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ON THREE EQUIVALENCES CONCERNING

PONOMAREV-SYSTEMS

YING GE

Abstract. Let {Pn} be a sequence of covers of a space X such that {st(x,Pn)}
is a network at x in X for each x ∈ X. For each n ∈ N, let Pn = {Pβ : β ∈ Λn}
and Λn be endowed the discrete topology. Put M = {b = (βn) ∈ Πn∈NΛn :
{Pβn

} forms a network at some point xb in X} and f : M −→ X by choosing
f(b) = xb for each b ∈ M . In this paper, we prove that f is a sequentially-
quotient (resp. sequence-covering, compact-covering) mapping if and only if
each Pn is a cs∗-cover (resp. fcs-cover, cfp-cover) of X. As a consequence of
this result, we prove that f is a sequentially-quotient, s-mapping if and only
if it is a sequence-covering, s-mapping, where “s” can not be omitted.

1. Introduction

A space is called a Baire’s zero-dimensional space if it is a Tychonoff-product
space of countable many discrete spaces. In [9], Ponomarev proved that each first
countable space can be characterized as an open image of a subspace of a Baire’s
zero-dimensional space. More precisely, he obtained the following result.

Theorem 1.1. Let X be a space with the topology τ = {Pβ : β ∈ Λ}. For each

n ∈ N, put Λn = Λ and endow Λn the discrete topology. Put Z = Πn∈NΛn, which

is a Baire’s zero-dimensional space, and put M = {b = (βn) ∈ Z : {Pβn
} forms

a neighbourhood base at some point xb in X}. Define f : M −→ X by choosing

f(b) = xb for each b ∈ M . Then

(1) f is a mapping.

(2) f is continuous and onto.

(3) If X is first countable, then f is an open mapping.

Recently, while generalizing the Ponomarev’s methods, Lin ([6]) introduced Po-

nomarev-systems
(

f, M, X, {Pn}
)

as in the following definition.
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Definition 1.2.

(1) Let P = ∪{Px : x ∈ X} be a cover of a space X , where Px ⊂ (P)x = {P ∈
P : x ∈ P}. P is called a network of X ([8]), if for each x ∈ U with U open in X ,
there exists P ∈ Px such that x ∈ P ⊂ U , where Px is called a network at x in X .

(2) Let {Pn} be a sequence of covers of a space X . {Pn} is called a point-star
network of X ([7]), if {st(x,Pn)} is a network at x in X for each x ∈ X , where
st(x,P) =

⋃

{P ∈ P : x ∈ P}.
(3) Let {Pn} be a point-star network of a space X . For each n ∈ N, put

Pn = {Pβ : β ∈ Λn} and endow Λn the discrete topology. Put M = {b = (βn) ∈
Πn∈NΛn : {Pβn

} forms a network at some point xb in X}, then M , which is a
subspace of the product space Πn∈NΛn, is a metric space and xb is unique for each
b ∈ M . Define f : M −→ X by choosing f(b) = xb, then f is a continuous and
onto mapping.

(

f, M, X, {Pn}
)

is called a Ponomarev -system ([7, 10]).

In a Ponomarev -system
(

f, M, X, {Pn}
)

, the following results have been ob-
tained.

Theorem 1.3 ([6, 7, 10]). Let
(

f, M, X, {Pn}
)

be a Ponomarev-system. Then the

following hold.

(1) If each Pn is a point-finite (resp. point-countable) cover of X, then f is a

compact mapping (resp. s-mapping).
(2) If each Pn is a cs∗-cover (resp. cfp-cover) of X, then f is a sequentially-

quotient (resp. compact-covering) mapping.

Take Theorem 1.3 into account, the following question naturally arises.

Question 1.4. Can implications (1) and (2) in Theorem 1.3 be reversed?

In this paper, we investigate the Ponomarev -system
(

f, M, X, {Pn}
)

to answer

Question 1.4 affirmatively. We also prove that, in a Ponomarev -system
(

f, M, X,

{Pn}
)

, f is a sequence-covering mapping if and only if each Pn is an fcs-cover.
As a consequence of these results, f is a sequentially-quotient, s-mapping if and
only if it is a sequence-covering, s-mapping, where “s” can not be omitted.

Throughout this paper, all spaces are assumed to be regular and T1, and all
mappings are continuous and onto. N denotes the set of all natural numbers, {xn}
denotes a sequence, where the n-th term is xn. Let X be a space and let A be
a subset of X . We call that a sequence {xn} converging to x in X is eventually
in A if {xn : n > k}

⋃

{x} ⊂ A for some k ∈ N. Let P be a family of subsets of
X and let x ∈ X .

⋃

P , st(x,P) and (P)x denote the union
⋃

{P : P ∈ P}, the
union

⋃

{P ∈ P : x ∈ P} and the subfamily {P ∈ P : x ∈ P} of P respectively.
For a sequence {Pn : n ∈ N} of covers of a space X and a sequence {Pn : n ∈ N}
of subsets of a space X , we abbreviate {Pn : n ∈ N} and {Pn : n ∈ N} to
{Pn} and {Pn} respectively. A point b = (βn)n∈N of a Tychonoff-product space is
abbreviated to (βn), and the n-th coordinate βn of b is also denoted by (b)n.
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2. The main results

Definition 2.1. Let f : X −→ Y be a mapping.
(1) f is called a sequentially-quotient mapping ([1]) if for each convergent se-

quence S in Y , there exists a convergent sequence L in X such that f(L) is a
subsequence of S.

(2) f is called a sequence-covering mapping ([4]) if for each convergent sequence
S converging to y in Y , there exists a compact subset K of X such that f(K) =
S

⋃

{y}.
(3) f is called a compact-covering mapping ([8]) if for each compact subset L

of Y , there exists a compact subset K of X such that f(K) = L.

Remark 2.2. (1) Compact-covering mapping =⇒sequence-covering mapping =⇒
(if the domain is metric) sequentially-quotient mapping ([6]).

(2) “sequence-covering mapping” in Definition 2.1 (2) was also called “pseudo-
sequence-covering mapping” by Ikeda, Liu and Tanaka in [5].

Definition 2.3. Let (X, d) be a metric space, and let f : X −→ Y be a mapping.
f is called a π-mapping ([9]), if for each y ∈ Y and for each neighbourhood U of
y in Y , d

(

f−1(y), X − f−1(U)
)

> 0.

Remark 2.4. (1) For a Ponomarev -system
(

f, M, X, {Pn}
)

, f : M −→ X is a
π-mapping ([7, 10]).

(2) Recall a mapping f : X −→ Y is a compact mapping (resp. s-mapping), if
f−1(y) is a compact (resp. separable) subset of X for each y ∈ Y . It is clear that
each compact mapping from a metric space is an s- and π-mapping.

Definition 2.5. Let P be a cover of a space X .
(1) P is called a cs∗-cover of X ([6]) if for each convergent sequence S in X ,

there exists P ∈ P and a subsequence S′ of S such that S′ is eventually in P .
(2) P is called an fcs-cover of X ([3]) if for each sequence S converging to x in

X , there exists a finite subfamily P ′ of (P)x such that S is eventually in
⋃

P ′.
(3) P is called a cfp-cover of X ([7]) if for each compact subset K, there exists

a finite family {Kn : n ≤ m} of closed subsets of K and {Pn : n ≤ m} ⊂ P such
that K =

⋃

{Kn : n ≤ m} and each Kn ⊂ Pn.

Lemma 2.6. Let
(

f, M, X, {Pn}
)

be a Ponomarev-system and let U = (Πn∈NΓn)
⋂

M , where Γn ⊂ Λn for each n ∈ N. Then f(U) ⊂
⋃

{Pβ : β ∈ Γk} for each

k ∈ N.

Proof. Let b = (βn) ∈ U and let k ∈ N. Then {Pβn
} forms a network at

f(b) in X and βk ∈ Γk. So f(b) ∈ Pβk
⊂

⋃

{Pβ : β ∈ Γk}. This proves that
f(U) ⊂

⋃

{Pβ : β ∈ Γk}.

Theorem 2.7. Let
(

f, M, X, {Pn}
)

be a Ponomarev-system. Then the following

hold.

(1) f is a compact mapping (resp. s-mapping) if and only if Pm is point-finite

(resp. point-countable) cover of X for each m ∈ N.

(2) f is a sequentially-quotient mapping if and only if Pm is a cs∗-cover of X
for each m ∈ N.
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(3) f is a compact-covering mapping if and only if Pm is a cfp-cover of X for

each m ∈ N.

Proof. By Theorem 1.3, we only need to prove necessities of (1), (2) and (3). Let
m ∈ N.

(1) We only give a proof for the parenthetic part. If Pm is not point-countable,
then, for some x ∈ X , there exists an uncountable subset Γm of Λm such that
Γm = {β ∈ Λm : x ∈ Pβ}. For each β ∈ Γm, put Uβ = ((Πn<mΛn) × {β} ×
(Πn>mΛn))

⋂

M . Then {Uβ : β ∈ Γm} covers f−1(x). If not, there exists c =
(γn) ∈ f−1(x) and c 6∈ Uβ for each β ∈ Γm, so γm 6∈ Γm. Thus x 6∈ Pγm

from
construction of Γm. But x = f(c) ∈ Pγm

from Lemma 2.6. This is a contradiction.
Thus {Uβ : β ∈ Γm} is an uncountable open cover of f−1(x), but it has not any
proper subcover. So f−1(x) is not separable, hence f is not an s-mapping.

(2) Let f be a sequentially-quotient mapping, and let {xn} be a sequence con-
verging to x in X . Then there exists a sequence {bk} converging to b in M
such that f(bk) = xnk

for each k ∈ N. Let b = (βn) ∈ (Πn∈NΛn)
⋂

M . We
claim that the subsequence {xnk

} of {xn} is eventually in Pβm
. In fact, put

U =
(

(Πn<mΛn)× {βm}× (Πn>mΛn)
)
⋂

M , then U is an open neighbourhood of
b in M . So sequence {bk} is eventually in U , hence sequence {xnk

} is eventually
in f(U). f(U) ⊂ Pβm

from Lemma 2.6, so {xnk
} is eventually in Pβm

. Note that
βm ∈ Λm, so Pβm

∈ Pm. This proves that Pm is a cs∗-cover of X .
(3) Let f be a compact-covering mapping, and let C be a compact subset of X .

Then there exists a compact subset K of M such that f(K) = C. For each a ∈ K,
put Ua = ((Πn<mΛn) × {(a)m} × (Πn>mΛn))

⋂

M , where (a)m ∈ Λm is the m-th
coordinate of a, then Ua

⋂

K is an open (in subspace K) neighbourhood of a. So
there exists an open (in subspace K) neighbourhood Va of a such that a ∈ Va ⊂
ClK(Va) ⊂ Ua

⋂

K, where ClK(Va) is the closure of Va in subspace K. Note that
{Va : a ∈ K} is an open cover of subspace K and K is compact in M , so there
exists a finite subset {a1, a2, . . . , as} of K such that {Vai

: i = 1, 2, . . . , s} is a finite
cover of K. Thus

⋃
{

ClK(Vai
) : i = 1, 2, . . . , s

}

= K, and so
⋃

{

f
(

ClK(Vai
)
)

:

i = 1, 2, . . . , s
}

= f
(
⋃

{

ClK(Vai

)

: i = 1, 2, . . . , s
})

= f(K) = C. For each

i = 1, 2, . . . , s, put Ci = f
(

ClK(Vai
)
)

. Since ClK(Vai
) is compact in K, Ci is

compact in C, so Ci is closed in C, and C =
⋃

{Ci : i = 1, 2, . . . , s}. For each
i = 1, 2, . . . , s, Ci = f(ClK(Vai

)) ⊂ f(Uai

⋂

K) ⊂ f(Uai
), and f(Uai

) ⊂ P(ai)m

from Lemma 2.6, so Ci ⊂ P(ai)m
. Note that (ai)m ∈ Λm, so P(ai)m

∈ Pm. This
proves that Pm is a cfp-cover of X . �

By viewing the above theorem, we ask: in a Ponomarev -system
(

f, M, X, {Pn}
)

,
what is the sufficient and necessary condition such that f is a sequence-covering
mapping? We give an answer to this question.

Theorem 2.8. Let
(

f, M, X, {Pn}
)

be a Ponomarev-system. Then f is a sequence-

covering mapping if and only if each Pn is an fcs-cover of X.

Proof. Sufficiency: Let each Pn be an fcs-cover of X , and let S = {xn} be
a sequence converging to x in X . For each n ∈ N, since Pn is an fcs-cover,
there exists a finite subfamily Fn of (Pn)x such that S is eventually in

⋃

Fn.
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Note that S −
⋃

Fn is finite. There exists a finite subfamily Gn of Pn such that
S −

⋃

Fn ⊂
⋃

Gn. Put Fn

⋃

Gn = {Pβn
: βn ∈ Γn}, where Γn is a finite subset

of Λn. For each βn ∈ Γn, if Pβn
∈ Fn, put Sβn

= (S
⋂

Pβn
)
⋃

{x}, otherwise, put
Sβn

= (S −
⋃

Fn)
⋂

Pβn
. It is easy to see that S =

⋃

βn∈Γn
Sβn

and {Sβn
: βn ∈

Γn} is a family of compact subsets of X .
Put K = {(βn) ∈ Πn∈NΓn :

⋂

n∈N
Sβn

6= ∅}. Then

Claim 1 : K ⊂ M and f(K) ⊂ S.
Let b = (βn) ∈ K, then

⋂

n∈N
Sβn

6= ∅. Pick y ∈
⋂

n∈N
Sβn

, then y ∈
⋂

n∈N
Pβn

.
Note that {Pβn

: n ∈ N} forms a network at y in X if and only if y ∈
⋂

n∈N
Pβn

.
So b ∈ M and f(b) = y ∈ S. This proves That K ⊂ M and f(K) ⊂ S.

Claim 2 : S ⊂ f(K).
Let y ∈ S. For each n ∈ N, pick βn ∈ Γn such that y ∈ Sβn

. Put b = (βn), then
b ∈ K and f(b) = y. This proves that S ⊂ f(K).

Claim 3 : K is a compact subset of M .
Since K ⊂ M and Πn∈NΓn is a compact subset of Πn∈NΛn. We only need to

prove that K is a closed subset of Πn∈NΓn. It is clear that K ⊂ Πn∈NΓn. Let
b = (βn) ∈ Πn∈NΓn − K. Then

⋂

n∈N
Sβn

= ∅. There exists n0 ∈ N such that
⋂

n≤n0
Sβn

= ∅. Put W = {(γn) ∈ Πn∈NΓn : γn = βn for n ≤ n0}. Then W is

open in Πn∈NΓn and b ∈ W . It is easy to see that W
⋂

K = ∅. So K is a closed
subset of Πn∈NΓn.

By the above three claims, f is a sequence-covering mapping.

Necessity: Let f be a sequence-covering mapping and let m ∈ N. Whenever
{xn} is a sequence converging to x in X , there exists a compact subset K of M
such that f(K) = {xn : n ∈ N}

⋃

{x}. Since f−1(x)
⋂

K is a compact subset of
M , there exists a finite subset {ai : i = 1, 2, . . . , s} of f−1(x)

⋂

K and a finite
open cover {Ui : i = 1, 2, . . . , s} of f−1(x)

⋂

K, where for each i = 1, 2, . . . , s,
Ui = ((Πn<mΛn) × {(ai)m} × (Πn>mΛn))

⋂

M is an open neighbourhood of ai,
and (ai)m ∈ Λm is the m-th coordinate of ai. By Lemma 2.6, x = f(ai) ∈ f(Ui) ⊂
P(ai)m

∈ (Pm)x for each i = 1, 2, . . . , s. We only need to prove that sequence
{xn} converging to x is eventually in

⋃

{P(ai)m
: i = 1, 2, . . . , s}. If not, there

exists a subsequence {xnk
} of {xn} such that xnk

6∈
⋃

{P(ai)m
: i = 1, 2, . . . , s}

for each k ∈ N. That is, for each k ∈ N and each i = 1, 2, . . . , s, xnk
6∈ P(ai)m

.
For each k ∈ N, we pick bk ∈ K such that f(bk) = xnk

. If for some k ∈ N and
some i = 1, 2, . . . , s, bk ∈ Ui, then xnk

= f(bk) ∈ f(Ui) ⊂ P(ai)m
from Lemma 2.6.

This is a contradiction. So bk 6∈ Ui for each k ∈ N and each i = 1, 2, . . . , s. Thus
{bk : k ∈ N} ⊂ K −

⋃

{Ui : i = 1, 2, . . . , s}. Note that K −
⋃

{Ui : i = 1, 2, . . . , s}
is a compact metric subspace, there exists a sequence {bkj

} converging to a point

b ∈ K −
⋃

{Ui : i = 1, 2, . . . , s}. Thus b 6∈ f−1(x), so f(b) 6= x. On the other hand,
{f(bkj

)} converges to f(b) by the continuity of f and {f(bkj
)} = {xnkj

} converges

to x, so f(b) = x. This is a contradiction. So sequence {xn} converging to x is
eventually in

⋃

{P(ai)l
: i = 1, 2, . . . , s}. �
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3. Some consequences

cs∗-cover and fcs-cover are not equivalent in general, but there exist some
relations between cs∗-cover and fcs-cover.

Proposition 3.1. Let P be a cover of a space X. Then the following hold.

(1) If P is an fcs-cover of X, then P is a cs∗-cover of X.

(2) If P is a point-countable cs∗-cover of X, then P is an fcs-cover of X.

Proof. (1) holds from Definition 2.5. We only need to prove (2).
Let P be a point-countable cs∗-cover of X . Let S = {xn} be a sequence

converging to x in X . Since P is point-countable, put (P)x = {Pn : n ∈ N}. Then
S is eventually in

⋃

n≤k Pn for some k ∈ N. If not, then for any k ∈ N, S is not

eventually in
⋃

n≤k Pn. So, for each k ∈ N, there exists xnk
∈ S −

⋃

n≤k Pn. We

may assume n1 < n2 < · · · < nk−1 < nk < nk+1 < · · · . Put S′ = {xnk
: k ∈ N},

then S′ is a sequence converging to x. Since P is a cs∗-cover, there exists m ∈ N

and a subsequence S′′ of S′ such that S′′ is eventually in Pm. Note that Pm ∈ (P)x.
This contradicts the construction of S′. �

Corollary 3.2. Let
(

f, M, X, {Pn}
)

be a Ponomarev-system. Then the following

are equivalent.

(1) f is a sequentially-quotient, s-mapping;

(2) f is a sequence-covering, s-mapping.

Proof. Consider the following conditions.
(3) Pn is a point-countable cs∗-cover of X for each n ∈ N;
(4) Pn is a point-countable fcs-cover of X for each n ∈ N.
Then (1)⇐⇒(3) and (2)⇐⇒(4) from Theorem 2.7 and Theorem 2.8 respectively.

(3)⇐⇒(4) from Proposition 3.1. So (1)⇐⇒(2). �

Can “s-” in Corollary 3.2 be omitted? We give a negative answer for this
question. We call a family D of subsets of a set D is an almost disjoint family if
A

⋂

B is finite whenever A, B ∈ D, A 6= B.

Example 3.3. There exists a space X , which has a point-star network {Pn}
consisting of cs∗-covers of X , but Pn is not an fcs-cover of X for each n ∈ N.

Proof. Let X = {0} ∪ {1/n : n ∈ N} endow usual subspace topology of real line
R. Let n ∈ N, we construct Pn as follows.

Put An = {1/k : k > n}. Using Zorn’s Lemma, there exists a family An

of infinite subsets of An such that An is an almost disjoint family and maximal
with respect to these properties. Then An must be infinite (in fact, An must be
uncountable) and denote it by {Pβ : β ∈ Λn}. Put Bn = {Pβ

⋃

{0} : β ∈ Λn}, and
put Pn = Bn

⋃

{{1/k} : k = 1, 2, . . . , n}. Thus Pn is constructed. We only need
to prove the following three claims.

Claim 1 : {Pn} is a point-star network of X .
Let x ∈ U with U open in X . If x = 0, then there exists m ∈ N such that

Am ⊂ U . It is easy to check that st(0,Pm) = Am

⋃

{0}. So 0 ∈ st(0,Pm) ⊂ U . If
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x = 1/n for some n ∈ N, then st(1/n,Pn) = {1/n}. So 1/n ∈ st(1/n,Pn) ⊂ U .
This proves that {Pn} is a point-star network of X .

Claim 2 : For each n ∈ N, Pn is a cs∗-cover of X .
Let n ∈ N and let S = {xk} be a sequence converging to x in X . Without loss

of generalization, we can assume S is nontrivial, that is, the set L = {xk : k ∈
N}

⋂

An is an infinite subset of An and the limit point x = 0. If L ∈ An, it is clear
that S has a subsequence is eventually in L

⋃

{0} ∈ Bn ⊂ Pn. If L 6∈ An, then
there exists β ∈ Λn such that L

⋂

Pβ is infinite. Otherwise, L ∈ An by maximality
of An. Thus S has a subsequence is eventually in Pβ

⋃

{0} ∈ Bn ⊂ Pn. So Pn is
a cs∗-cover of X .

Claim 3 : For each n ∈ N, Pn is not an fcs-cover of X .
Let n ∈ N. If Pn is an fcs-cover of X , then, for sequence {1/k} converging to 0

in X , there exist Pβ1
, Pβ2

, . . . , Pβs
∈ An and some m ∈ N such that Am = {1/k :

k > m} ⊂
⋃

{Pβi
: i = 1, 2, . . . , s}. Since Λn is infinite, pick β ∈ Λn − {βi : i =

1, 2, . . . , s}. Then Am

⋂

Pβ is infinite, and Am

⋂

Pβ ⊂
⋃

{Pβi
: i = 1, 2, . . . , s}. So

there exists i ∈ {1, 2, . . . , s} such that Am

⋂

Pβ

⋂

Pβi
is infinite. Thus Pβ

⋂

Pβi
is

infinite. This contradicts that An is almost disjoint. So Pn is not an fcs-cover of
X .

Thus we complete the proof of this example. �

Remark 3.4. Let X and {Pn} be given as in Example 3.3. Then, for Ponomarev -
system

(

f, M, X, {Pn}
)

, f is sequentially-quotient from Theorem 2.7 and Claim
2 in Example 3.3 (note: f is also a π-mapping from Remark 2.(1)), and f is not
sequence-covering from Theorem 2.8 and Claim 3 in Example 3.3. So “s-” in
Corollary 3.2 can not be omitted.

Remark 3.5. Recently, Lin proved that each sequentially-quotient, compact map-
ping from a metric space is sequence-covering, which answers [6, Question 3.4.8]
(also, [2, Question 2.6]). Naturally, we ask: is each sequentially-quotient, π-
mapping from a metric space sequence-covering? The answer is negative. In fact,
let f be a mapping in Remark 3.4. Then f is a sequentially-quotient, π-mapping
from a metric space M , but it is not sequence-covering.
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