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PERIODIC SOLUTIONS FOR SYSTEMS WITH NONSMOOTH

AND PARTIALLY COERCIVE POTENTIAL

MICHAEL E. FILIPPAKIS

Abstract. In this paper we consider nonlinear periodic systems driven by
the one-dimensional p-Laplacian and having a nonsmooth locally Lipschitz
potential. Using a variational approach based on the nonsmooth Critical
Point Theory, we establish the existence of a solution. We also prove a multi-
plicity result based on a nonsmooth extension of the result of Brezis-Nirenberg
[3] due to Kandilakis-Kourogenis-Papageorgiou [13].

1. Introduction

The purpose of this paper is to prove an existence and a multiplicity result
for nonlinear periodic systems driven by the one-dimensional p-Laplacian with
nonsmooth Laplacian.

Recently there has been an increasing interest for problems involving the one-
dimensional p-Laplacian and various solvability techniques were used. We men-
tion the works of Dang-Oppenheimer [6], Del Pino-Manasevich-Murua [7], Fabry-
Fayyad [8], Gasinski-Papageorgiou [9], Guo [10], Manasevich-Mawhin [16] and
the references therein. From the above works Gasinski-Papageorgiou use a vari-
ational approach, while the others use degree theory combined with techniques
from nonlinear analysis and the right hand side nonlinearity is continuous (i.e. the
corresponding potential function is C1). Also we should mention that in Dang-
Oppenheimer, Guo and Manasevich-Mawhin the right hand side nonlinearity also
depends on x′ and consequently their hypotheses are stronger. Here the potential
function j(t, x) is only measurable in t ∈ T and locally Lipschitz in x ∈ R

N (not
necessarily C1). We assume that j(t, ·) is only partially coercive, i.e. j(t, x) → +∞
as ‖x‖ → ∞ uniformly for almost all t ∈ E ⊆ T, with |E| > 0 (here by | · | we
denote the Lebesque measure on R). This way we extend the very recent work of
Tang-Wu [18] where p = 2 (semilinear problem) and the potential function j(t, ·) is
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C1 (smooth problem). Initially semilinear problems with fully coercive potential,
were studied by Berger-Schechter [2] and Mawhin-Willem [17].

Our approach is variational and it is based on the nonsmooth Critical Point
Theory as this was formulated by Chang [4] and extended recently by Kourogenis-
Papageorgiou [14]. The multiplicity result that we prove is based on a recent
nonsmooth extension of the result of Brezis-Nirenberg [3] due to Kandilakis-
Kourogenis-Papageorgiou [13].

2. Mathematical background

LetX be a Banach space,X∗ its topological dual. By
〈
·, ·

〉
we denote the duality

brackets for the pair (X,X∗). Given a locally Lipschitz function ϕ : X → R, the
generalized directional derivative of ϕ at x ∈ X in the direction h ∈ X , is defined
by

ϕ0(x;h)
df
= lim sup

x′→x
λ↓0

ϕ(x′ + λh) − ϕ(x′)

λ
.

The function h → ϕ0(x;h) is sublinear, continuous and so it is the support
function of a nonempty, w∗-compact, convex set ∂ϕ(x) ⊆ X∗ defined by

∂ϕ(x)
df
=

{
x∗ ∈ X∗ :

〈
x∗, h

〉
≤ ϕ0(x;h) for all h ∈ X

}
.

The multifunction x → ∂ϕ(x) is known as the generalized (or Clarke) sub-

differential of ϕ. If ϕ is continuous convex (hence locally Lipschitz), then the
generalized subdifferential and the subdifferential in the sense of convex analysis
coincide. Also if ϕ ∈ C1(X) (hence it is locally Lipschitz), then ∂ϕ = {ϕ′(x)}.

A point x ∈ X is a critical point of the locally Lipschitz function ϕ : X → R,
if 0 ∈ ∂ϕ(x). A local extremum of ϕ is a critical point. The well-known Palais-
Smale condition (PS-condition for short), in the present nonsmooth setting takes
the following form:

“A locally Lipschitz function ϕ : X → R satisfies the nonsmooth
PS-condition, if every sequence {xn}n≥1 ⊆ X such that |ϕ(xn)| ≤
M1 for some M1 > 0, all n ≥ 1 and m(xn) = inf

[
‖x∗‖ : x∗ ∈

∂ϕ(xn)
]
→ 0 as n→ ∞, has a strongly convergent subsequence.”

3. Existence theorem

The nonlinear, nonsmooth periodic system under consideration is the following:

(3.1)

{(
‖x′(t)‖p−2x′(t)

)′
∈ ∂j(x(t)) a.e. on T = [0, b]

x(0) = x(b) , x′(0) = x′(b) , 2 ≤ p <∞ .

Here by ∂j(t, x) we denote the Clarke subdifferential of the locally Lipschitz
potential function j(t, ·). Our hypotheses on j(t, x) are the following:

H(j)1: j : T × R
N → R is a function such that j = j1 + j2 and for i = 1, 2;

(i) for all x ∈ R
N, t→ ji(t, x) is measurable;

(ii) for almost all t ∈ T , x→ ji(t, x) is locally Lipschitz;
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(iii) for every M > 0, there exists αM ∈ L1(T ) such that

sup
[
|j(t, x)|, ‖u‖ : ‖x‖ ≤M, u ∈ ∂j(t, x)

]
≤ αM (t) a.e. on T ;

(iv) j1(t, x) → +∞ as ‖x‖ → ∞ uniformly for almost all t ∈ E, |E| > 0
and there exists ξ ∈ L1(T ) such that for almost all t ∈ T and all
x ∈ R

N ξ(t) ≤ j1(t, x);
(v) there exists θ ∈ L1(T ) such that for almost all t ∈ T , all x ∈ R

N and

all u ∈ ∂j2(t, x), ‖u‖ ≤ θ(t) and
∫ b

0 j2(t, x) dt ≥ −c0 for all x ∈ R
N

with c0 > 0.

In the proof of our existence theorem we shall need the following auxiliary result
due to Tang-Wu [18] (see Lemma 3) relating uniform coercivity and subaddivity.

Lemma 3.1. If j : T × R
N → R is a function such that for all x ∈ R

N, t →
j(t, x) is measurable, for almost all t ∈ T x → j(t, x) is continuous, for every

M > 0 there exists αM ∈ L1(T ) such that for almost all t ∈ T and all ‖x‖ ≤ M ,

|j(t, x)| ≤ αM (t) and j(t, x) → +∞ as ‖x‖ → ∞ uniformly for almost all t ∈ E,

|E| > 0, then there exist g ∈ C(RN)+ subadditive function such that g(x) → +∞
as ‖x‖ → ∞ and g(x) ≤ ‖x‖ + 4 and η ∈ L1(T ) for which we have for almost all

t ∈ E and all x ∈ R
N j(t, x) ≥ g(x) + η(t).

Remark 3.2. Here by |E| we denote the Lebesgue measure of |E|.

Theorem 3.3. If hypotheses H(j)1 hold, then problem (3.1) has a solution x ∈
C1(T,RN).

Proof. Let ϕ : W 1,p
per(T,R

N) → R be the energy functional defined by

ϕ(x) =
1

p
‖x′‖p

p +

∫ b

0

j
(
t, x(t)

)
dt =

1

p
‖x′‖p

p +

∫ b

0

j1
(
t, x(t)

)
dt+

∫ b

0

j2
(
t, x(t)

)
dt .

We know (see for example Chang [4] or Hu-Papageorgiou [12]) that ϕ is locally
Lipschitz. By virtue of Lemma 3.1, we can find E ⊆ T , with |E| > 0 such that for
almost all t ∈ E and all x ∈ R

N we have

j1(t, x) ≥ g(x) + η(t)

with g ∈ C(RN)+ subadditive, coercive and η ∈ L1(T ). We have
∫ b

0

j1
(
t, x(t)

)
dt =

∫

E

j1
(
t, x(t)

)
dt+

∫

T\E

j1
(
t, x(t)

)
dt

≥

∫

E

g
(
x(t)

)
dt+

∫

E

η(t) dt+

∫

T\E

ξ(t) dt .

Consider the following direct sum decomposition

W 1,p
per(T,R

N) = R
N ⊕ V

with V =
{
v ∈ W 1,p

per(T,R
N) :

∫ b

0 v(t) = 0
}
. So if x ∈ W 1,p

per(T,R
N), we can write

in a unique way x = x+ x̂, with x ∈ R
N and x̂ ∈ V . Exploiting the subadditivity
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of g, we have

g(x) =g
(
x(t) − x̂(t)

)
≤ g

(
x(t)

)
+ g

(
− x̂(t)

)
for all t ∈ T ,

⇒ g(x) − g
(
− x̂(t)

)
≤ g

(
x(t)

)
for all t ∈ T .

Moreover, because of Lemma 3.1 we have

g
(
− x̂(t)

)
≤ ‖x̂(t)‖ + 4 ≤ ‖x̂‖∞ + 4 .

We have
∫

E

g
(
x(t)

)
dt ≥

∫

E

g(x) dt−

∫

E

g
(
− x̂(t)

)
dt

= g(x)|E| − (‖x̂‖∞ + 4) |E| .

But from the Poincare-Wirtinger inequality (see Mawhin-Willem [17], p.8) we
know that

‖x̂‖∞ ≤ b
1

q ‖x̂′‖p = b
1

q ‖x′‖p .

So we obtain ∫

E

g
(
x(t)

)
dt ≥ g(x)|E| −

(
b

1

q ‖x′‖p + 4
)
|E| .

Let Γ(t) =
{
(v, λ) ∈ R

N × (0, 1) : v ∈ ∂j2
(
t, x+ λx̂(t)

)
, j2

(
t, x+ x̂(t)

)
− j2(t, x)

=
(
v, x̂(t)

)
RN

}
. From the Mean Value Theorem (see for example Clarke [5],p.41),

we know that for almost all t ∈ T , Γ(t) 6= ∅. By redefining Γ(·) on the exceptional
Lebesgue-null set, we may assume without any loss of generality that Γ(t) 6= ∅
for all t ∈ [0 · b]. We claim that for every direction h ∈ R

N the function (t, λ) →
j02

(
t, x + λx̂(t);h

)
is measurable. Indeed from the definition of the generalized

derivative, we have

j02
(
t, x+ λx̂(t)

)
=

inf
m≥1

sup
r,s∈Q∩(− 1

m
, 1

m
)

j2(t, x+ λx̂(t) + r + sh) − j2(t, x + λx̂(t) + r)

s
.

Since j2 is jointly measurable (see Hu-Papageorgiou [11], p.142), it follows that
(t, λ) → j02

(
t, x + λx̂(t);h

)
is measurable. Set S(t, λ) = ∂j2

(
t, x + λx̂(t)

)
and let

{hm}m≥1 ⊆ R
N be a countable dense set. Because j02(t, x+λx̂(t); ·) is continuous,

we have

GrS =
{
(t, λ, u) ∈ T × (0, 1) × R

N : u ∈ S(t, λ)
}

=
⋂

m≥1

{
(t, λ, u) ∈ T × (0, 1) × R

N : (u, hm)RN ≤ j02(t, x+ λx̂(t);hm)
}

⇒ GrS ∈ L(T ) ×B
(
(0, 1)

)
×B(RN) ,

with L(T ) being the Lebesgue σ-field of T and B
(
(0, 1)

)
(resp. B(RN)) the Borel

σ-field of (0, 1) (resp. of R
N). So we can apply the Yankon-von Neumann-Aumann

selection theorem (see Hu-Papageorgiou [11], p.158) to obtain measurable func-
tions v : T → R

N and λ : T → (0, 1) such that
(
v(t), λ(t)

)
∈ Γ(t) for all t ∈ T
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and j2
(
t, x+ x̂(t)

)
− j2(t, x) =

(
v(t), x̂(t)

)
RN

, v(t) ∈ ∂j2
(
t, x+ λ(t)x̂(t)

)
a.e. on T .

Using hypothesis H(j)1(v) and the Poicare-Wirtinger inequality, we obtain
∫ b

0

j2
(
t, x(t)

)
dt =

∫ b

0

j2
(
t, x+ x̂(t)

)

≥

∫ b

0

j2(t, x) dt− b
1

p ‖x′‖p‖θ‖1 .

Thus finally we have

ϕ(x) ≥
1

p
‖x′‖p

p + g(x)|E| −
(
b

1

q ‖x′‖p + 4
)
|E| − ‖ξ‖1 − c0 − b

1

q ‖x′‖p‖θ‖1 .

From this inequality and the coercivity of g, it follows that ϕ is coercive. Exploiting
the compact embedding of W 1,p

per(T,R
N) into C(T,RN), we can easily check that

ϕ is weakly lower semicontinuous. So by the Weierstrass theorem we can find
x ∈ W 1,p

per(T,R
N) such that ϕ(x) = inf ϕ. Then we have 0 ∈ ∂ϕ(x). Let A :

W 1,p
per(T,R

N) →W 1,p
per(T,R

N)∗ be the nonlinear operator defined by

〈A(x), y〉 =

∫ b

0

−‖x′(t)‖p−2
(
x′(t), y′(t)

)
RN
dt .

We have A(x) = u with u ∈ S
q

∂j

(
·,x(·)

). For every ψ ∈ C∞
0

(
(0, b),RN

)
we have

∫ b

0

−‖x′(t)‖p−2
(
x′(t), ψ′(t)

)
RN
dt =

∫ b

0

(
u(t), ψ(t)

)
RN
dt

Recalling that
(
‖x′(·)‖p−2x′(·)

)
∈ W−1,q(T,RN) = W

1,p
0 (T,RN)∗ (see Adams

[1], p.50), we have that

〈(‖x′‖p−2x′)′, ψ〉0 =

∫ b

0

(
u(t), ψ(t)

)
RN
dt = 〈u, ψ〉0 ,

where 〈·, ·〉0 denotes the duality brackets for the pair
(
W 1,p

per(T,R
N),W−1,q(T,RN)

)
.

Since C∞
0

(
(0, b),RN

)
is dense in W 1,p

per(T,R
N) it follows that

(3.2)
(
‖x′(t)‖p−2x′(t)

)′
= u(t) ∈ ∂j

(
t, x(t)

)
a.e. on T .

Also for every y ∈ W 1,p
per(T,R

N), using Green’s identity (integration by parts),
we obtain

〈A(x), y〉 =
(
‖x′(b)‖p−2x′(b), y(b)

)
RN

−
(
‖x′(0)‖p−2x′(0), y(0)

)
RN

−

∫ b

0

(
(‖x′(t)‖p−2x′(t))′, y(t)

)
RN
dt for all y ∈ W 1,p

per(T,R
N)RN dt .

Because A(x) = u, and using (3.2), we obtain
(
‖x′(b)‖p−2x′(b), y(b)

)
RN

=
(
‖x′(0)‖p−2x′(0), y(0)

)
RN

for all y ∈W 1,p
per(T,R

N) ,

⇒ ‖x′(b)‖p−2x′(b) = ‖x′(0)‖p−2x′(0) ,

⇒ x′(0) = x′(b) .
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Note that since x ∈W 1,p
per(T,R

N), we have (x(0) = x(b). Finally since ‖x′‖p−2x′ ∈

W 1,q
per(T,R

N) ⇒ ‖x′(·)‖p−2x′(·) ∈ C1
per(T,R

N). Because the map y → ‖y‖p−2y is a

homeomorphism of R
N, we infer that x′ ∈ Cper(T,R

N), hence x ∈ C1
per(T,R

N) and
it solves (3.1). �

4. Multiplicity result

Next by strengthening our hypotheses on j(t, ·) with a condition about its be-
havior near zero, we obtain a multiplicity result for problem (3.1). For this we
will need the following nonsmooth version of the Local Linking theorem due to
Brezis-Nirenberg [3]. This theorem was proved recently by Kandilakis-Kourogenis-
Papageorgiou [13].

Theorem 4.1. If X is a reflexive Banach space such that X = Y ⊕ V with

dimY < +∞, ϕ : x → R is a locally Lipschitz functional which satisfies the

nonsmooth PS-condition, ϕ(0) = 0 and

(a) there exists r > 0 such that

ϕ(y) ≤ 0 for y ∈ Y, ‖y‖ ≤ r and ϕ(v) ≥ 0 for v ∈ V, ‖v‖ ≤ r ,

(ii) ϕ is bounded below and inf ϕ < 0,

then ϕ has at least two nontrivial critical points.

Our hypotheses on the nonsmooth potential j(t, x) are the following:

H(j)2: j : T × R
N → R is a function which satisfies hypotheses H(j)1 and

(vi) lim
x→0

pj(t, x)

‖x‖p
= 0 uniformly for almost all t ∈ T and there exists r0 > 0

such that for almost all t ∈ T and all ‖x‖ ≤ r0 we have j(t, x) ≤ 0.

Theorem 4.2. If hypotheses H(j)2 hold, then problem (3.1) has at least two

nontrivial solutions in C1(T,RN).

Proof. Let ϕ : W 1,p
per(t,R

N) → R be the locally Lipschitz energy functional defined
by

ϕ(x) =
1

p
‖x′‖p

p +

∫ b

0

j
(
t, x(t)

)
dt .

From the proof of Theorem 3.3 we know that ϕ is coercive, hence it satisfies
the nonsmooth PS-condition (see Kourogenis-Papageorgiou [15]). As before we
consider the direct sum decomposition

W 1,p
per(T,R

N) = R
N ⊕ V

with V =
{
v ∈ W 1,p

per(T,R
N) :

∫ b

0
v(t) dt = 0

}
. By virtue of hypothesis H(j)2(vi)

given ε > 0, we can find δ > 0 such that for almost all t ∈ T and all ‖x‖ ≤ δ we

have −
ε

p
‖x‖p ≤ j(t, x). Let v ∈ V with ‖v′‖p ≤

δ

b
1

q

. From the Poincare-Wirtinger
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inequality we have that ‖v‖∞ ≤ b
1

q ‖v′‖p ≤ δ. So if v ∈ V with ‖v′‖p ≤
δ

b
1

q

= δ1,

we have ‖v‖∞ ≤ δ and so

ϕ(v) =
1

p
‖v′‖p

p +

∫ b

0

j
(
t, v(t)

)
dt

≥
1

p
‖v′‖p

p +
ε

p
‖v‖p

p

≥
1

p

(
1 −

ε

β1

)
‖v′‖p

p for some β1 > 0 ,

from the Poincare-Wirtinger inequality. Choose ε ≤ β1, to infer that for ‖v‖ ≤ δ1
we have ϕ(v) ≥ 0.

Also if y ∈ R
N and ‖y‖ ≤ r0, then by hypothesis H(j)2(vi) we have that

ϕ(y) =

∫ b

0

j(t, y) dt ≤ 0 .

Note that ϕ being coercive, it is bounded below. If inf ϕ < 0, then using
r = min {δ1, r0} > 0 we can apply Theorem 4.1 and obtain two nontrivial critical
points of ϕ, which we can check are two distinct nontrivial solutions of (3.1) in
C1(T,RN).

If inf ϕ = 0, then by virtue of hypothesis H(j)2(vi) for all y ∈ R
N with

b
1

p ‖y‖RN ≤ δ1 we have inf ϕ = ϕ(y) = 0 and so we conclude that ϕ has an
infinity of critical points, therefore problem (3.1) has an infinity of solutions in
C1(T,RN). �

The nonsmooth locally Lipschitz potential function

j(t, x) =

{
−‖x‖pln (1 + ‖x‖p) if ‖x‖ ≤ 1

χE(t)ln‖x‖ + χEc(t)sinπ‖x‖ − ln2 if ‖x‖ ≥ 1
,

with |E| > 0, satisfies hypotheses H(j)2.
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