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ARCHIVUM MATHEMATICUM (BRNO)

Tomus 39 (2003), 309 – 316

ON THE H–PROPERTY OF SOME

BANACH SEQUENCE SPACES

SUTHEP SUANTAIAbstra
t. In this paper we define a generalized Cesàro sequence space ces (p) and
consider it equipped with the Luxemburg norm under which it is a Banach space,
and we show that the space ces (p) posses property (H) and property (G), and it is
rotund, where p = (pk) is a bounded sequence of positive real numbers with pk > 1
for all k ∈ N.

1. Preliminaries

For a Banach space X , we denote by S(X) and B(X) the unit sphere and unit
ball of X , respectively. A point x0 ∈ S(X) is called
a) an extreme point if for every x, y ∈ S(X) the equality 2x0 = x + y implies

x = y;
b) an H-point if for any sequence (xn) in X such that ‖xn‖ → 1 as n → ∞,

the weak convergence of (xn) to x0 (write xn
w
→ x0) implies that ‖xn − x‖ → 0 as

n → ∞;
c) a denting point if for every ǫ > 0, x0 /∈ conv{B(X)\(x0 + ǫB(X))}.

A Banach space X is said to be rotund (R), if every point of S(X) is an extreme
point.
A Banach space X is said to posses property (H) (property (G)) provided every

point of S(X) is H-point (denting point).
For these geometric notions and their role in mathematics we refer to the mono-

graphs [1], [2], [6] and [13]. Some of them were studied for Orlicz spaces in [3], [7],
[8], [9] and [114].
Let us denote by l0 the space of all real sequences. For 1 ≤ p < ∞, the Cesàro

sequence space (ces p, for short) is defined by

ces p =
{

x ∈ l0 :
∞
∑

n=1

( 1

n

n
∑

i=1

|x(i)|
)p

< ∞
}
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equipped with the norm

‖x‖ =

(

∞
∑

n=1

(

1

n

n
∑

i=1

|x(i)|

)p) 1

p

This space was introduced by J. S. Shue [16]. It is useful in the theory of matrix
operator and others (see [10] and [12]). Some geometric properties of the Cesàro
sequence space ces p were studied by many mathematicians. It is known that ces p

is LUR and posses property (H) (see [12]). Y.A. Cui and H. Hudzik [14] proved
that ces p has the Banach-Saks of type p if p > 1, and it was shown in [5] that
ces p has property (β).
Now, let p = (pk) be a sequence of positive real numbers with pk ≥ 1 for all

k ∈ N. The Nakano sequence space l(p) is defined by

l(p) = {x ∈ l0 : σ(λx) < ∞ for some λ > 0} ,

where σ(x) =
∑∞

i=1 |x(i)|
pi . We consider the space l(p) equipped with the norm

‖x‖ = inf
{

λ > 0 : σ
(x

λ

)

≤ 1
}

,

under which it is a Banach space. If p = (pk) is bounded, we have

l(p) =
{

x ∈ l0 :

∞
∑

i=1

|x(i)|pi < ∞
}

.

Several geometric properties of l(p) were studied in [1] and [4].
The Cesàro sequence space ces (p) is defined by

ces (p) = {x ∈ l0 : ̺(λx) < ∞ for some λ > 0} ,

where ̺(x) =
∑∞

n=1(
1

n

∑n

i=1 |x(i)|)
pn . We consider the space ces (p) equipped with

the so-called Luxemburg norm

‖x‖ = inf
{

λ > 0 : ρ
(x

λ

)

≤ 1
}

under which it is a Banach space. If p = (pk) is bounded, then we have

ces (p) =
{

x = x(i) :

∞
∑

n=1

( 1

n

n
∑

i=1

|x(i)|
)pn

< ∞
}

.

W. Sanhan [15] proved that ces (p) is nonsquare when pk > 1 for all k ∈ N. In
this paper, we show that the Cesàro sequence space ces (p) equipped with the
Luxemburg norm is rotund (R) and posses property (H) and property (G) when
p = (pk) is bounded with pk > 1 for all k ∈ N.
Throughout this paper we assume that p = (pk) is bounded with pk > 1 for all

k ∈ N, and M = supk pk.
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2. Main Results

We begin with giving some basic properties of modular on the space ces (p).

Proposition 2.1. The functional ̺ on the Cesàro sequence space ces (p) is a
convex modular.

Proof. It is obvious that ̺(x) = 0 ⇔ x = 0 and ̺(αx) = ̺(x) for all scalar α
with |α| = 1. If x, y ∈ ces (p) and α ≥ 0, β ≥ 0 with α + β = 1, by the convexity
of the function t → |t|pk for every k ∈ N, we have

̺(αx+ βy) =

∞
∑

k=1

(

1

k

k
∑

i=1

|αx(i) + βy(i)|

)pk

≤

∞
∑

k=1

(

α

(

1

k

k
∑

i=1

|x(i)|

)

+ β

(

1

k

k
∑

i=1

|y(i)|

))pk

≤ α

∞
∑

k=1

(

1

k

k
∑

i=1

|x(i)|

)pk

+ β

∞
∑

k=1

(

1

k

k
∑

i=1

|y(i)|

)pk

= α̺(x) + β̺(y) .

Proposition 2.2. For x ∈ ces (p), the modular ̺ on ces (p) satisfies the following
properties:

(i) if 0 < a < 1, then aM̺(
x

a
) ≤ ̺(x) and ̺(ax) ≤ a̺(x),

(ii) if a ≥ 1, then ̺(x) ≤ aM̺(
x

a
),

(iii) if a ≥ 1, then ̺(x) ≤ a̺(x) ≤ ̺(ax).

Proof. It is obvious that (iii) is satisfied by the convexity of ̺. It remains to
prove (i) and (ii).

For 0 < a < 1, we have

̺(x) =

∞
∑

k=1

(

1

k

k
∑

i=1

|x(i)|

)pk

=

∞
∑

k=1

(

a

k

k
∑

i=1

∣

∣

∣

x(i)

a

∣

∣

∣

)pk

=

∞
∑

k=1

apk

(

1

k

k
∑

i=1

∣

∣

∣

x(i)

a

∣

∣

∣

)pk

≥

∞
∑

k=1

aM

(

1

k

k
∑

i=1

∣

∣

∣

x(i)

a

∣

∣

∣

)pk

= aM

∞
∑

k=1

(

1

k

k
∑

i=1

∣

∣

∣

x(i)

a

∣

∣

∣

)pk

= aM̺
(x

a

)

,

and it implies by the convexity of ̺ that ̺(ax) ≤ a̺(x), hence (i) is satisfied.
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Now, suppose that a ≥ 1. Then we have

̺(x) =

∞
∑

k=1

(

1

k

k
∑

i=1

|x(i)|

)pk

=

∞
∑

k=1

apk

(

1

k

k
∑

i=1

∣

∣

∣

x(i)

a

∣

∣

∣

)pk

≤ aM

∞
∑

k=1

(

1

k

k
∑

i=1

∣

∣

∣

x(i)

a

∣

∣

∣

)pk

= aM̺
(x

a

)

.

So (ii) is obtained. �

Next, we give some relationships between the modular ̺ and the Luxemburg
norm on ces (p).

Proposition 2.3. For any x ∈ ces (p), we have
(i) if ‖x‖ < 1 , then ̺(x) ≤ ‖x‖,
(ii) if ‖x‖ > 1, then ̺(x) ≥ ‖x‖,
(iii) ‖x‖ = 1 if and only if ̺(x) = 1,
(iv) ‖x‖ < 1 if and only if ̺(x) < 1,
(v) ‖x‖ > 1 if and only if ̺(x) > 1,
(vi) if 0 < a < 1 and ‖x|| > a, then ̺(x) > aM , and

(vii) if a ≥ 1 and ‖x‖ < a, then ̺(x) < aM .

Proof. (i) Let ε > 0 be such that 0 < ε < 1− ‖x‖, so ‖x‖+ ǫ < 1. By definition
of ‖.‖, there exists λ > 0 such that ‖x‖ + ǫ > λ and ̺(x

λ
) ≤ 1. From Proposition

2.2 (i) and (iii), we have

̺(x) ≤ ̺

(

(‖x‖+ ǫ)

λ
x

)

= ̺
(

(‖x‖+ ǫ)
x

λ

)

≤ (‖x‖ + ǫ) ̺
(x

λ

)

≤ ‖x‖+ ǫ ,

which implies that ̺(x) ≤ ‖x‖, so (i) is satisfied.

(ii) Let ǫ > 0 be such that 0 < ǫ < ‖x‖−1
‖x‖ , then 1 < (1−ǫ)‖x‖ < ‖x‖. By definition

of ‖.‖ and by Proposition 2.2 (i), we have

1 < ̺

(

x

(1− ǫ)‖x‖

)

≤
1

(1 − ǫ)‖x‖
̺(x) ,

so (1 − ǫ)‖x‖ < ̺(x) for all ǫ ∈
(

0, ‖x‖−1
‖x‖

)

. This implies that ‖x‖ ≤ ̺(x), hence

(ii) is obtained.

(iii) Assume that ‖x‖ = 1. By definition of ‖x‖, we have that for ǫ > 0, there
exists λ > 0 such that 1 + ǫ > λ > ‖x‖ and ̺

(

x
λ

)

≤ 1. From Proposition 2.2 (ii),

we have ̺(x) ≤ λM̺
(

x
λ

)

≤ λM < (1 + ǫ)M , so (̺(x))
1

M < 1 + ǫ for all ǫ > 0,
which implies ̺(x) ≤ 1. If ̺(x) < 1, then we can choose a ∈ (0, 1) such that
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̺(x) < aM < 1. From Proposition 2.2 (i), we have ̺
(

x
a

)

≤ 1

aM ̺(x) < 1, hence
‖x‖ ≤ a < 1, which is a contradiction. Therefore ̺(x) = 1.
On the other hand, assume that ̺(x) = 1. Then ‖x‖ ≤ 1. If ‖x‖ < 1, we have

by (i) that ̺(x) ≤ ‖x‖ < 1, which contradicts our assumption. Therefore ‖x‖ = 1.

(iv) follows directly from (i) and (iii).

(v) follows from (iii) and (iv).

(vi) Suppose 0 < a < 1 and ‖x‖ > a. Then
∥

∥

x
a

∥

∥ > 1. By (v), we have ̺
(

x
a

)

> 1.

Hence, by Proposition 2.2 (i), we obtain that ̺(x) ≥ aM̺(x
a
) > aM .

(vii) Suppose a ≥ 1 and ‖x‖ < a. Then
∥

∥

x
a

∥

∥ < 1. By (iv), we have ̺
(

x
a

)

< 1. If

a = 1, it is obvious that ̺(x) < 1 = aM . If a > 1, then, by Proposition 2.2 (ii),
we obtain that ̺(x) ≤ aM̺(x

a
) < aM . �

Proposition 2.4. Let (xn) be a sequence in ces (p).
(i) If ‖xn‖ → 1 as n → ∞, then ̺(xn)→ 1 as n → ∞.
(ii) If ̺(xn)→ 0 as n → ∞, then ‖xn‖ → 0 as n → ∞.

Proof. (i) Suppose ‖xn‖ → 1 as n → ∞. Let ǫ ∈ (0, 1). Then there exists N ∈ N

such that 1 − ǫ < ‖xn‖ < 1 + ǫ for all n ≥ N . By Proposition 2.3 (vi) and (vii),
we have (1− ǫ)M < ̺(xn) < (1+ ǫ)M for all n ≥ N , which implies that ̺(xn)→ 1
as n → ∞.

(ii) Suppose ‖xn‖ 6→ 0 as n → ∞. Then there is an ǫ ∈ (0, 1) and a subsequence
(xnk
) of (xn) such that ‖xnk

‖ > ǫ for all k ∈ N. By Proposition 2.3 (vi), we have
̺(xnk

) > ǫM for all k ∈ N. This implies ̺(xn) 6→ 0 as n → ∞. �

Next, we shall show that ces (p) has the property (H). To do this, we need a
lemma.

Lemma 2.5. Let x ∈ ces (p) and (xn) ⊆ ces (p). If ̺(xn) → ρ(x) as n → ∞ and
xn(i)→ x(i) as n → ∞ for all i ∈ N, then xn → x as n → ∞.

Proof. Let ǫ > 0 be given. Since ρ(x) =
∑∞

k=1

(

1

k

∑k

i=1 |x(i)|
)pk < ∞, there is

k0 ∈ N such that

(2.1)

∞
∑

k=k0+1

(

1

k

k
∑

i=1

|x(i)|

)pk

<
ǫ

3

1

2M+1
.

Since ρ(xn)−
∑k0

k=1(
1

k

∑k

i=1 |xn(i)|)
pk → ρ(x)−

∑k0
k=1(

1

k

∑k

i=1 |x(i)|)
pk as n → ∞

and xn(i)→ x(i) as n → ∞ for all i ∈ N, there is n0 ∈ N such that

(2.2) ̺(xn)−

k0
∑

k=1

(

1

k

k
∑

i=1

|xn(i)|

)pk

< ̺(x) −

k0
∑

k=1

(

1

k

k
∑

i=1

|x(i)|

)pk

+
ǫ

3

1

2M

for all n ≥ n0, and

(2.3)

k0
∑

k=1

(

1

k

k
∑

i=1

|xn(i)− x(i)|

)pk

<
ǫ

3
.
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for all n ≥ n0.

It follows from (2.1), (2.2) and (2.3) that for n ≥ n0,

̺(xn − x) =
∞
∑

k=1

(

1

k

k
∑

i=1

|xn(i)− x(i)|

)pk

=

k0
∑

k=1

(

1

k

k
∑

i=1

|xn(i)− x(i)|

)pk

+

∞
∑

k=k0+1

(

1

k

k
∑

i=1

|xn(i)− x(i)|

)pk

<
ǫ

3
+ 2M

(

∞
∑

k=k0+1

(

1

k

k
∑

i=1

|xn(i)|

)pk

+
∞
∑

k=k0+1

(

1

k

k
∑

i=1

|x(i)|

)pk
)

=
ǫ

3
+ 2M

(

̺(xn)−

k0
∑

k=1

(

1

k

k
∑

i=1

|xn(i)|

)pk

+

∞
∑

k=k0+1

(

1

k

k
∑

i=1

|x(i)|

)pk
)

<
ǫ

3
+ 2M

(

̺(x)−

k0
∑

k=1

(

1

k

k
∑

i=1

|x(i)|

)pk

+
ǫ

3

1

2M
+

∞
∑

k=k0+1

(

1

k

k
∑

i=1

|x(i)|

)pk
)

=
ǫ

3
+ 2M

(

∞
∑

k=k0+1

(

1

k

k
∑

i=1

|x(i)|

)pk

+
ǫ

3

1

2M
+

∞
∑

k=k0+1

(

1

k

k
∑

i=1

|x(i)|

)pk
)

=
ǫ

3
+ 2M

(

2

∞
∑

k=k0+1

(

1

k

k
∑

i=1

|x(i)|

)pk

+
ǫ

3

1

2M

)

<
ǫ

3
+

ǫ

3
+

ǫ

3
= ǫ.

This show that ̺(xn − x)→ 0 as n → ∞. Hence, by Proposition 2.4 (ii), we have
‖xn − x‖ → 0 as n → ∞.

Theorem 2.6. The space ces (p) has the property (H).

Proof. Let x ∈ S(ces (p)) and (xn) ⊆ ces (p) such that ‖xn‖ → 1 and xn
w
→ x as

n → ∞. From Proposition 2.3 (iii), we have ̺(x) = 1, so it follows from Proposition
2.4 (i) that ̺(xn) → ̺(x) as n → ∞. Since the mapping pi : ces (p) → R,
defined by pi(y) = y(i), is a continuous linear functional on ces (p), it follows that
xn(i)→ x(i) as n → ∞ for all i ∈ N. Thus, we obtain by Lemma 2.5 that xn → x
as n → ∞. �

Theorem 2.7. The space ces (p) is rotund.

Proof. Let x ∈ S
(

ces (p)
)

and y, z ∈ B
(

ces (p)
)

with x = y+z

2
. By Proposition

2.3 and the convexity of ̺ we have

1 = ̺(x) ≤
1

2

(

̺(y) + ̺(z)
)

≤
1

2
(1 + 1) = 1 ,
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so that ̺(x) = 1

2
(̺(y) + ̺(z)) = 1. This implies that

(2.4)

(

1

k

k
∑

i=1

|
y(i) + z(i)

2
|

)pk

=
1

2

(

1

k

k
∑

i=1

|y(i)|

)pk

+
1

2

(

1

k

k
∑

i=1

|z(i)|

)pk

for all k ∈ N.
We shall show that y(i) = z(i) for all i ∈ N.
From (2.4), we have

(2.5) |x(1)|p1 =

∣

∣

∣

∣

y(1) + z(1)

2

∣

∣

∣

∣

p1

=
1

2

(

|y(1)|p1 + |z(1)|p1
)

.

Since the mapping t → |t|p1 is strictly convex, it implies by (2.5) that y(1) = z(1).
Now assume that y(i) = z(i) for all i = 1, 2, 3, ..., k−1. Then y(i) = z(i) = x(i)

for all i = 1, 2, 3, . . . , k − 1. From (2.4), we have

(

1

k

k
∑

i=1

∣

∣

∣

y(i) + z(i)

2

∣

∣

∣

)pk

=

(

1

k

∑k

i=1 |y(i)|+
1

k

∑k

i=1 |z(i)|

2

)pk

=
1

2

(

1

k

k
∑

i=1

|y(i)|

)pk

+
1

2

(

1

k

k
∑

i=1

|z(i)|

)pk

(2.6)

By convexity of the mapping t → |t|pk , it implies that 1
k

∑k

i=1 |y(i)| =
1

k

∑k

i=1 |z(i)|.
Since y(i) = z(i) for all i = 1, 2, 3, . . . , k − 1, we get that

(2.7) |y(k)| = |z(k)| .

If y(k) = 0, then we have z(k) = y(k) = 0. Suppose that y(k) 6= 0. Then
z(k) 6= 0. If y(k)z(k) < 0, it follows from (2.7) that y(k) + z(k) = 0. This implies
by (2.6) and (2.7) that

(

1

k

k−1
∑

i=1

|x(i)|

)pk

=

(

1

k

(

k−1
∑

i=1

|x(i)| + |y(k)|

))pk

,

which is a contradiction. Thus, we have y(k)z(k) > 0. This implies by (2.5) that
y(k) = z(k). Thus, we have by induction that y(i) = z(i) for all i ∈ N, so y = z.

�

Bor-Luh Lin, Pei-Kee Lin and S. L. Troyanski proved (cf. Theorem iii [11]) that
element x in a bounded closed convex set K of a Banach space is a denting point
of K iff x is an H-point of K and x is an extreme point of K. Combining this
result with our results (Theorem 2.6 and Theorem 2.7), we obtain the following
result.
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Corollary 2.8. The space ces (p) has the property (G).

For 1 < r < ∞, let p = (pk) with pk = r for all k ∈ N. We have that
ces r = ces (p), so the following results are obtained directly from Theorem 2.6,
Theorem 2.7 and Corollary 2.8, respectively.

Corollary 2.9. For 1 < r < ∞, the Cesàro sequence space ces r has the property

(H).

Corollary 2.10. For 1 < r < ∞, the Cesàro sequence space ces r is rotund.

Corollary 2.11. For 1 < r < ∞, the Cesàro sequence space ces r has the property

(G).

Acknowledgements. The author would like to thank the Thailand Research
Fund for the financial support.
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