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ON SECOND ORDER HAMILTONIAN SYSTEMS

DANA SMETANOVA

ABSTRACT. The aim of the paper is to announce some recent results con-
cerning Hamiltonian theory. The case of second order Euler-Lagrange form
non-affine in the second derivatives is studied. Its related second order Hamil-
tonian systems and geometrical correspondence between solutions of Hamil-
ton and Euler—Lagrange equations are found.

1. INTRODUCTION

The purpose of this paper is to announce some recent result in Hamiltonian
field theory. We work within the framework of Krupka’s theory of Lagrange stuc-
tures on fibered manifolds [1] and Krupkova’s Hamiltonian systems (e.g., Lepagean
equivalent of Euler—Lagrange form)[3].

In [3] Krupkova proposed a concept of a Hamiltonian system, which, contrary
to usual approach (c.f. Shadwick [6]), is not related with a single Lagrangian, but
rather with an Euler-Lagrange form (i.e., with the class of equivalent Lagrangians,
possibly of different orders). Using the concept she formulated a Hamiltonian field
theory and studied the corresponding geometric structures [2], [3], [4].

In this paper we are interested in non-affine second order Euler—Lagrange equa-
tions which give rise to second order Lepagean equivalents (i.e., Hamiltonian sys-
tems). All these Hamiltonian systems have a special stucture of their principal
part (i.e., at most 2-contact part). The principal part admits a noninvariant de-
composition & = &g + &¢, where ag depends on the Euler-Lagrange form, and
&c¢ does not depent on the Euler—Lagrange form. The arising Hamilton equations
depend not only on the Euler—Lagrange form, but also on some “free” functions,
which correspond to the choice of a concrete Hamiltonian system. A very inter-
esting property of Hamiltonian systems is regularity. In the case studied in this
paper Hamiltonian systems cannot be regular. We study a weaker correspondence
between solutions of Euler—Lagrange and Hamilton equations. The condition for
Hamilton extremals satisfying 7 1 0§ = J'v is found. We note that the condition
depends on the choice of a Hamiltonian system (i.e, on some “free” functions).
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This consideration is illustrated on an example of “quadratic” Euler-Lagrange
equations.

Throughout the paper all manifolds and mappins are smooth and summation
convention is used. We consider a fibered manifold (i.e., surjective submersion)
m:Y — X, dim X = n, dim Y = n + m, its r-jet prolongation 7. : J7Y — X,
r > 1 and canonical jet projections w5 : J'Y — JEY 0<k<r (with an obvious
notation J°Y =Y. A fibered chart on Y (resp. associated fibered chart on J"Y)
is denoted by (V, ), & = (2%, y%) (vesp. (Vi ), ¥ = (@, 4%, 40 02 ))-

A vector field £ on J"Y is called m,.-vertical if it projects onto the zero vector
field on X. A ¢-form non J"Y is called 7,.-horizontal if ign = 0 for every m,-vertical
vector field £ on J"Y.

A g-form n on J"Y is called contact if hn = 0. A contact g-form n on J"Y is
called 1-contact if for every m,-vertical vector field £ on J"Y the (¢ — 1)-form i¢n
is horizontal. A contact g-form 1 on J"Y is called i-contact if for every m.-vertical
vector field £ on J"Y the (¢ — 1)-form ign is (i — 1)-contact.

Recall that every g-form n on J"Y admits a unique (canonical) decomposition
into a sum of g-forms on J" 'Y as follows:

q
Ty = hn Y pen,
k=1
where hn is a horizontal form, called the horizontal part of n, and pin, 1 < k < g,
is a k-contact part of n (see [1]).
We use the following notations:

wOZdLEl/\dLEZ/\"'/\dl‘n, wi:ia/azin, Wij Zia/arjwi,
and

w? =dy” — y}’dxj» cey Wiigeiy = Ay, — E/Ziz...ikjdxj

For more details on fibered manifolds and the corresponding geometric stuctures
we refer e.g. to [5].

In this section we briefly recall basic concepts on Lepagean equivalents of of
Euler—Lagrange forms and generalized Hamiltonian field theory, due to Krupkova
2], [3], [4].

By an r-th order Lagrangian we shal mean a horizontal n-form A on J"Y.

A closed (n + 1)-form « is called a Lepagean equivalent of an Euler—Lagrange
form E = E;w’ Awy if pya = E.

Recall that the Euler-Lagrange form corresponding to an r-th order Lagrangian
A = Luwy is the following (n + 1)-form of order < 2r

oL < oL
(1) E=(7=-) (-D'dpdp, ... dp -——)w” Awy.
<3y ; prp P 8yp1mpl)

The family of Lepagean equivalents of F is also called a Lagrangian system, and
denoted by [a]. The corresponding Euler-Lagrange equations now take the form

(2) J*y ijsea =0  for every m — vertical vector field £ on Y,
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where « is any representative of order s of the class [a]. A (single) Lepagean
equivalent « of F on J°Y is also called a Hamiltonian system of order s and the
equations

(3) 0% igae =0 for every my — vertical vector field £ on J*Y

are called Hamilton equations. They represent equations for integral sections ¢
(called Hamilton extremals) of the Hamiltonian ideal, generated by the system
D;, of n-forms ica, where £ runs over ms-vertical vector fields on J*Y. Also,
considering m,1-vertical vector fields on J*t'Y, one has the ideal DZH of n-
forms igc on J*T'Y, where & (called principal part of ) denotes the at most
2-contact part of a. Its integral sections which moreover annihilate all at least
2-contact forms, are called Dedecker—Hamilton extremals. It holds that if v is an
extremal then its s-prolongation (resp. (s + 1)-prolongation) is a Hamilton (resp.
Dedecker—Hamilton) extremal, and (up to a projection) every Dedecker-Hamilton
extremal is a Hamilton extremal.

2. SECOND ORDER HAMILTONIAN SYSTEMS

We shall consider a second order Euler—Lagrange form which is not affine in the

second derivatives, i.e.,
2
0°FE, 20
Oym19yp,

As pointed out in [2] the Euler-Lagrange form affine in the second derivatives
has first order Hamiltonian systems. In what follows, we shall study second or-
der Hamiltonian systems corresponding to a Lepagean equivalent of such Euler—
Lagrange form. The Hamiltonian systems admits a decomposition

(4) 7-(;,20[ = OA[ + :U/ )

where & = p1a + poa is the principal part of «, p is at least 2-contact part of «.
In the following Proposition the stucture of the principal part of « (4) is found.

Proposition 1. Let dim X > 2. Let E = E, w’ Awg be a second order Fuler—
Lagrange form (nontrivially) of order 2, and « its Lepagean equivalent of the form
(4). Let the form

(5) G=FE+F=F,w Awy+ AL, w’ ANw” Aw; + B¥ W Awl Aw;

v
+ CEE G A WY A wi + DFEGT A Wl A w;,

where

(6) AiUV:_Aicﬂ 053203%7 Dcl;ll/l :_Dlulfyla
be the principal part of a Lepagean equivalent « (4) of the Fuler—Lagrange form
E. Then the following conditions are satisfied

OE, At —_
1) (By” + dlAVU)Alt(o‘u) =0,
2) Coefficient conditions:

Dkl — %C’fﬁ,ﬁl + d*where dXY are arbitrary functions satisfying d

ov’

kli _ _ glki
o= —d

v ov’
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Ak = %(% — d;B) — a¥,,, where ¥, are arbitrary functions satisfying ak, =

ayg ov’ ov
o
BFl = gf}g - 2255’; —2d; (Ckli — Clki 4 CEIL — gkli) 4+ bR where b, are arbitrary
functions satisfying b, = —b'* and b¥, = —blk

3) Projectability conditions:

Ckli DKUY do not depend on Y7 (C’fjl;)sym(kli) =0,

where Alt(ov) means alternation in the indicated idices and Sym(kli) means sym-
metrization in the indicated indices

Proof. Proof of Proposition 1 follows from the explicit computation of dae = 0. [

Note that the above Proposition means that the functions C*% D! do not

depend on coefficients of the Euler-Lagrange form and & admits a noninvariant
decomposition

(7) a=ag+ ac,
where
10F 1. 0F OF
8 hp = E,w’ A (— YL g —2—-d ”) TAWY A w;
() aE w? A wg + 2oy 2 lﬁy;’l l@yg w? Aw” Aw

(3Ea 0FE, ) S AWl A
— - w? Awi A w;
Oy, Oy, g

depends on derivatives of coeflicients of the Euler-Lagrange form and
(9) bo = (—al, + did,(CEP + Ckir — k4 @FiP))w” A w” A w;
+ (b +dp (CFP 4+ ChP — CEPF 4 dEP))w” A wf Aw;
+ CEE T A WY A wi + (%C’fjﬁ + dfjl,f)wg ANw] Awj,
does not depend on the Euler-Lagrange form.

A very interesting property of Hamiltonian systems is regularity. A Hamiltonian

system of order s is called regular if the ideal DZH contains all the n-forms

w? ANw; , wE’jl AWiyy ey w&...jrofl A wiy,
where (...) means symmetrization in the indicated indices and rg is the minimal
order of Lagrangians corresponding to Euler-Lagrange form, [4]. Regularity can
be rewritten as the corespondence 75 ,, 0 6p = J™v, s > rg between Dedecker—
Hamilton extremals dp and extremals ~.

We study the case s = 2 and ryp = 2. Unfortunately, these Hamiltonian sys-
tems cannot be regular. In this case regularity is a very strong condition. One
can, indeed, study regularity of Hamiltonian systems for such second order Euler—
Lagrange forms, however, regular Hamiltonian systems have to be considered to be
of order > 3. In the following proposition a correspondence between solutions of
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Euler-Lagrangange equations (2) (extremals of A) and solutions of Hamilton equa-
tions (3) (Dedecker—-Hamilton and Hamilton extremals) is found which is weaker
than regularity.

Proposition 2. Let dim X > 2. Let F = E,w° A wy the Euler—Lagrange form
(nontrivially) of order 2, and « of the form (4), (5), (6) be its Lepagean equivalent.

Assume that the matriz C*% with mn? rows (resp. mn columns) labelled by vkl
(resp. oi) has rank mn.

Then every Hamilton—Dedecker extremal p : V D w(U) — J?Y of the Hamil-
tonian system « is of the form ma1 0 dp = Jlv, where v is an extremal of .

If moreover p = 0 in (4) then every Hamilton extremal § : V D w(U) — J?Y
of the Hamiltonian system « is of the form ma1 08 = J'v, where v is an extremal

of \.

Proof. Expressing the generators of the ideal Dgfl we get

iaga & = Eywo + AL w” ANw; + B¥ ¥ Aw; + CHEGY A w;
iagg & = B w” Aw; 4+ DFEGY A w;
k
i_o G=—CNiwo Aw;.
iy

Since the rank of the matrix C* is equal to mn then the w® A w; are generators

of the ideal D(S;'l. We obtain ‘31{; odp =yJ odp, ie.

(10) 21 00p = Jty,

where v is a section of . Substituting this into (3) we get
O%hi o &=FE,0J*y=0,
oyT

showing that «y is an extremal of A.
If moreover p = 0, then 73 a0 = &, we can easily see that m2 100 = J1v, where
v is an extremal of A. This completes the proof. O

Note that in general the condition in Proposition 2 does not depend on the
Euler—Lagrange form. In the following we shall study the case than the correspon-
dence between extremals and Hamilton extremals depends on the Euler—Lagrange
form.

An interesting case.
If the functions C*% and DFY in the principal part (5) vanish then the conditions

v
in Propositon 1 take the form

<88—§5 + diAIi/U)Alt(oV) =0,
o (0O o))
Bkl — OE, oK, 1B

v Oy - oyr o
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In this case the rank condition in Proposition 2 is not satisfied. In the next
Proposition a new condition is found which depends on the Euler—Lagrange form
and guarantees the correspondence (10) between extremals and Hamilton ex-
tremals.

Proposition 3. Let dim X > 2. Let F = FE,w’ A wg the Euler-Lagrange form
(nontrivially) of order 2, and « of the form (4), (5), (6) and with C* Dk
vanishing, be its Lepagean equivalent.

Assume that the matrix

OE, 9 oF,

11 BY, = - + bl
() oy, 2oy,

with mn rows (resp. mn columns) labelled by vk (resp. ol) is regular.

Then every Hamilton—-Dedecker extremal p : V D w(U) — J?Y of the Hamil-
tonian system o is of the form ma1 0 dp = Jl7y, where v is an extremal of .

If moreover u = 0 in (4) then every Hamilton extremal § : V O w(U) — J?Y
of the Hamiltonian system « is of the form ma 108 = Jlv, where v is an extremal

of \.
Proof. Expressing the generators of the ideal Df;“l we get

i_o &= FEywo—+ A’ w” Aw; + B¥ WY Aw;,

oyT v

Since the rank of the matrix B is equal to mn then the w” A w; are generators
of the ideal Dz‘H. We obtain % 0dp =yZ odp, i.e. m108p = Jy, where v is
a section of . Substituting this into (3) we get
p*i_e G =Eso0 J*y =0,
5y

showing that «y is an extremal of A.

If moreover 1 = 0, then 73 o = &, we can easily see that 7106 = J1v, where
v is an extremal of A\. This completes the proof. O

The above results can be directly applied to a class of “quadratic” Euler—
Lagrange equations. Let us consider the following example as an illustration of
the above properties of the second order Hamiltonian systems.

Example. Let us consider an Euler-Lagrange form F = F, w’ A wy with the
coeficients of the form

E, = Py + Q, yfy + REPS ¥, yr,

where Py = Py (a",y”,y), Q% = Q5. (2",y%,y]) and REHE = Rpbd(a”, 4%, y))

oV OVK oOVK
and

kl _ Nk kl _ Nkl Rklpq — qukl Rklpq — Rklpq

ov ov? ov vo? oVK oKV oVK VoK
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In view of the above considerations we take the principal part (5), (6) in the
following form: C*Y = Dkl = and

&= (Pr+QF, yiy + REPS y¥y yp,) w7 Awo
, 3 4 ,
— (b, + S4(Q%, + 2R yp) ) A Aw,

+ (b’;ﬁ, — QM — oRNPa y;q) w? ANwi Awj,

oOVK

bkl are arbitrary functions satisfying a!, = a!_, b¥ = —b’*¥ and

vo)

i
where a’,,,

kl _ Ik
bau - _bI/U'

We can easily see that the forms in the noninvariant decomposition (7) are
ap = (PU + Qilu Y + Rilffg Y1 qu) w? A wy
- (gdl (Q5, + 2R y;”q))w“ Aw’ Aw;
— (Qh, + 2RERS yp,) w7 AwE A wi
and

i

do=—al w' Aw’ Aw; + bW AW Aw; .

The regularity condition for the matrix (11) now takes form
det (BY,) = det (b5, — Q& —2RED? yr ) #0.

OVK

Then every Hamilton-Dedecker extremal §p : V O 7(U) — J?Y of the Hamil-
tonian system « is of the form 721 0 §p = J1v, where v is an extremal of \.
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