
Archivum Mathematicum

Pratulananda Das; Md. Mamun Ar Rashid
g∗-closed sets and a new separation axiom in Alexandroff spaces

Archivum Mathematicum, Vol. 39 (2003), No. 4, 299--307

Persistent URL: http://dml.cz/dmlcz/107878

Terms of use:
© Masaryk University, 2003

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/107878
http://project.dml.cz


ARCHIVUM MATHEMATICUM (BRNO)

Tomus 39 (2003), 299 – 307

g∗g∗g∗-CLOSED SETS AND A NEW SEPARATION AXIOM IN

ALEXANDROFF SPACES

PRATULANANDA DAS AND MD. MAMUN AR. RASHID

Abstract. In this paper we introduce the concept of g∗-closed sets and in-
vestigate some of its properties in the spaces considered by A. D. Alexandroff
[1] where only countable unions of open sets are required to be open. We also
introduce a new separation axiom called Tw-axiom in the Alexandroff spaces
with the help of g∗-closed sets and investigate some of its consequences.

1. Introduction

The notion of a topological space can be generalized by requiring only countable
unions of open sets to be open (A. D. Alexandroff [1]).

In this paper, starting with an equivalent form of generalised closed sets of
Levine [10] as the definition, we obtain, a generalization of closed sets in the
Alexandroff spaces [1] which we call g∗-closed sets. We investigate various prop-
erties of these sets in Section 3 which shows that g∗-closed sets do not always
behave like generalized closed sets. In some of these cases we try to find out the
conditions under which their behaviour appear to be same.

Finally in section 5, we use g∗-closed sets to obtain a new separation ax-
iom in the Alexandroff spaces, namely Tw-axiom, which is defined in the same
way as Levine defined T1/2-axiom in topological spaces [10] and compare it with
T1/2-axiom (see Note 5). Where needed, results are always substantiated by ex-
amples.

2. Preliminaries

Definition 1 ([1]). An Alexandroff space (or σ-space, briefly space) is a set X
together with a system F of subsets satisfying the following axioms

(i) the intersection of a countable number of sets from F is a set in F .
(ii) The union of a finite number of sets from F is a set in F .
(iii) φ and X are in F .
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Members of F are called closed sets. Their complementary sets are called open
sets. It is clear that instead of closed sets in the definition of an Alexandroff space,
one may put open sets with subject to the conditions of countable summability,
finite intersectability and the condition that X and φ should be open. The col-
lection of all such open sets will sometimes be denoted by τ and the Alexandroff
space by (X, τ). When there is no confusion, (X, τ) will simply be denoted by X .

Note 1. In general τ is not a topology as can be easily seen by taking X = R
and τ as the collection of all Fσ sets in R.

Throughout the paper by a space we shall always mean an Alexandroff space.

Definition 2 ([1]). With every M ⊂ X we associate its closure M , the intersection
of all closed sets containing M .

Note that M is not necessarily closed.

Definition 3 ([1]). A space (X, τ) is said to be bicompact if every open cover of
it has a finite subcover.

Definition 4 ([8]). Two sets A, B in X are said to be weakly separated if there
are two open sets U , V such that A ⊂ U , B ⊂ V and A ∩ V = B ∩ U = φ.

Definition 5 ([1]). (X, τ) is said to be a T0 space if for any two distinct points x,
y in X , there exists an open set U which contains one of them but not the other.

Definition 6 ([1]). (X, τ) is said to be a T1 space if for any two distinct points
x, y in X , there exist open sets U , V such that x ∈ U , y /∈ U , y ∈ V and x /∈ V .

Definition 7 ([5]). (X, τ) is called a regular space if for any x ∈ X and any
closed set F such that x /∈ F , there exist U , V ∈ τ such that x ∈ U , F ⊂ V and
U ∩ V = φ.

Definition 8 ([10]). A set A in a topological space is said to be generalized closed
(g-closed for short) if and only if A ⊂ U whenever A ⊂ U and U is open.

We shall also make use of the following theorems

Theorem 1 ([5]). (X, τ) is regular if and only if for any x ∈ X and any open set

U containing x, there is an open set V and a closed set F such that

x ∈ V ⊂ F ⊂ U .

Theorem 2. (X, τ) is T0 if and only if x 6= y in X implies {x} 6= {y}.
Throughout X stands for a space and unless otherwise stated, sets are always

subsets of X . The letters R and Q stand respectively for the set of real numbers
and the set of rational numbers.

3. g∗-closed sets in a space

Definition 9 (cf. Definition 2.1 [10]). A set A is said to be a g∗-closed set if and
only if there is a closed set F containing A such that F ⊂ U whenever A ⊂ U and
U is open.
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Remark 1. Every closed set is g∗-closed but the converse is not true as shown
by the following example.

Example 1. Let X = R−Q and τ = {X, φ, Gi} where Gi runs over all countable
subsets of R−Q. Then (X, τ) is a space but not a topological space. Let B be the
set of all irrational numbers in (0,∞). Then B is not closed but B is g∗-closed,
since X is the only open and closed set containing B.

Theorem 3 (cf. Theorem 2.2 [10]). A set A is g∗-closed if and only if there is a

closed set F containing A such that F − A does not contain any non-void closed

set.

Proof. Let A be g∗-closed. Then there is a closed set F containing A such that
F ⊂ U whenever A ⊂ U and U is open. Assume F1 ⊂ F − A and F1 is closed.
Since F c

1 is open and A ⊂ F c
1 where c denotes the complement operator, it follows

that F ⊂ F c
1 i.e. F1 ⊂ F c and so F1 ⊂ F ∩ F c = φ. Hence the condition is

necessary.
Conversely suppose that the given condition is satisfied. Let A ⊂ U and U

be open. If F 6⊂ U , then F ∩ U c is a non-void closed set contained in F − A, a
contradiction. So A is g∗-closed.

Corollary 1. A g∗-closed set A is closed if and only if both A and A − A are

closed.

Proof. If A is both closed and g∗-closed then evidently A = A and A − A = φ
are closed.

Conversely let A be a g∗-closed set such that both A and A − A are closed.
Since A is g∗-closed, by Theorem 3 there is a closed set F containing A such that
F − A does not contain any non-void closed set. Now since A − A is closed and
A − A ⊂ F − A, A − A = φ i.e. A = A and so A is closed.

Theorem 4. A set A is g∗-closed if and only if there is a closed set F containing

A such that F ⊂ ker(A) =
⋂{U ; U is open and U ⊃ A}.

The proof is omitted.

Theorem 5. Union of two g∗-closed sets is g∗-closed.

The proof is omitted.

Note 2. Intersection of two g∗-closed sets is not necessarily g∗-closed as can be
seen from Example 2.5 [10].

Theorem 6. If A is g∗-closed and A ⊂ B ⊂ A, then B is g∗-closed.

Proof. Let B ⊂ U and U is open. Then A ⊂ U . Since A is g∗-closed, there is a
closed set F containing A such that F ⊂ U . Now F ⊃ A ⊃ B and this shows that
B is also g∗-closed.

The following theorem is an improvement of Theorem 2.6 [10].

Theorem 7. Let B ⊂ A where A is open and g∗-closed. Then B is g∗-closed
relative to A if and only if B is g∗-closed.
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Proof. Since A is g∗-closed, there is a closed set F containing A such that F ⊂ U
whenever A ⊂ U . Now since A ⊂ A and A is open, F ⊂ A, i.e. A = F and so A
is closed.

Now let B be g∗-closed. Then there is a closed set F1 witnessing the g∗-closeness
of B. Now since A is open and B ⊂ A, F1 ⊂ A. Also if B ⊂ U ′, U ′ is open in A,
then U ′ is open in X and so F1 ⊂ U ′. This shows that B is g∗-closed in A.

Conversely let B be g∗-closed in A. Then there is a closed set F2 in A witnessing
the g∗-closeness of B in A. Since A is closed, F2 is closed in X . Further if B ⊂ U1,
U1 open in X , then B ⊂ U1∩A where U1∩A is open in A and so F2 ⊂ U1∩A ⊂ U1.
This completes the proof of the theorem.

Note 3. An open g∗-closed set is closed.

Corollary 2. Let A be g∗-closed and open. Then A ∩ B is g∗-closed if B is

g∗-closed.

Theorem 8. If every subset of X is g∗-closed then τ = c(τ) where c(τ) is the

collection of all closed sets in (X, τ).

The proof follows from Note 3.

Remark 2. The converse of Theorem 8 is true for g-closed sets (recall Definition
8) in a topological space as shown by Theorem 2.10 in [10]. But this may not be
true for g∗-closed set as shown by:

Example 2. Let X = R − Q and τ = {X, φ, Gi, Ai} where Gi and Ai runs over
all countable and co-countable subsets of X respectively. Then (X, τ) is a space
but not a topological space where τ = c(τ). But the set B (say) of all irrational
numbers in (0,∞) is clearly not closed and so is not g∗-closed since ker(B) = B.

However we have the following theorem.

Theorem 9. In a space (X, τ) with τ = c(τ), every subset of X is g∗-closed if

and only if X is a topological space.

Proof. If X is a topological space, then the proof is evident in view of Remark 2.
Conversely let every subset of X be g∗-closed. Let {Fi} be an arbitrary collec-

tion of closed sets and F = ∩Fi. Now by the given condition F is g∗-closed. Then
there is a closed set F ′ containing F such that F ′ ⊂ ker(F ) (by Theorem 4). Now
since each Fi ∈ c(τ) = τ and F ⊂ Fi, F ′ ⊂ ker(F ) ⊂ ⋂

Fi = F , i.e. F = F ′ and
so F is closed. This shows that X is a topological space.

Remark 3. Levine showed that in a compact topological space, g-closed sets are
compact (Theorem 3.1 [10]). But this is not true for g∗-closed sets in a space as
shown by:

Example 3. Let X = R−Q and τ = {X, φ, Gi} where Gi runs over all countable

subsets of X − {
√

2}. Then (X, τ) is a space but not a topological space. X is
clearly bicompact. Take B = the set of all irrational numbers in (0, 1). Then B is
g∗-closed, since X is the only open set containing B. But B is not bicompact.
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Remark 4. Levine also showed that in a regular topological space compact sets
are g-closed (Theorem 3.5 [10]). But in a regular space bicompact sets are not
necessarily g∗-closed as shown by:

Example 4. Let X = R − Q and τ = {φ, X, Gi, Ai} where Gi runs over all

countable subsets of X−{
√

2} and Ai runs over all cofinite subsets of X containing√
2. Then (X, τ) is a space but not a topological space. We first show that X is

regular. Let α ∈ X and F be a closed set such that α /∈ F . If α 6=
√

2, then {α}
and X − {α} are the two disjoint open sets containing α and F respectively. If

α =
√

2, then F must be of the form X − Ai = {α1, α2, . . . , αn} (say), αk 6=
√

2,
for k = 1 to n. Clearly then F and V = X − F are the two disjoint open sets
containing F and α respectively. This shows that X is regular.

Now let B be the set of all irrational numbers in (1, 2). Since
√

2 ∈ B, B is
bicompact. Clearly B is not closed. Then B is not g∗-closed, since here ker(B) ⊂⋂{X − {ν}ν /∈ B} = B.

However the following theorem shows that the result of Remark 4 holds in a
space under some additional supposition.

The following definition will be needed in Theorem 10.

Definition 10. A set A is called g∗-open if and only if Ac is g∗-closed.

Theorem 10. In a regular space X, bicompact subsets are g∗-closed if and only

if arbitrary union of open sets whose complement is the closure of a bicompact set

is g∗-open.

Proof. First let every bicompact subset of X be g∗-closed. Let {Ui} be an arbi-
trary collection of open sets and U =

⋃
Ui be such that X − U = A (say) where

A is a bicompact set. Now by our hypothesis A is g∗-closed in X and so is then A
(by Theorem 6). Hence U is g∗-open and the condition is necessary.

Conversely let the given condition hold. Let A be bicompact. Let A ⊂ U where
U is open. Let x ∈ A. Then x ∈ U . Since X is regular, by Theorem 1, there is an
open set Vx and a closed set Fx such that

x ∈ Vx ⊂ Fx ⊂ U .

Now {Vx; x ∈ A} form an open cover of A. Since A is bicompact, there are finite
number of points x1, . . . , xn ∈ A such that

A ⊂
n⋃

i=1

Vxi
⊂

n⋃

i=1

Fxi
⊂ U

and so A ⊂ A ⊂
n⋃

i=1

Fxi
⊂ U . Now X−A =

⋃
{X−F ; F is a closed set containing

A} whose complement A is the closure of a bicompact set A. Then by the given
condition X − A is g∗-open and so A is g∗-closed. Hence there is a closed set F
witnessing the g∗-closeness of A. Now clearly A ⊂ A ⊂ F ⊂ U . Since this is true
for all open sets U containing A, A is g∗-closed.
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Remark 5. The following example shows that the condition of Theorem 10 is
strictly weaker than the requirement of (X, τ) to be a topological space.

Example 5. Let X = R−Q and τ = {φ, X, Gi, Ai} where Gi and Ai respectively
runs over all countable and cofinite subsets of X . Then X is a space but not a
topological space where for any set A, A = A and a set is bicompact only if it is
finite. Hence the union of an arbitrary number of open sets whose complement is
the closure of a bicompact set must be a cofinite set which is open and so g∗-open.

We shall make use of the following theorem in Section 5.

Theorem 11. For each x ∈ X, {x} is closed or its complement {x}c is g∗-closed.

The proof is straight forward and so is omitted.

4. g∗-open sets in a space

Theorem 12 (cf. Theorem 4.2 [10]). A set A is g∗-open if and only if there is an

open set U contained in A such that F ⊂ U whenever F is closed and F ⊂ A.

The proof is omitted.

Theorem 13 (cf. Theorem 4.5 [10]). A is g∗-open if and only if there is an open

set V ⊂ A such that V ∪ Ac ⊂ U and U is open implies U = X.

Proof. First suppose that A is g∗-open. Then there is an open set V ⊂ A satis-
fying the properties of Theorem 12. Now let U be open and V ∪ Ac ⊂ U . Then
U c ⊂ V c ∩ A. Since U c is closed and U c ⊂ A, U c ⊂ V . Hence U c ⊂ V ∩ V c = φ,
i.e. U = X .

Conversely let there be an open set V ⊂ A such that V ∪Ac ⊂ U and U is open
implies U = X . Let F be a closed set contained in A. Now V ∪Ac ⊂ V ∪F c which
is clearly open and so by the given condition V ∪ F c = X which implies F ⊂ V .
This proves the theorem.

Theorem 14 (cf. Theorem 4.9 [10]). If A is closed then A is g∗-closed if and only

if A − A is g∗-open.

The proof of the theorem is parallel to Theorem 4.9 [10] and so is omitted.

Note 4. The requirement that A be closed in the preceeding theorem is essential
as can be seen by taking A = {

√
2} in the space of Example 1.

Theorem 15. Union of two weakly separated g∗-open sets is g∗-open.

Proof. Let A1 and A2 be two weakly separated g∗-open sets. Since A1 and A2

are weakly separated, there are open sets U1, U2 such that

A1 ⊂ U1 , A2 ⊂ U2 , U1 ∩ A2 = U2 ∩ A1 = φ .

Let Fi = U c
i for i = 1, 2. Then Fi are closed and A1 ⊂ F2, A2 ⊂ F1. Again since

A1, A2 are g∗-open there are open sets V1, V2 witnessing the g∗-openness of A1,
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A2 respectively. Clearly V1 ∪ V2 is open and V1 ∪ V2 ⊂ A1 ∪ A2. Let F ⊂ A1 ∪A2

and F be closed. Now

F = F ∩ (A1 ∪ A2) = (F ∩ A1) ∪ (F ∩ A2)

⊂ (F ∩ F2) ∪ (F ∩ F1)

where F ∩ Fi is closed for i = 1, 2. Further F ∩ F1 ⊂ (A1 ∪ A2) ∩ F1 ⊂ A2 and so
F ∩ F1 ⊂ V2. Similarly F ∩ F2 ⊂ V1 and hence F ⊂ V1 ∪ V2 and so by Theorem
12, A1 ∪ A2 is g∗-open.

5. Tw-spaces

Definition 11. A space X is called a Tw-space if and only if every g∗-closed set
is closed in X .

Note 5. Levine [10] defined a topological space to be a T1/2 space if and only
if every g-closed set is closed and showed that it is properly placed between T0

and T1 axioms (Corollary 5.6 [10]). But Tw-axiom in a space does not have this
property (see Example 6).

Theorem 16. Every Tw-space is T0.

Proof. If possible let (X, τ) be a Tw-space which is not T0. Then by Theorem 2,

there exist x, y ∈ X such that x 6= y but {x} = {y}. Let A = {x}c. We first note

that {x} is not closed for otherwise {x} = {x} 6= {y}. Then by Theorem 11, A is

g∗-closed. But A is not closed for otherwise y ∈ {x}c = A implies {y} ⊂ {x}c and

so {x} 6= {y}, which is a contradiction. This shows that (X, τ) is T0.

Example 6. The space of Example 1 is T2 and so T1 and also T0 space. But it is
not Tw.

We now recall the following example.

Example 7 ([10]). Let X = {a, b} and let τ = {φ, X, {a}}. Then (X, τ) is a T1/2

topological space and so a Tw-space which is not T1.

Remark 6. Examples 6 and 7 show that the Tw and T1 axioms in a space are
independent of each other.

Remark 7. Dunham [6] showed that for a topological space Y the following are
equivalent.

a) Y is T1/2.
b) For each x ∈ Y , {x} is either open or closed.
c) Every subset of Y is the intersection of all open sets and all closed sets

containing it.

But for a space to be Tw, though the conditions (b), (c) are necessary, they are
not sufficient as can be seen from Example 1.

Next we find some necessary sufficient conditions for a space to be Tw. For this
we introduce the following definition.



306 P. DAS AND MD. M. AR. RASHID

Definition 12 (cf. Definition 3.2 [7]). For any E ⊂ X , let E∗ = ∩{A; E ⊂ A and
A is g∗-closed in X}. E∗ is called the g∗-closure of the set E.

Now we have the following theorems.

Theorem 17. A space X is Tw if and only if

a) for each x ∈ X, {x} is either open or closed and

b) C = C∗ where

C = {A; (X − A) is closed} and

C∗ = {A; (X − A)∗ is g∗-closed}.
Proof. First let X be a Tw-space.

a) Let x ∈ X . If {x} is not closed then by Theorem 11, {x}c is g∗-closed and
so is closed. Therefore {x} is open.

b) A ∈ C ⇒ (X − A) is closed ⇒ (X − A) is g∗-closed ⇒ (X − A)∗ = (X − A)
is g∗-closed (since X is Tw) ⇒ A ∈ C∗.

Similarly we can show that A ∈ C∗ ⇒ A ∈ C. Hence C = C∗.
Conversely let the conditions (a) and (b) hold. Let A be any g∗-closed set in X .

Then A
∗

= A is g∗-closed and so Ac ∈ C∗. Since by (b) C∗ = C, Ac ∈ C i.e. A is
closed. We shall show that A = A. If not, then there exists a x ∈ A− A. Since A
is g∗-closed, by Theorem 3, {x} can not be closed. Then by (a), {x} is open and
so {x}c is closed. But x /∈ A implies A ⊂ {x}c which again implies A ⊂ {x}c, a
contradiction. Therefore A = A i.e. A is closed and this proves the theorem.

Theorem 18. A space X is Tw if and only if

a) every subset of X is the intersection of all open sets and all closed sets

containing it.

b) C = C∗ where C and C∗ are as in Theorem 17.

The proof follows from Theorem 17 in view of the fact that the conditions (a)
in Theorems 17 and 18 are equivalent (Corollary 2.6 [6]).

Definition 13. A space X is called a door space if and only if each subset of X
is either open or closed.

Theorem 19. A door space X is Tw.

The proof is omitted.

Definition 14 (cf. Definition 8.1 [10]). A space X is called symmetric if and only

if for any x, y ∈ X , x ∈ {y} ⇒ y ∈ {x}.
Remark 8. As in [10] it can be shown that a T1-space is symmetric though the
converse is not true. But while in a symmetric topological space, T0, T1 and
T1/2 axioms are equivalent, in a symmetric space though T0 and T1 axioms are
equivalent but a symmetric T1 space may not be Tw as can be seen from Example
1.

Remark 9. Levine showed that a topological space is symmetric if and only if
{x} is g-closed for each x in X (Theorem 8.2 [10]). But Example 1 shows that a
space may be symmetric without any of {x} being g∗-closed.
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So we introduce the following definition.

Definition 15. A space X is called strongly symmetric if {x} is g∗-closed for each
x in X .

Theorem 20. A strongly symmetric space is symmetric.

Proof. Let x ∈ {y} but y /∈ {x}. Then there is a closed set F containing x such
that y /∈ F . Now since {y} is g∗-closed and {y} ⊂ F c which is open, then there is
a closed set F ′ such that y ∈ F ′ ⊂ F c which implies

x ∈ {y} ⊂ F ′ ⊂ F c

which is a contradiction. This proves the theorem.

Corollary 3. In a strongly symmetric space, Tw axiom implies T1 axiom.

The result follows from Theorems 16 and 20 and Remark 8.
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