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SYMMETRIES IN HEXAGONAL QUASIGROUPS

VLADIMIR VOLENEC, MEA BOMBARDELLI

ABSTRACT. Hexagonal quasigroup is idempotent, medial and semisymmetric
quasigroup. In this article we define and study symmetries about a point,
segment and ordered triple of points in hexagonal quasigroups. The main
results are the theorems on composition of two and three symmetries.

1. INTRODUCTION
Hexagonal quasigroups are defined in [3].

Definition. A quasigroup (@, -) is said to be hezagonal if it is idempotent, medial
and semisymmetric, i.e. if its elements a, b, ¢ satisfy:

(id) a-a=a
(med) (a-b)-(c-dy=(a-c)-(b-d)
(ss) a-(b-a)=(a-b)-a=0b.

From (id) and (med) easily follows distributivity
(ds) a-(b-c)y=(a-b)-(a-c), (a-b)-c=(a-c)-(b-c)

[132)

When it doesn’t cause confusion, we can omit the sign “”, e.g. instead of
(a-b)-(c-d) we may write ab - cd.

In this article, @ will always be a hexagonal quasigroup.

The basic example of hexagonal quasigroup is formed by the points of Euclidean
plane, with the operation - such that the points a, b and a - b form a positively
oriented regular triangle. This structure was used for all the illustrations in this
article.

Motivated by this example, Volenec in [3] and [4] introduced some geometric
terms to any hexagonal quasigroup. Some of these terms can be defined in any
idempotent medial quasigroup (see [2]) or even medial quasigroup (see [1]).

The elements of hexagonal quasigroup are called points, and pairs of points are
called segments.
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Definition. We say that the points a, b, ¢ and d form a parallelogram, and we
write Par (a, b, ¢,d) if bc - ab = d holds. (Fig. 1)

ab

d=bc-ab

FIGURE 1. Parallelogram (definition)

Accordingly to [3], the structure (Q,Par) is a parallelogram space. In other
words, Par is a quaternary relation on @ (instead of (a,b,c,d) € Par we write
Par (a,b, ¢, d)) such that:
1. Any three of the four points a, b, ¢, d uniquely determine the fourth, such
that Par (a,b, ¢, d).

2. If (e, f, g, h) is any cyclic permutation of (a, b, ¢, d) or (d, ¢, b, a), then Par (a, b,
¢, d) implies Par (e, f, g, h).

3. From Par (a,b,¢,d) and Par (¢, d, e, f) it follows Par (a,b, f,e). (Fig. 2)

FIGURE 2. Property 3 of the relation Par

Accordingly to [3]:

Theorem 1. From Par(aq,b1,c1,d1) and Par (as, b, ca,d2) it follows Par (ajaq,
515270162,d1d2)-

In the rest of this section we present some definitions and results from [5].

Definition. The point m is a midpoint of the segment {a, b}, if Par (a,m,b, m)
holds. This is denoted by M (a, m, b).

Remark. For given a, b such m can exist or not; and it can be unique or not.
Theorem 2. Let M (a,m,c). Then M (b,m,d) and Par (a,b,c,d) are equivalent.

Definition. The point m is called a center of a parallelogram Par (a,b,c,d) if
M (a,m,c) and M (b, m, d).
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Definition. The function T : Q — Q,
Top(x) =ab- za

is called transfer by the vector [a,b]. (Fig. 3)

FIGURE 3. Transfer by the vector [a, b]

Lemma 1. For any a,b,xz € @), Par (x,a,b, Ta,b(x)). The equality Top = Te,q is
equivalent to Par (a,b,d,c).

Theorem 3. The set of all transfers is a commutative group. Specially, the com-

position of two transfers is a transfer. The inverse of Tgp i5 Tt 4.

2. SYMMETRIES IN HEXAGONAL QUASIGROUP

Lemma 2. For any points a,b,c,z € Q, the following equalities hold
(za-a)a =a(a-ax) = za-ax
(za-b)a=a(b-ax) =za-bx =2ab-ax =b(a-bx) = (xb-a)b
(za-b)c=a(b-cx) = (z-ac) bz =zb- (ac- x)
Proof. Since @ is semisymmetric quasigroup, pg = r is equivalent to gr = p.
First, we prove the last set of equalities.
From (b - cx) - (xza - b)c (med)
a(b- cx) = (za - b)e.
From (ac-z) - (z(ac) - bx) (med) (ac-z(ac))(x - bx) () xb, it follows (x - ac) -bx =
xb - (ac- x).

b(za - b) - (cx - ¢) ) oo & a, it follows

From ((z-ac)-bx)(wa-b) 2= ((z-ac)-za)(bz-b) (e ((zz)- (ac)a) (bz-b) (id;ss)

(zc)x (=) ¢, it follows (za - b)c = (z - ac) - bz.

Now putting a = b = ¢ we obtain the first line of equalities, and putting a = ¢
the second line. O

Definition. Symmetry with respect to the point a is the function o, : Q@ — Q
defined by (see Fig. 4)

oo(z) =ala-ax) = (za-a)a=za-ax.
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a ax

ax
a(a-ax)
xa-ax X
(xa-a)a 3
-a

Xa Xa

FIGURE 4. Symmetry with respect to the point a

From o, (z) = za - az it follows Par (a,2,a,04(z)), so we have:

Corollary 1. The equality o,,,(a) = b is equivalent to M (a, m,b).

(xa-b)a=xb-ax=(xb-a)b

ax

FIGURE 5. Symmetry with respect to the line segment {a,b}

The function o,(x) = za - ax can be generalised this way:
Definition. The function o, : Q — @ defined by
oap(T) =20 - br,
is called symmetry with respect to the segment {a,b}. (Fig. 5)
It follows immediately:
Corollary 2. For any a,b,x € Q
Caa = 0q, Oab = Obq, Par (a, z,b, cra,b(x)) .

Theorem 4. The equality 04 = o, is equivalent to M (a, m, b).
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Proof. Let M (a,m,b) and let z € Q. From Par (a,z,b,0,(2)) and M (a,m,b)
and Theorem 2 we obtain M (z,m, 04,()), and now from Corollary 1 oy, (2) =
Ua’b(ir).

Inversely, from o, = 0y, it follows o, (a) = o4 p(a) = aa - ba = b, and now
Corollary 1 implies M (a, m, b). O

The function o,(z) = a(a - ax) can be generalised in another way:

Definition. The function o4 (z) = (za - b)c is called symmetry with respect to
the ordered triple of points (a,b,c). (Fig. 6)

FIGURE 6. Symmetry with respect to the ordered triple of points (a, b, ¢)

Lemma 2 implies
Oape(r) = (za-b)c=ab-cx)=(r-ac) -bxr==xb- (ac-x).
It immediately follows:
Corollary 3. For any a,b,c,x € Q
Oa = Oaaar Oap = Oapa = Obaps Oabe=0acp, Par(ac,,b,0qpc(z)).
Note that different order of points (e.g. (b, a,c)) produces different symmetry.

Theorem 5. The symmetry oq.p,c is an involutory automorphism of the hexagonal
quasigroup (Q,-).

Proof. We first show that 04 .. 0 04,5, is identity:

(ss) )

Cape(Cape(x)) = 0ape((xa-b)c) =a-b(c (za-b)c) = a-b(za-b) ® .26 @z,
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It follows that o4 . is a bijection. Further:

Oape(ry) = (zy-a)b-c (&) (za-ya)b-c

ds ds
(ds) (za-b)(ya-b)-c (de) (xa-b)e- (ya-b)c = 0ape(x)  Tape(y),
SO Og.p,c 1S an automorphism. O
From Theorem 5 and Corollary 3, it follows:

Corollary 4. Symmetries o, and o, are involutory automorphisms of the hexag-
onal quasigroup (Q, ).

a(b-cX)=0(x) |

FIGURE 7. Theorem 6

Theorem 6. The equality 04, = om s equivalent to M (ac,m,b). (Fig. 7)

Proof. The statement follows immediately from o4 . = 04c,p (Corollary 3) and
Theorem 4. O

The following two theorems are about the compositions of two and three sym-
metries.

Theorem 7. The composition of two symmetries is a transfer (Fig. 8). More
precisely, for any a1, as,as, by, ba, by

Oby,b2,bs © Oay,az,a3 = Toyas,bibs © Ta27b2 -

Proof. Since composition of two transfers is a transfer (Theorem 3), it’s enough
to prove the above equality.

Let € Q be any point, and let ¥y = 0a;,40,05(T), 2 = Tby b0 (y), and w =
Tas.b, (x). We need to prove that Ty, qy, b0, (W) = 2.

Lemma 1 implies Par (z, as, b2, w), and from Corollary 3 it follows Par (a1as, x, a2, y)
and Par (b1bs, y, b, 2).
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Tby,by,b3Tay,25,25(X)

Tajag,bybs Tazby(X)

°
Tay,ap,a5(X)

FIGURE 8. Theorem 7

Property 2 of Par implies Par (by, w,z,as) and Par(z,aq,y,a1a3), and now
from Property 3 it follows Par (be, w, ajas, y).

Similarly, Property 2 implies Par (w, a1as,y, b2) and Par (y, ba, z, b1b3), and be-
cause of Property 3 it follows Par (w, a1ag, b1bs, 2).

From this relation and Lemma 1 it finally follows z = Ty, 44,6165 (W)- O

by b,Taq,a5(X)

Ficure 9. Corollary 5

Using Corollary 3 we obtain (see Fig. 9):

Corollary 5. Fora,be Q, op00q="T4p0Tp.
For ay,az,b1,b2 € Q, 0p, 6, ©0a;,a0 = Tay by © Ty by-
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Corollary 6. The equation Ca, ay.a5 = Oby bs,bs S equivalent to Par (ajas, b1bs,
ag,bg).

Proof. By Theorem 5, 04, 45,05 = Ob;,bs,b5 15 €quivalent to oy, p,.05 © Oay 00,05 =
identity. From Theorem 7 we know op, ;.65 © Oa1,a2,a5 = Laras,bibs © Tas,bs, SO the
initial equality is equivalent to T ay 165 © Tas,p, = identity. Because of Theo-
rem 3 this is equivalent to Ty, a5.b6,05 = Tby,as, and further because of Lemma 1 to
Par (alag,blbg,a27b2). O
Theorem 8. The composition of three symmetries is a symmetry. More precisely,
for any a1, az, a3, by, bz, b3, c1,ca,c3, and for dy,dz,ds such that Par (a;,b;, c;, d;),
fori=1,2,3,

Ocy,ca,c3 © Oby,ba,bs © Oay,az,a3 = Ody,da,ds -

o 0RO A(X)

. oc(x)

P

aa(X)

OA = Tayag,a3
0B = Tbybyb, o

- OO RO N\X)=0 A0 R0 (X,
0C = 0c¢ycpcs cogT p(X)=0a0go(X)

D = Tdy,da,dy

dy’

Ficure 10. Corollary 7

Proof. Let z € @ be any point, and let y, z,t € @ be such that
Y= Ual,az,ag(x) Le. Par (a1a31xaa21y)
2 = Oby,bs,bs (y) ie. Par (b1b37yab252)
t=0cy c0.c5(2) 1. Par(cics, z,co,t)

and let w € @ be such that Par (dz, a2, y, w). We need to prove that o4, 4,.4,(x) =
t, i.e. Par (dids, x,da,1).

From Par (a1, b1,c1,d1) and Par (as, bs, c3,ds), because of Theorem 1 we get
Par (a1a3, blbg, c1C3, dldg).
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Now we use Property 3 of the relation Par to conclude:

Par (b, ca,d2, az), Par(da,az,y,w = Par(bs, co,w,y),
w

Par (z,b1b3,y,b2), Par(y,bs,c2, Par (z,b1bs, w, c2) ,

Par (dldg, ajas, blbg, 0163)7 Par (blbg, 0163715, w

(

(
Par (b1bs, w,t,c1c3),
Par (dids, a1a3, w,t),
(

)
)
Par (b1bs, w, ca, ), Par(cs, 2, c103,1)
)
)

Sl

Pa‘r(a'la'37x7a'27y)a Par(a25y7w7d2 Par a1a3axad23w)a
Par (z,ds, w,a1a3), Par(w,aias3,d1ds,t) = Par(x,ds,t,d1ds).

The relations on the left hand side are valid because of the assumptions, previous
conclusions and Property 2 of Par.
The last obtained relation is equivalent to Par (d1ds, x, ds, t). O

Corollary 7. For any a;,b;,c; € Q, 1 =1,2,3 (see Fig. 10)
Oay,a2,a3 © Oby,ba,bg © Ocy,ca,c5 = Ocy,ea,es © Obyoba,bs © Oay,az,as -

Corollary 8. For any a,b,c € Q, 0,00, 00, = 0,00y 0 0.

0 cop0a(X) c Tpoa(X)

Ta(X)

Ficure 11. Corollary 9

Corollary 9. For a,b,c,d € Q, if Par (a,b,¢,d) then o. 00,00, = 4. (Fig. 11)
It is known (in Euclidean geometry) that midpoints of sides of any quadrilateral
form a parallelogram. We can state the same fact in terms of hexagonal quasigroup
in the following way:
Theorem 9. From M (z,a,y), M (y,b,z), M(z,c¢,t) and Par (a,b,c,d) it follows
M (zx,d,t).
Proof. M (z,a,y), M (y,b,z) and M (z, ¢, t) are equivalent to o,(z) =y, op(y) =
z and o.(z) = t respectively. Therefore, the three assumptions can be writ-
ten as: oc(op(0a(2))) = t. From the preceding corollary it follows o4(x) = ¢,
ie. M(z,d,t). O
Theorem 10. Let a;,b;,c;,d;, i =1,2,3 be points such that Par (a;,b;, c;,d;), for
i=1,2,3, and a, b, c,d points satisfying Par (a,b,c,d). Then

Par (Jal,az,% (a)7 Oby,bs,bs (b)7 Oci,cz,c3 (C)a Ody,dz,ds (d)) .
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Proof. From Par(aq,b1,c1,d1) and Par (as, bs, ¢3,ds) and Theorem 1 it follows
Par (aias, b1bs, c1cs3,d1ds), and from Par (a, b, ¢, d) and Par (ag, ba, co, ds) it follows
Par (aza, bob, cac, dad). Similarly we obtain Par (a - ajas,b - bibs,c- cic3,d - dids),
and finally Par ((a ~aias) - aza, (b-bibs) - bab, (¢ cic3) - cac, (d - dids) - dgd), which
proves the Theorem. O

We immediately have:
Corollary 10. From Par(a,b,c,d) and Par(p,q,r,s) it follows
Par (0p(a),04(b), 01(c), 05 (d)).
Corollary 11. For p,q,r € Q, from Par (a,b,c,d) it follows

Par (0p,q,r(a), 0p,q,r(b), 0p,q,r(c), 0p,q.r(d)).
Corollary 12. Forp € Q, from Par (a,b, ¢, d) it follows
Par (O'p(a)70'p(b),O'p(C)7O'p(d)) .
Corollary 13. For p,q,r € Q, from M (a,b, c) it follows
M (Up,q,r(a)v Opq,r(b), Jp,q,r(c)) ‘
Corollary 14. For p € Q, from M (a,b,c) it follows M (0(a), 0,(b), 0,(c)).
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