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ON NEAR-RING IDEALS WITH (σ, τ)-DERIVATION

Öznur Gölbaşi and Neşet Aydin

Abstract. Let N be a 3-prime left near-ring with multiplicative center Z, a
(σ, τ)-derivation D on N is defined to be an additive endomorphism satisfying
the product rule D(xy) = τ(x)D(y)+D(x)σ(y) for all x, y ∈ N , where σ and
τ are automorphisms of N . A nonempty subset U of N will be called a
semigroup right ideal (resp. semigroup left ideal) if UN ⊂ U (resp. NU ⊂ U)
and if U is both a semigroup right ideal and a semigroup left ideal, it be
called a semigroup ideal. We prove the following results: Let D be a (σ,

τ)-derivation on N such that σD = Dσ, τD = Dτ . (i) If U is semigroup right
ideal of N and D(U) ⊂ Z then N is commutative ring. (ii) If U is a semigroup
ideal of N and D2(U) = 0 then D = 0. (iii) If a ∈ N and [D(U), a]σ,τ = 0
then D(a) = 0 or a ∈ Z.

1. Introduction

H. E. Bell and G. Mason have shown several commutativity theorems for near-
rings with derivation in [1]. Bell has proved in [2], that if N be a 3-prime zero
symmetric left near-ring and D be a nonzero derivation on N, U is nonzero subset
of N such that UN ⊂ U or NU ⊂ U and D(U) ⊂ Z then N is commutative ring.
The major purpose of this paper to generalize this result replacing the derivation
D by (σ, τ)-derivation.

Throughout this paper, N will denote a zero-symetric left near-ring and usually
will be 3-prime, that is, if aNb = 0 then a = 0 or b = 0, with multiplicative
center Z. A nonempty subset U of N will be called a semigroup right ideal (resp.
semigroup left ideal) if UN ⊂ U (resp. NU ⊂ U) and if U is both a semigroup
right ideal and a semigroup left ideal, it be called a semigroup ideal. For subsets
X, Y ⊂ N the symbol [X, Y ] will denote the set {xy − yx | x ∈ X, y ∈ Y }.
Let σ, τ be two near-ring automorphisms of N . An additive endomorphism of N

with the property that D(xy) = τ(x)D(y) + D(x)σ(y) for all x, y ∈ N is called
(σ, τ)−derivation of N . Given x, y ∈ N , we write [x, y]σ,τ = xσ(y) − τ(y)x; in
particular [x, y]1,1 = [x, y], in the usual sense. As for terminologies used here
without mention, we refer to G. Pilz [4].
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2. Results

Lemma 1 ([3, Lemma 2]). Let D be a (σ, τ)-derivation on the near-ring N . Then
(

τ(x)D(y) + D(x)σ(y)
)

σ(a) = τ(x)D(y)σ(a) + D(x)σ(y)σ(a)

for all x, y, a ∈ N .

Lemma 2 ([2, Lemma 1.2]). Let N be a 3-prime near-ring.

i) If z ∈ Z\{0} then z is not a zero divisor.

ii) If Z\{0} contains an element z for which z + z ∈ Z, then (N, +) is abelian.

iii) If z ∈ Z\{0} and x is an element of N such that xz ∈ Z or zx ∈ Z, then

x ∈ Z.

Lemma 3 ([3, Lemma 3]). Let D be a nonzero (σ, τ)-derivation on prime near-

ring N and a ∈ N .

i) If D(N)σ(a) = 0 then a = 0.
ii) If aD(N) = 0 then a = 0.

Lemma 4. Let N be a prime near-ring, D a (σ, τ)-derivation of N and U be

nonzero semigroup right ideal (resp. semigroup left ideal). If D(U) = 0 then D = 0.

Proof. U be a nonzero semigroup right ideal of N and D(U) = 0. For any x ∈ N ,
u ∈ U , we get

0 = D(ux) = τ(u)D(x) + D(u)σ(x)

and so,

τ(u)D(x) = 0 , for all u ∈ U, x ∈ N .

By Lemma 3(ii), we have D = 0. If U is a nonzero semigroup left ideal of N , then
the proof is similar.

Lemma 5. Let N be a 3-prime near-ring, D a nonzero (σ, τ)-derivation of N and

U be nonzero semigroup ideal.

i) If x ∈ N and D(U)σ(x) = 0 then x = 0.
ii) If x ∈ N and xD(U) = 0 then x = 0.

Proof. i) Suppose U a nonzero semigroup ideal of N and D(U)σ(x) = 0. By
Lemma 1 for all u, v ∈ U , we get

0 = D(uv)σ(x) = τ(u)D(v)σ(x) + D(u)σ(v)σ(x) .

Using the hypothesis and σ is an automorphism of N, we have

σ−1
(

D(u)
)

Ux = 0 , for all u ∈ U .

Since D is a nonzero (σ, τ)-derivation of N , this relation gives us x = 0 by [2,
Lemma 1.4 (i)].

ii) A similar argument works if xD(U) = 0.

Theorem 1. Let N be a 3-prime near-ring, D be a nonzero (σ, τ)-derivation of

N and U a nonzero semigroup right ideal. If D(U) ⊂ Z, then N is commutative

ring.
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Proof. For all u, v ∈ U , we get

D(uv) = τ(u)D(v) + D(u)σ(v) ∈ Z

and commuting this element with σ(v) gives us
(

τ(u)D(v) + D(u)σ(v)
)

σ(v) = σ(v)
(

τ(u)D(v) + D(u)σ(v)
)

.

Using Lemma 1 and D(u) ∈ Z, we have

τ(u)D(v)σ(v) + D(u)σ(v)σ(v) = σ(v) τ(u)D(v) + D(u)σ(v)σ(v)

and so,
D(v)

[

τ(u), σ(v)
]

= 0 , for all u, v ∈ U .

Since D(v) ∈ Z, we obtain

D(v) = 0 or
[

τ(u), σ(v)
]

= 0 , for all u, v ∈ U .

Suppose that D(v) = 0, then D(uv) = τ(u)D(v) + D(u)σ(v) = D(u)σ(v) ∈ Z.
This gives us v ∈ Z from Lemma 2(iii). For any cases we conclude that

(2.1)
[

τ(u), σ(v)
]

= 0 , for all u, v ∈ U .

Since τ is an automorphism of N , the relation (2.1) yields
[

U, τ−1
(

σ(v)
)]

= 0 , for all v ∈ U

and so, U ⊂ Z from [2, Lemma 1.3 (iii)]. Thus, we obtain that N is commutative
ring by [2, Lemma 1.5].

Theorem 2. Let N be a 3-prime near-ring, D a nonzero (σ, τ)−derivation of N

and U be nonzero semigroup left ideal. If D(U) ⊂ Z, then N is commutative ring.

Proof. If we use the same argument in the proof of Theorem 1, we conclude that

(2.2) D(v) = 0 or
[

τ(u), σ(v)
]

= 0 , for all u, v ∈ U .

Suppose that D(v) = 0, then D(uv) = τ(u)D(v) + D(u)σ(v) = D(u)σ(v) ∈ Z,
for all u ∈ U , so that

D(u)σ(v)x = xD(u)σ(v) = D(u)xσ(v) , for all u ∈ U, x ∈ N .

Thus, D(u)
[

σ(v), x
]

= 0, for all u ∈ U, x ∈ N . By Lemma 2 (i) and Lemma 4, we
have show that

(2.3) If v ∈ U and D(v) = 0 , then v ∈ Z .

Thus, the relation (2.2) yields
[

τ(u), σ(v)
]

= 0 , for all u, v ∈ U .

By the hypothesis, we get D(wu) ∈ Z, for all u, w ∈ U . That is,

D(wu) = τ(w)D(u) + D(w)σ(u) ∈ Z .

Commuting this element with σ(v), one can obtain
(

τ(w)D(u) + D(w)σ(u)
)

σ(v) = σ(v)
(

τ(w)D(u) + D(w)σ(u)
)

.

Applying Lemma 1 and using σ(v) τ(w) = τ(w)σ(v), D(u) ∈ Z, we have

D(u) τ(w)σ(v) + D(w)σ(u)σ(v) = D(u) τ(w)σ(v) + D(w)σ(v)σ(u)
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and so,
D(w)σ

(

[u, v]
)

= 0 , for all u, v, w ∈ U .

Since D(w) ∈ Z, we have

D(w) = 0 or [u, v] = 0 , for all u, v, w ∈ U .

In the first case, we find that D = 0, a contradiction. So, we must have U is
commutative.

Now, we assume that U ∩Z 6= {0}. Then U contains a nonzero central element
w, we have

(wx)u = (xw)u = u(xw) = u(wx) = (uw)x = (wu)x

that is,
w[x, u] = 0 , for all u ∈ U .

Since w is nonzero central element, we have U ⊂ Z. Thus N is commutative ring
by [2, Lemma 1.5].

If U ∩ Z = {0}, in which case (2.3) shows that D(u) 6= 0 for all u ∈ U\{0}.
For each such u, D(u2) = τ(u)D(u) + D(u)σ(u) = D(u)

(

τ(u) + σ(u)
)

∈ Z. Since
D(u) is noncentral element of N , we get

τ(u) + σ(u) ∈ Z , for all u ∈ U .

Suppose that τ(u) + σ(u) = 0, for all u ∈ U\{0}. By the hypothesis, D(u3) ∈ Z,
we get

D(u3) = τ(u )D(u2) + D(u)σ(u2)

= τ(u) τ(u)D(u) + τ(u)D(u)σ(u) + D(u)σ(u2) ∈ Z .

Using τ(u) = −σ(u) and D(u) ∈ Z, we get

τ(u) τ(u)D(u) − τ(u) τ(u)D(u) + D(u)σ(u2) ∈ Z

which implies u2 ∈ Z. Hence we get u2 ∈ U ∩ Z = {0}, and so u2 = 0.
Now, for any x ∈ N , D(xu) = τ(x)D(u) + D(x)σ(u) ∈ Z. Hence,

σ(u)
(

τ(x)D(u) + D(x)σ(u)
)

=
(

τ(x)D(u) + D(x)σ(u)
)

σ(u) .

Using Lemma 1 and u2 = 0, we have

σ(u)
(

τ(x)D(u) + D(x)σ(u)
)

= τ(x)D(u)σ(u) .

Left-multiplying this relation by σ(u) and using u2 = 0, we obtain

σ(u) τ(x)D(u)σ(u) = 0 , for all u ∈ U, x ∈ N .

The primenessly of the near-ring N , we obtain that D(u)σ(u) = 0. Since 0 6=
D(u) ∈ Z, we have σ(u) = 0, a contradiction. Thus, we must have z = σ(u0) +
τ(u0) ∈ Z\{0} for an u0 ∈ U . Since D(zu) = τ(z)D(u) + D(z)σ(u) ∈ Z, for any
u ∈ U , we have
(

τ(z)D(u) + D(z)σ(u)
)

σ(y) = σ(y)
(

τ(z)D(u) + D(z)σ(u)
)

, for all y ∈ N

and so,

τ(z)D(u)σ(y) + D(z)σ(u)σ(y) = σ(y) τ(z)D(u) + σ(y)D(z)σ(u) .
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Using z, D(u) ∈ Z, we get

D(u) τ(z)σ(y) + D(z)σ(u)σ(y) = D(u) τ(z)σ(y) + σ(y)σ(u)D(z) .

That is,

D(z)σ
(

[u, y]
)

= 0 , for all u ∈ U , y ∈ N .

Since D(z) is a nonzero central element of N , we have U ⊂ Z. Thus, we conclude
that N is commutative ring from [2, Lemma 1.5].

Theorem 3. Let N be a 3-prime near-ring, D be a (σ, τ)-derivation of N such

that σD = Dσ, τD = Dτ and U a nonzero semigroup ideal of N . If D2(U) = 0
then D = 0.

Proof. For arbitrary u, v ∈ U , we have 0 = D2(uv) = D
(

D(uv)
)

= D
(

τ(u)D(v)+

D(u)σ(v)
)

= τ2(u)D2(v) + D
(

τ(u)
)

σ
(

D(v)
)

+ τ
(

D(u)
)

D
(

σ(v)
)

+ D2(u)σ2(v).
Using the hypothesis and σD = Dσ, τD = Dτ , we get

2D
(

τ(u)
)

D
(

σ(v)
)

= 0 , for all u, v ∈ U

and so,
2σ−1

(

τ(D(u))
)

D(U) = 0 , for all u ∈ U .

From Lemma 5(ii), we obtain that

2D(u) = 0 , for all u ∈ U .

Now for any y ∈ N and u ∈ U , 0 = D2(yu) = D
(

τ(y)D(u) + D(y)σ(u)
)

=

τ2(y)D2(v) + 2τ
(

D(y)
)

σ
(

D(u)
)

+ D2(y)σ2(u). Hence,

D2(y)σ2(u) = 0 , for all y ∈ N, u ∈ U .

Using σ is an automorphism on N and [2, Lemma 1.4 (i)], we can take D2(N) = 0.
That is D = 0 by [3, Lemma 4].

Theorem 4. Let N be a 3-prime near-ring, D be a (σ, τ)-derivation of N such

that σD = Dσ, τD = Dτ and U a nonzero semigroup ideal of N . If a ∈ N and
[

D(U), a
]

σ,τ
= 0 then D(a) = 0 or a ∈ Z.

Proof. For u ∈ U , we get D(au)σ(a) = τ(a)D(au) τ(a). Expanding this equa-
tion, one can obtain,

τ(a)D(u)σ(a) + D(a)σ(u)σ(a) = τ(a) τ(a)D(u) + τ(a)D(a)σ(u) .

By the hypothesis, we get D(u)σ(a) = τ(a)D(u). Hence,

τ(a) τ(a)D(u) + D(a)σ(u)σ(a) = τ(a) τ(a)D(u) + τ(a)D(a)σ(u) .

That is,

(2.4) D(a)σ(u)σ(a) = τ(a)D(a)σ(u) , for all u ∈ U .

Replacing ux, x ∈ N by u in (2.4) and using (2.4), we have

D(a)σ(u)σ(x)σ(a) = τ(a)D(a)σ(u)σ(x) = D(a)σ(u)σ(a)σ(x)

and so,
D(a)σ(u)σ

(

[x, a]
)

= 0 , for all x ∈ N, u ∈ U .
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Since σ is an automorphism of N, this relation can be written,

σ−1
(

D(a)U [x, a]
)

= 0 , for all x ∈ N .

Thus we conclude that a ∈ Z or D(a) = 0 by [2, Lemma 1.4 (i)].
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