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ON THE EXISTENCE OF SOLUTIONS OF SOME SECOND

ORDER NONLINEAR DIFFERENCE EQUATIONS

MAŁGORZATA MIGDA, EWA SCHMEIDEL, MAŁGORZATA ZBĄSZYNIAK

Abstract. We consider a second order nonlinear difference equation

∆2yn = anyn+1 + f(n, yn, yn+1) , n ∈ N . (E)

The necessary conditions under which there exists a solution of equation (E)
which can be written in the form

yn+1 = αnun + βnvn , are given.

Here u and v are two linearly independent solutions of equation

∆2yn = an+1yn+1 , ( lim
n→∞

αn = α < ∞ and lim
n→∞

βn = β < ∞) .

A special case of equation (E) is also considered.

1. Introduction

Consider the difference equation

∆2yn = anyn+1 + f(n, yn, yn+1) , n ∈ N , (E)

where N denotes the set of positive integers. By N0 we define the set {n0, n0 +
1, . . . } where n0 ∈ N , by R the set of real numbers and by R+ the set of real
nonnegative numbers. By a solution of equation (E) we mean a sequence (yn)
which satisfies equation (E) for sufficiently large n. The necessary conditions
under which there exists a solution of equation (E) which can be written in the
following form

(1) yn+1 = αnun + βnvn

are given. Here u and v are two linearly independent solutions of equation

∆2yn = an+1yn+1 ,

where

lim
n→∞

αn = α < ∞ and lim
n→∞

βn = β < ∞ .
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In the last few years there has been an increasing interest in the study of
asymptotic behavior of solutions of difference equations, in particular second order
difference equations (see, for example [2]–[3], [6]–[13]).

The equation (E) was considered by Migda, Schmeidel and Zbąszyniak in [9],
too. This equation was considered under assumption

(2)

∞
∫

ǫ

ds

F (s)
= ∞ .

In [9], the authors proved that each solution of equation (E) can be written in the
form (1). In presented paper, we will show that under assumption

(3)

ǫ
∫

0

ds

F (s)
= ∞ ,

where ǫ is a positive constant, there exists a solution of equation (E), which can
be written in the form (1). It is clear that there exist functions F which satisfy
condition (3) and for which condition (2) is not fulfil, for example F (x) = x2.

To prove the main result we start with the following Lemmas:

Lemma 1. Assume that F : R → R is continuous, nondecreasing function, such

that F (x) 6= 0 for x 6= 0 and condition (3) holds. Moreover, let the function

B : N × R2
+ → R+ be continuous on R2

+ for each n ∈ N and such that

B(n, z1, z2) ≤ B(n, y1, y2) for 0 ≤ zk ≤ yk , k = 1, 2 ,

and

B(n, anz1, anz2) ≤ F (an)B(n, z1, z2) for a : N → R+ .

Let (µn) and (ρn) are positive sequences which satisfy the following inequality

µn ≤ µn0
+ c

n−1
∑

j=n0

ρjB(j, ρj−1µj−1, ρjµj)

for n ≥ n0, n0 ∈ N and some positive constant c, and the series

(4)
∞
∑

j=n0

ρjB(j, ρj−1, ρj)

is convergent. Then there exists a sequence (µn) such that µn ≤ M for some

M > 0, for all n ∈ N0.

Proof. Let positive sequences (µn) and (ρn) satisfy the inequality

µn ≤ µn0
+ c

n−1
∑

j=n0

ρjB(j, ρj−1µj−1, ρjµj) .

We denote bn = µn0
+ c

n−1
∑

j=n0

ρjB(j, ρj−1µj−1, ρjµj). Since

(5) µi ≤ bi , i ≥ n0
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and

∆bi = bi+1 − bi = cρiB(i, ρi−1µi−1, ρiµi) ≥ 0 ,

we see that the sequence (bi) is nondecreasing. Therefore, by (5) we have

∆bi ≤ cρiB(i, ρi−1bi−1, ρibi) ≤ cρiB(i, ρi−1bi, ρibi) ≤ cρiF (bi)B(i, ρi−1, ρi) ,

where F (bi) ≥ 0. This imply,

(6)
∆bi

F (bi)
≤ cρiB(i, ρi−1, ρi) .

Since the function F is nondecreasing, it follows that the function 1

F
is nonincreas-

ing. This yields

(7)
∆bi

F (bi)
≥

bi+1
∫

bi

ds

F (s)
.

From (6) and (7) we have

bi+1
∫

bi

ds

F (s)
≤ cρiB(i, ρi−1, ρi), i ≥ n0 .

By summation from i = n0 to i = n − 1 one yields

(8)

bn
∫

bn0

ds

F (s)
≤ c

n−1
∑

i=n0

ρiB(i, ρi−1, ρi) .

Denoting

(9)

x
∫

ǫ

ds

F (s)
= G(x) , where ǫ is a positive constant

we obtain that
bn
∫

bn0

ds

F (s)
= G(bn) − G(bn0

) .

From this and (8) we see

(10) G(bn) ≤ G(bn0
) + c

n−1
∑

i=n0

ρiB(i, ρi−1, ρi) .

From (9) and properties of function F , function G is increasing. We have two
possibilities:

(i) lim
x→∞

G(x) = ∞. Then G(bn0
) + c

n−1
∑

i=n0

ρiB(i, ρi−1, ρi) belongs to the do-

main of function G−1, for every n ∈ N .
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(ii) lim
x→∞

G(x) = g < ∞. From (3) we can take bn0
such that

G(bn0
) + c

∞
∑

i=n0

ρiB(i, ρi−1, ρi) < g .

Then there exists a sequence (µn) such that G(bn0
)+c

∞
∑

i=n0

ρiB(i, ρi−1, ρi)

belongs to domain of function G−1 in this case, too.

Hence G−1 exists and is increasing.
We conclude from (10), that

bn ≤ G−1

{

G(bn0
) + c

n−1
∑

i=n0

ρiB(i, ρi−1, ρi)

}

,

and finally from (5) and (4), that

µn ≤ G−1

{

G(bn0
) + c

∞
∑

i=n0

ρiB(i, ρi−1, ρi)

}

≤ M ,

where n ∈ N0. �

Lemma 2. The equation

∆2zn = an+1zn+1 , n ∈ N (EL)

where a : N → R, has linearly independent solutions u, v : N → R such that

(11)

∣

∣

∣

∣

un vn

∆un ∆vn

∣

∣

∣

∣

= −1 for all n ∈ N .

Theorem 1. Let (un) and (vn) are linearly independent solutions of equation

(EL). Assume that

(12) |f(n, x1, x2)| ≤ B(n, |x1|, |x2|)

for all x1, x2 ∈ R, and any fixed n ∈ N , where f : N × R2 → R and function B

fulfil conditions of Lemma 1. Let us denote

(13) Uj = max {|uj−1|, |vj−1|, |uj |, |vj |, |uj+1|, |vj+1|} .

If

(14)

∞
∑

j=2

UjB(j, Uj−1, Uj) = K < ∞

for some positive constant K, then there exists a solution (yn) of equation (E),
which can be written in the form

(15) yn+1 = αnun + βnvn

where lim
n→∞

αn = α and lim
n→∞

βn = β, (α, β-constants).
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Proof. First we prove the theorem for two linearly independent solutions (un)
and (vn) of equation (EL) which fulfil the condition (11). Assume that (yn) is an
arbitrary solution of equation (E). Let us denote

An = vn∆yn − yn+1∆vn−1(16)

Bn = −un∆yn + yn+1∆un−1 .(17)

From (11) we get

(18) yn+1 = unAn + vnBn .

Applying the difference operator ∆ to (16) and (17) we obtain

∆An = vn∆2yn − yn+1∆
2vn−1

∆Bn = −un∆2yn + yn+1∆
2un−1 .

Using (EL) and (E) we have

∆An = vnf(n, yn, yn+1)

∆Bn = −unf(n, yn, yn+1) .

From (18) we obtain

∆Aj = vjf(j, uj−1Aj−1 + vj−1Bj−1, ujAj + vjBj)

∆Bj = −ujf(j, uj−1Aj−1 + vj−1Bj−1, ujAj + vjBj) , j > 1 .

By summation we get

(19)

An = A2 +
n−1
∑

j=2

vjf(j, uj−1Aj−1 + vj−1Bj−1, ujAj + vjBj)

Bn = B2 −
n−1
∑

j=2

ujf(j, uj−1Aj−1 + vj−1Bj−1, ujAj + vjBj) .

Then

|An| ≤ |A2| +

n−1
∑

j=2

|vj | |f(j, uj−1Aj−1 + vj−1Bj−1, ujAj + vjBj)|

|Bn| ≤ |B2| +

n−1
∑

j=2

|uj | |f(j, uj−1Aj−1 + vj−1Bj−1, ujAj + vjBj)| .

Therefore, we have

|An| + |Bn| ≤ |A2| + |B2|

+

n−1
∑

j=2

(|vj | + |uj|)|f(j, uj−1Aj−1 + vj−1Bj−1, ujAj + vjBj)| .(20)

Let us denote

(21) hn = |An| + |Bn| , n ∈ N .
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By the definition of Uj we see that

|vj−1| ≤ Uj , |uj−1| ≤ Uj , |vj | ≤ Uj , |uj| ≤ Uj , |vj+1| ≤ Uj , |uj+1| ≤ Uj .

It is clear that

|Ajuj + Bjvj | ≤ |Aj | |uj| + |Bj | |vj | ≤ Uj(|Aj | + |Bj |) ≤ Ujhj .

Hence, by (12) we get

|f(j, Aj−1uj−1 + Bj−1vj−1, Ajuj + Bjvj)| ≤ B(j, Uj−1hj−1, Ujhj) .

Therefore, (20) and (21) yields

hn ≤ h2 + 2

n−1
∑

j=2

UjB(j, Uj−1hj−1, Ujhj) .

By Lemma 1, there exists a sequence (hn) and a constant M > 0 such that
hn ≤ M . Properties of function B and (12) give the following inequalities

|vjf(j, Aj−1uj−1 + Bj−1vj−1, Ajuj + Bjvj)|

≤ UjB(j, |Aj−1uj−1 + Bj−1vj−1|, |Ajuj + Bjvj |)

≤ UjB(j, Uj−1hj−1, Ujhj) ≤ UjB(j, Uj−1M, UjM)

≤ F (M)UjB(j, Uj−1, Uj) .

This means by (14) that the series
∞
∑

j=2

vjf(j, Aj−1uj−1 + Bj−1vj−1, Ajuj + Bjvj)

is absolutely convergent. By (19) finite limit lim
n→∞

An = α exists. Analogously

lim
n→∞

Bn = β < ∞ exists. Hence (18) holds, and there exist finite limits of se-

quences (An) and (Bn).

Now, we will prove this theorem for any two linearly independent solutions (ũn)
and (ṽn) of equation (EL). Let (un) and (vn) be two linearly independent solutions
of equation (EL) fulfilling condition (11). Then for some constants c1, c2, c3 and
c4 we have

un = c1ũn + c2ṽn , vn = c3ũn + c4ṽn .

Now,
Ũj = max {|ũj−1|, |ṽj−1|, |ũj |, |ṽj |, |ũj+1|, |ṽj+1|} .

We will show that the condition (14) holds. Let c̃ = max{|c1|, |c2|, |c3|, |c4|}. Hence

Uj ≤ c̃ max {|ũj−1| + |ṽj−1|, |ũj | + |ṽj |, |ũj+1| + |ṽj+1|} ≤ 2c̃Ũj .

Therefore, we obtain inequalities

UjB(j, Uj−1, Uj) ≤ 2c̃ŨjB(j, 2c̃Ũj−1, 2c̃Ũj) ≤ 2c̃ŨjF (2c̃)B(j, Ũj−1, Ũj) ,

and
∞
∑

j=1

UjB(j, Uj−1, Uj) < ∞ .
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We see that assumptions of the Theorem 1 hold for solutions (un) and (vn), also.
Then a solution of equation (E) can be written in the form

yn+1 = An(c1ũn + c2ṽn) + Bn(c3ũn + c4ṽn)

= (c1An + c3Bn)ũn + (c2An + c4Bn)ṽn

= αnũn + βṽn ,

where αn = c1An + c3Bn, βn = c2An + c4Bn, and lim
n→∞

αn = α, lim
n→∞

βn = β (α,

β-constants). This completes the proof of this Theorem. �

Example 1. Consider the difference equation

(22) ∆2yn =
ynyn+1

(n2 + 3n + 2)2n+2 + 6n + 10 + 21−n
.

All conditions of Theorem 1 are satisfied with B(n, x1, x2) = x1x2

n22n and F (k) = k2.

Hence the equation (22) has a solution (yn) which can be written in the form (15).
In fact, yn = n + (1 + 1

2n )1 is such a solution, where αn = 1 and βn = 1 + 1

2n .

Note, that Theorem 1 is applicable to the equation (22), but Theorem 1 from
[9] is not, because

∞
∫

ǫ

ds

F (s)
=

∞
∫

ǫ

ds

s2
=

1

ǫ

is convergent. So, condition (1) from [9] is not satisfied.

Theorem 2. Assume that functions F and B fulfil conditions of Lemma 1 and

function F fulfil condition (12) of Theorem 1. If

(23)
∞
∑

j=1

jB(j, j, j) = k < ∞ ,

then there exists a solution (yn) of equation

(24) ∆2yn = f(n, yn, yn+1) , n ∈ N ,

which can be written in the form

(25) yn+1 = an + b + φ(n), where lim
n→∞

φ(n) = 0 .

Proof. Equation ∆2zn = 0 has two linearly independent solution un = n and
vn = 1. These solutions satisfy conditions (11) of Theorem 1. We will prove that
condition (14) is also satisfied. From (13), Uj = j +1. From properties of function
B we obtain

UjB(j, Uj−1, Uj) = (j + 1)B(j, j, j + 1) ≤ (j + j)B(j, j + j, j + j)

= (2j)B(j, 2j, 2j) ≤ 2F (2)jB(j, j, j) .

Then, form (23)
∞
∑

j=1

UjB(j, Uj−1, Uj) ≤ 2F (2)k = K < ∞ .



386 M. MIGDA, E. SCHMEIDEL, M. ZBĄSZYNIAK

Since assumptions of Theorem 1 hold then we get the thesis of this Theorem. So,
from (18)

(26) yn+1 = Ann + Bn ,

where An and Bn are defined by (16) and (17), and finite limits of sequences (An),
(Bn) exist. Let

(27) lim
n→∞

An = a , lim
n→∞

Bn = b .

From (19) we get

An = A2 +
n−1
∑

j=2

f(j, (j − 1)Aj−1 + Bj−1, jAj + Bj) .

Hence, from (27) we obtain

a = A2 +

∞
∑

j=2

f(j, (j − 1)Aj−1 + Bj−1, jAj + Bj) .

Using properties of functions f and B we have

|An − a| =

∞
∑

j=n

f
(

j, (j − 1)Aj−1 + Bj−1, jAj + Bj

)

≤
∞
∑

j=n

B
(

j, (j − 1)|Aj−1| + |Bj−1|, j|Aj | + |Bj |
)

≤

∞
∑

j=n

B
(

j, (j − 1)(|Aj−1| + |Bj−1|), j(|Aj | + |Bj |)
)

.

Therefore

n|An − a| ≤

∞
∑

j=n

jB
(

j, (j − 1)(|Aj−1| + |Bj−1|), j(|Aj | + |Bj |)
)

.

From (27) there exists a constant c such that

|An| + |Bn| ≤ c for n ∈ N .

Then

n|An − a| ≤

∞
∑

j=n

jB(j, jc, jc) ≤ F (c)

∞
∑

j=n

jB(j, j, j)

and by (23) we have

lim
n→∞

F (c)
∞
∑

j=n

jB(j, j, j) = 0 ,

what gives

lim
n→∞

n|An − a| = 0 .
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Analogously we obtain lim
n→∞

|Bn − b| = 0. The solution (26) of equation (24) can

be written in the form

yn+1 = an + b + (An − a)n + (Bn − b) .

Then

yn+1 = an + b + φ(n) ,

where

φ(n) = (An − a)n + (Bn − b) ,

and lim
n→∞

φ(n) = 0. The proof is complete. �

Example 2. Consider the difference equation

(28) ∆2yn =
yn + yn+1

2n+3n + 3 · 2n+2 + 6
.

All conditions of Theorem 2 are satisfied with B(n, x1, x2) = 1

2n (x1 + x2) and

F (k) = k. Hence equation (28) has a solution (yn) which can be written in (25).
In fact yn = n + 1 + 1

2n is such a solution.
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