.5) is satisfied. Then the solution x of the IVP

(3.1) and (3.2) satisfies

∣

∣

∣

∫ t+1

t

x(u) du
∣

∣

∣
≤ p0 ‖ψ‖ for all t ≥ 0 ,

where

p0 =

(

1 +
∑

j∈J |bj | τj
)2

1 +
∑

j∈J bjτj
+

∑

j∈J

|bj | τj

and ‖ψ‖ is defined as in Theorem 3.3. The constant p0 is greater than 1.

Lemma 3.5 below gives sufficient conditions (on the coefficients and the delays
of the delay difference equation (3.1)) for the characteristic equation (3.3) to have
a positive root λ0 such that (3.4) holds. This lemma has been established by
Kordonis and the authors [20]; it is also a consequence of Lemma 2.5.
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Lemma 3.5 ([20]). Assume that

∑

j∈J

bj
(τ + 1)

τj+1

ττj
> −1 − a(τ + 1)

and
∑

j∈J

|bj |
τj

τ
·
(τ + 1)

τj+1

ττj
≤ 1 .

Then, in the interval ( τ
τ+1 ,∞), the characteristic equation (3.3) has a unique

(positive) root λ0; this root is such that (3.4) holds.

The following lemma due to the authors [33] is concerned with the positive roots
of the characteristic equation (3.3).

Lemma 3.6 ([33]). Suppose that

bj < 0 for j ∈ J .

(I) Let λ0 be a positive root of the characteristic equation (3.3). Then

1 +
1

λ0

∑

j∈J

bjτjλ
−τj

0 > 0

if (3.3) has another positive root less that λ0, and

1 +
1

λ0

∑

j∈J

bjτjλ
−τj

0 < 0

if (3.3) has another positive root greater than λ0.

(II) a > −1 is a necessary condition for the characteristic equation (3.3) to have

at least one positive root.

(III) The characteristic equation (3.3) has no positive roots greater than or equal

to a+ 1.
(IV) Assume that

∑

j∈J

(−bj)
(τ + 1)τj+1

ττj
< 1 + a(τ + 1) .

[This condition implies that 1+a(τ+1) > 0 and so a+1 > τ
τ+1 .] Then: (i) λ = τ

τ+1

is not a root of the characteristic equation (3.3). (ii) In the interval ( τ
τ+1 , a+ 1),

(3.3) has a unique root. (iii) In the interval (0, τ
τ+1 ), (3.3) has a unique root.

The need in assuming, in Theorem 2.7, that the root λ0 of the characteristic
equation (2.3) is such that λ0 ≤ 1 is due only to the existence of the term

(

1 −
1

λ0

)

∑

i∈I

ciλ
−σi

0

[

−1
∑

s=−σi

(λ0

λ1

)−s

w(t + s)
]
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in (2.24). This term does not exist in the special case of the (non-neutral) delay
difference equation (3.1). More precisely, in this particular case, (2.24) becomes

w(t) = −
1

λ0

∑

j∈J

bjλ
−τj

0

[

−1
∑

s=−τj

(λ0

λ1

)−s

w(t+ s)
]

for t ≥ 0 .

So, following the lines of the proof of Theorem 2.7 and taking into consideration
the above observation, we can prove the following theorem.

Theorem 3.7. Suppose that

bj < 0 for j ∈ J ,

and let λ0 and λ1, λ0 6= λ1, be two positive roots of the characteristic equation

(3.3). Then the solution x of the IVP (3.1) and (3.2) satisfies

U0(λ0, λ1;ψ) ≤
(λ0

λ1

)t[
∫ t+1

t

λ−u
0 x(u) du−

L0(λ0;ψ)

1 + 1
λ0

∑

j∈J bjτjλ
−τj

0

]

≤ V0(λ0, λ1;ψ) for all t ≥ 0 ,

where L0(λ0;ψ) is defined as in Theorem 3.1 and:

U0(λ0, λ1;ψ) = min
−τ≤t≤0

{(λ0

λ1

)t[
∫ t+1

t

λ−u
0 ψ(u) du−

L0(λ0;ψ)

1 + 1
λ0

∑

j∈J bjτjλ
−τj

0

]}

,

V0(λ0, λ1;ψ) = max
−τ≤t≤0

{(λ0

λ1

)t[
∫ t+1

t

λ−u
0 ψ(u) du−

L0(λ0;ψ)

1 + 1
λ0

∑

j∈J bjτjλ
−τj

0

]}

.

Note. By Lemma 3.6 (Part (I)), we always have 1 + 1
λ0

∑

j∈J bjτjλ
−τj

0 6= 0.

Now, let us consider the delay difference equation with continuous variable

(3.6) w(t) − w(t − θ) = aw(t− θ) +
∑

j∈J

bjw(t− ηj),

where θ is a positive real number, and ηj for j ∈ J are real numbers such that:
ηj > θ for j ∈ J , and ηj1 6= ηj2 for j1, j2 ∈ J with j1 6= j2. Let us assume that
there exist integers mj > 1 for j ∈ J so that ηj = mjθ for j ∈ J . Consider
the positive real number η defined by η = maxj∈J ηj . By a solution of the delay
difference equation (3.6), we mean a continuous real-valued function w defined on
the interval [−η,∞) which satisfies (3.6) for all t ≥ 0.

Set τj = mj − 1 for j ∈ J . Clearly, τj for j ∈ J are positive integers such
that τj1 6= τj2 for j1, j2 ∈ J with j1 6= j2. Moreover, we put τ = maxj∈J τj . We
immediately see that η = (τ + 1)θ.

Let w be a solution of the delay difference equation (3.6), and define

x(t) = w
(

θ(t− 1)
)

for t ≥ −τ .
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Then, for every t ≥ 0, we obtain

∆x(t) − ax(t) −
∑

j∈J

bjx(t − τj)

= w(θt) − w(θt − θ) − aw(θt− θ) −
∑

j∈J

bjw(θt − (τj + 1)θ)

= w(θt) − w(θt − θ) − aw(θt− θ) −
∑

j∈J

bjw(θt −mjθ)

= w(θt) − w(θt − θ) − aw(θt− θ) −
∑

j∈J

bjw(θt − ηj) = 0 .

Consequently, x is a solution of the delay difference equation (3.1). Conversely, if
x is a solution of (3.1), then the function w defined by

w(t) = x
( t

θ
+ 1

)

for t ≥ −η

is a solution of (3.6).
Delay difference equations with continuous variable of the form (3.6) have been

studied by the authors in [31] as well as in the last section of [33]. Note that, in
[31], more general forced delay difference equations with continuous variable of the
form

w(t) − w(t− θ) = aw(t− θ) +
∑

j∈J

bjw(t − ηj) + f(t)

are considered, where f is a continuous real-valued function on the interval [0,∞).
After the above analysis on the connection between the delay difference equa-

tions (3.1) and (3.6), it is not difficult to see that the main result in [31], applied to
the unforced case, coincides with Theorem 3.1, while Theorem III in [33] is essen-
tially the same result with Theorem 3.7. We notice here that Pituk [44] established
an important result on Cesàro summability to a linear autonomous difference equa-
tion with continuous variable. A detailed comparison between Pituk’s result and
the authors’ main result in [31] is contained in [44].
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