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A CHARACTERIZATION OF ESSENTIAL

SETS OF FUNCTION ALGEBRAS

JAN ČERYCHAbstra
t. In the present note, we characterize the essential set E of a function
algebra A defined on a compact Hausdorff space X in terms of local properties of
functions in A at the points off E.

Let X be a compact Hausdorff topological space. Denote by C(X) the com-
mutative Banach algebra, consisting of all continuous complex-valued functions
on X (with respect to usual point-wise algebraic operations) endowed with the
sup-norm.
By a function algebra on X we mean any closed subalgebra of C(X) which

contains constant functions on X and which separates points of X .

Definition. A function algebra A on X is said to be a maximal one if it is a
proper subset (i.e., a proper subalgebra) of C(X) and has the following property:
whenever B is a function algebra on X , B ⊃ A, then either B = A or B = C(X).

A being a function algebra on X , a closed subset E ⊂ X is said to be an
essential set of A if the following conditions are fulfilled:

(1) A consists of all continuous prolongations of functions in the algebra of
restrictions A/E (i.e., the algebra of all restrictions of functions in A from
the set X to its subset E).

(2) Whenever a closed subset F of X has the same property as E in (1),
then E ⊂ F

(

or, E is a unique minimal closed subset of X satisfying the

condition (1)
)

.

The notion “essential set” is due to Bear, who proved in [1] that any maximal
algebra on X has an essential set.

Hoffman and Singer in [2] found an essential set of any, not necessarily maximal,
function algebra on X .
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Denote by M(X) the space of all complex Borel regular measures on X , i.e.,
by the Riesz Representation Theorem, the dual space of C(X).
The annihilator A⊥ of a function algebra A is defined to be the set of all

measures m ∈ M(X) such that
∫

fdm = 0 for any f ∈ A, or the set of all
measures orthogonal to A. The dual space A′ of A is then canonically isomorphic
to the quotient space M(X)/A⊥.
Now endow M(X) with the weak-star topology: it is well known that M(X)

becomes a locally convex topological linear space with the dual space C(X).

Definition. Let A be a function algebra on X . A (closed nonvoid) set F ⊂ X
is said to be a peak set (of A) if there exists a function f ∈ A with the following
properties:

(1) f(x) = 1 for any x ∈ F ;
(2) |f(y)| < 1 for any y ∈ X r F .

In this case we say that f peaks on F .

In [3], we have proved the following

Theorem 1. Let A be a function algebra on X. Denote by E the closure of the
union of all closed supports of measures in A⊥. Then E is the essential set of A.

Our aim here is to characterize the essential set E of a function algebra A in
terms of local properties of functions in A at the points off E. More precisely, we
shall prove the following

Theorem 2. Let A be a function algebra on X. Denote by E its essential set.
Let x ∈ X. Then x ∈ X r E if and only if there exists a closed neigbourhood V
of x in X such that the following two conditions are fulfilled:

(3) A/V = C(V ), where A/V means the algebra of all restrictions of functions
from A to the set V ;

(4) V is an intersection of peak sets of A.

Proof. Let at first x ∈ X r E.
Take as V such an closed neighbourhood which does not meet E.
Condition (3) follows immediately from the definition of the essential set.
For any y ∈ X r(E∪V ) let f0y be a function defined on the set Hy = E∪{y}∪V

such that it is equal to 1 on V and to 0 on E∪{y}. We can, by the classical Tietze

Theorem, construct a function f̃y ∈ C(X) which is equal to f0y on the set Hy.

Finally, put fy = min(1, f̃y). Then fy ∈ C(X) and f is equal to 0 on E; it follows
from the definition of the essential set that fy ∈ A.
Denote the set on which fy peaks by Fy. Then Fy ⊃ V and Fy does not meet

E ∪ {y}. It follows that

V =
⋂

y∈Xr(E∪V )

Fy ,

the condition (4).
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Let, on the contrary, be V such closed neighborhood of x that the conditions
(3), (4) are fulfilled. Let m is a measure on X such that spt m, its closed support,
has nonvoid intersection with int V , the interior of V . We shall prove that m is
not in A⊥; it will follow from Theorem 1 that x /∈ E.
Let f ∈ C(V ) be such that

(5) sptf ⊂ int V ,

∫

V

f dm 6= 0 .

It follows from (3) that there exists a function g ∈ A such that g/V = f . It is
f = g = 0 on the boundary of V and then the the sets

(6) Un ≡ V ∪ {y ∈ X ; |g(y)| <
1

n
, n = 1, 2, . . .}

containing V are open.
The set X r Un is a compact one; the system S of all peak sets of A containing

V is a system of compact sets whose intersection is V by (4). It follows that there
is a finite subsystem F1, F2, . . . , Fk of S such that

(7) Vn ≡

k
⋂

j=1

Fj ⊂ Un .

But the (nonvoid) intersection of peak sets is a peak set: if fj peaks on Fj , then
∏

fj peaks on ∩Fj . We have proved: there exists a sequence Vn, n = 1, 2, . . . of
peak sets of A such that

(8) V ⊂ Vn ⊂ Un , n = 1, 2, . . .

It is easy to see that the intersection W ≡
⋂∞

n=1 Vn is a peak set of A: if hn ∈ A
peaks on Vn, then the function

h ≡

∞
∑

n=1

2−nhn

peaks on W . It follows from (7) and (8) that

(9) V ⊂ W ⊂ V ∪ {y ∈ X ; g(y) = 0} .

We have
hn(y) = 1 for y ∈ W ,
hn(y)→ 0 for n → ∞, y ∈ X r V .

It follows from (9) that
(g · hn)(y) = g(y) ≤ f(y) for y ∈ V ,
(g · hn)(y)→ 0 for n → ∞, y ∈ X r W .
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Since |g · hn| = |g| · |h|n = |g|, we have by the Lebesgue Dominated Convergence
Theorem and by (9) and (5)

∫

g · hn dm →

∫

W

g dm =

∫

V

g dm =

∫

V

f dm 6= 0 .

But g · hn ∈ A for n = 1, 2, . . . and then the measure m is not in A⊥. �

At first look at Theorem 1 and 2 it would appear that the condition (4) in
Theorem 2 is superfluous and could be omitted. The next example shows that it
is not the case.

Example. Let A be the classical disk algebra, i.e. the algebra of all functions
continuous on the closed unit disk K in the complex plane which are holomorphic
on the interior of K.
Let B be the restriction of A to the set

F ≡ {z ∈ K; |z| = 1 or z = 0} .

Zero is an isolated point of F ; it follows that B/{0} = C({0}).
Let µ be such a measure on F that for any f ∈ C(F )

∫

f dµ =
1

2πi

∫

|z|=1

f(z) dz

z
− f(0) .

Then µ ∈ B⊥ by Cauchy Formula. There is |µ|(0) = 1, so 0 is in the essential set
of B, by Theorem 1.
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