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AN EXTENSION OF THE METHOD

OF QUASILINEARIZATION

TADEUSZ JANKOWSKIAbstra
t. The method of quasilinearization is a well–known technique for ob-
taining approximate solutions of nonlinear differential equations. This method has
recently been generalized and extended using less restrictive assumptions so as to
apply to a larger class of differential equations. In this paper, we use this technique
to nonlinear differential problems.

1. Introduction

Let y0, z0 ∈ C1(J, IR) with y0(t) ≤ z0(t) on J and define the following sets

Ω̄ = {(t, u) : y0(t) ≤ u ≤ z0(t) , t ∈ J} ,

Ω = {(t, u, v) : y0(t) ≤ u ≤ z0(t) , y0(t) ≤ v ≤ z0(t) , t ∈ J} .

In this paper, we consider the following initial value problem

(1) x′(t) = f(t, x(t)) , t ∈ J = [0, b], x(0) = k0 ,

where f ∈ C(Ω̄, IR), k0 ∈ IR are given. If we replace f by the sum [f = g1 + g2] of
convex and concave functions, then corresponding monotone sequences converge
quadratically to the unique solution of problem (1) ( see [6,8]). In this paper we
will generalize this result. Assume that f has the splitting f(t, x) = F (t, x, x),
where F ∈ C(Ω, IR). Then problem (1) takes the form

(2) x′(t) = F (t, x(t), x(t)) , t ∈ J , x(0) = k0 .
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2. Main results

A function v ∈ C1(J, IR) is said to be a lower solution of problem (2) if

v′(t) ≤ F (t, v(t), v(t)) , t ∈ J , v(0) ≤ k0 ,

and an upper solution of (2) if the inequalities are reversed.

Theorem 1. Assume that:

1◦ y0, z0 ∈ C1(J, IR) are lower and upper solutions of problem (2), respectively,
such that y0(t) ≤ z0(t) on J,

2◦ F , Fx, Fy, Fxx, Fxy, Fyx, Fyy ∈ C(Ω, IR) and

Fxx(t, x, y) ≥ 0 , Fxy(t, x, y) ≤ 0 , Fyy(t, x, y) ≤ 0 for (t, x, y) ∈ Ω .

Then there exist monotone sequences {yn}, {zn} which converge uniformly to
the unique solution x of (2) on J, and the convergence is quadratic.

Proof. The above assumptions guarantee that (2) has exactly one solution on Ω.
Observe that 2◦ implies that Fx is nondecreasing in the second variable, Fx is

nonincreasing in the third variable and Fy is nonincreasing in the last two variables.
Denote this property by (A).
Let us construct the elements of sequences {yn}, {zn} by

y′

n+1(t) = F (t, yn, yn) + [Fx(t, yn, zn) + Fy(t, zn, zn)][yn+1(t)− yn(t)] ,

yn+1(0) = k0 ,

z′n+1(t) = F (t, zn, zn) + [Fx(t, yn, zn) + Fy(t, zn, zn)][zn+1(t)− zn(t)] ,

zn+1(0) = k0

for n = 0, 1, · · · . Note that the above sequences are well defined.
Indeed, y0(t) ≤ z0(t) on J, by 1◦. We shall show that

(3) y0(t) ≤ y1(t) ≤ z1(t) ≤ z0(t) on J .

Put p = y0 − y1 on J . Then

p′(t) ≤ F (t, y0, y0)− F (t, y0, y0)− [Fx(t, y0, z0) + Fy(t, z0, z0)][y1(t)− y0(t)]

= [Fx(t, y0, z0) + Fy(t, z0, z0)]p(t) .

Hence p(t) ≤ 0 on J , since p(0) ≤ 0, showing that y0(t) ≤ y1(t) on J . Note that
if we put p = z1 − z0 on J , then

p′(t) ≤ F (t, z0, z0) + [Fx(t, y0, z0) + Fy(t, z0, z0)][z1(t)− z0(t)]− F (t, z0, z0)

= [Fx(t, y0, z0) + Fy(t, z0, z0)]p(t) , and p(0) ≤ 0 ,
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so z1(t) ≤ z0(t) on J . Next, we let p = y1 − z1 on J , so p(0) = 0. By the mean
value theorem and property (A), we have

p′(t) = F (t, y0, y0)− F (t, z0, y0) + F (t, z0, y0)− F (t, z0, z0)

+ [Fx(t, y0, z0) + Fy(t, z0, z0)][y1(t)− y0(t)− z1(t) + z0(t)]

= [Fx(t, ξ, y0) + Fy(t, z0, σ)][y0(t)− z0(t)]

+ [Fx(t, y0, z0) + Fy(t, z0, z0)][y1(t)− y0(t)− z1(t) + z0(t)]

≤ [Fx(t, y0, z0)− Fx(t, y0, y0)][z0(t)− y0(t)]

+ [Fx(t, y0, z0) + Fy(t, z0, z0)]p(t)

≤ [Fx(t, y0, z0) + Fy(t, z0, z0)]p(t) ,

where y0(t) < ξ(t), σ(t) < z0(t) on J . As the result we get p(t) ≤ 0 on J , so
y1(y) ≤ z1(t) on J . It proves that (3) holds.
Now we prove that y1, z1 are lower and upper solutions of (2), respectively. The

mean value theorem and property (A) yield

y′

1(t) = F (t, y0, y0)− F (t, y1, y0) + F (t, y1, y0)− F (t, y1, y1) + F (t, y1, y1)

+ [Fx(t, y0, z0) + Fy(t, z0, z0)][y1(t)− y0(t)]

= [Fx(t, ξ1, y0) + Fy(t, y1, σ1)][y0(t)− y1(t)] + F (t, y1, y1)

+ [Fx(t, y0, z0) + Fy(t, z0, z0)][y1(t)− y0(t)]

≤ [Fx(t, y0, z0)− Fx(t, y0, y0) + Fy(t, z0, z0)− Fy(t, y1, y1)][y1(t)− y0(t)]

+ F (t, y1, y1) ≤ F (t, y1, y1) ,

where y0(t) < ξ1(t), σ1(t) < y1(t) on J . Similarly, we get

z′1(t) = F (t, z1, z1) + F (t, z0, z0)− F (t, z1, z0) + F (t, z1, z0)− F (t, z1, z1)

+ [Fx(t, y0, z0) + Fy(t, z0, z0)][z1(t)− z0(t)]

= F (t, z1, z1) + [Fx(t, ξ2, z0) + Fy(t, z1, σ2)][z0(t)− z1(t)]

+ [Fx(t, y0, z0) + Fy(t, z0, z0)][z1(t)− z0(t)]

≥ F (t, z1, z1) + [Fx(t, z1, z0)− Fx(t, y0, z0) + Fy(t, z1, z0)

− Fy(t, z0, z0)][z0(t)− z1(t)] ≥ F (t, z1, z1) ,

where z1(t) < ξ2(t), σ2(t) < z0(t) on J . The above proves that y1, z1 are lower
and upper solutions of (2).
Let us assume that

y0(t) ≤ y1(t) ≤ · · · ≤ yk−1(t) ≤ yk(t) ≤ zk(t) ≤ zk−1(t) ≤ · · · ≤ z1(t) ≤ z0(t) ,

t ∈ J ,

and let yk, zk be lower and upper solutions of problem (2) for some k ≥ 1. We
shall prove that:

(4) yk(t) ≤ yk+1(t) ≤ zk+1(t) ≤ zk(t) , t ∈ J .
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Let p = yk − yk+1 on J, so p(0) = 0. Using the mean value theorem, property
(A) and the fact that yk is a lower solution of problem (2), we obtain

p′(t) ≤ F (t, yk, yk)− F (t, yk, yk)− [Fx(t, yk, zk) + Fy(t, zk, zk)][yk+1(t)− yk(t)]

= [Fx(t, yk, zk) + Fy(t, zk, zk)]p(t) .

Hence p(t) ≤ 0, so yk(t) ≤ yk+1(t) on J . Similarly, we can show that zk+1(t) ≤
zk(t) on J .

Now, if p = yk+1 − zk+1 on J , then

p′(t) = F (t, yk, yk)− F (t, zk, yk) + F (t, zk, yk)− F (t, zk, zk)

+ [Fx(t, yk, zk) + Fy(t, zk, zk)][yk+1(t)− yk(t)− zk+1(t) + zk(t)]

= [Fx(t, ξ̄, yk) + Fy(t, zk, σ̄)][yk(t)− zk(t)]

+ [Fx(t, yk, zk) + Fy(t, zk, zk)][yk+1(t)− yk(t)− zk+1(t) + zk(t)]

≤ [Fx(t, yk, zk)− Fx(t, yk, yk)][zk(t)− yk(t)]

+ [Fx(t, yk, zk) + Fy(t, zk, zk)]p(t)

≤ [Fx(t, yk, zk) + Fy(t, zk, zk)]p(t)

with yk(t) < ξ̄(t), σ̄(t) < zk(t). It proves that yk+1(t) ≤ zk+1(t) on J , so relation
(4) holds.

Hence, by induction, we have

y0(t) ≤ y1(t) ≤ · · · ≤ yn(t) ≤ zn(t) ≤ · · · ≤ z1(t) ≤ z0(t) , t ∈ J ,

for all n. Employing standard techniques [5], it can be shown that the sequences
{yn}, {zn} converge uniformly and monotonically to the unique solution x of
problem (2).
We shall next show the convergence of yn, zn to the unique solution x of problem

(2) is quadratic. For this purpose, we consider

pn+1 = x − yn+1 ≥ 0 , qn+1 = zn+1 − x ≥ 0 on J ,

and note that pn+1(0) = qn+1(0) = 0 for n ≥ 0. Using the mean value theorem
and property (A), we get

p′n+1(t) = F (t, x, x)− F (t, yn, x) + F (t, yn, x)− F (t, yn, yn)

− [Fx(t, yn, zn) + Fy(t, zn, zn)][yn+1(t)− x(t) + x(t)− yn(t)]

= [Fx(t, ξ̄1, x) + Fy(t, yn, σ̄1)]pn(t)

+ [Fx(t, yn, zn) + Fy(t, zn, zn)][pn+1(t)−pn(t)]

≤ [Fx(t, x, x)− Fx(t, yn, x) + Fx(t, yn, x)− Fx(t, yn, zn)

+ Fy(t, yn, yn)− Fy(t, zn, yn) + Fy(t, zn, yn)− Fy(t, zn, zn)]pn(t)

+ [Fx(t, yn, zn) + Fy(t, zn, zn)]pn+1(t)

= {Fxx(t, ξ̄2, x)pn(t)− Fxy(t, yn, σ̄2)qn(t)− Fyx(t, ξ̄3, yn)[zn(t)− yn(t)]

− Fyy(t, zn, σ̄3)[zn(t)− yn(t)]}pn(t)

+ [Fx(t, yn, zn) + Fy(t, zn, zn)]pn+1(t) ,
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where yn(t) < ξ̄1(t), ξ̄2(t), σ̄1(t) < x(t), x(t) < σ̄2(t) < zn(t), yn(t) < ξ̄3(t),
σ̄3(t) < zn(t) on J . Thus we obtain

p′n+1(t) ≤ {A1pn(t) +A2qn(t) + [A2 +A3][qn(t) + pn(t)]}pn(t) +Mpn+1(t)

≤ Mpn+1(t) +B1p
2
n(t) +B2q

2
n(t) ,

where

|Fxx(t, u, v)| ≤ A1 , |Fxy(t, u, v)| ≤ A2 , |Fyy(t, u, v)| ≤ A3 , |Fx(t, u, v)| ≤ M1 ,

|Fy(t, u, v)| ≤ M2 on Ω withM =M1 +M2 , B1 = A1 + 2A2 +
3

2
A3 ,

B2 = A2 +
1

2
A3 .

Now, the differential inequality implies

0 ≤ pn+1(t) ≤

∫ t

0

[B1p
2
n(s) +B2q

2
n(s)] exp[M(t − s)] ds .

This yields the following relation

max
t∈J

|x(t) − yn+1(t)| ≤ a1max
t∈J

|x(t)− yn(t)|
2 + a2max

t∈J
|x(t)− zn(t)|

2 ,

where ai = BiS, i = 1, 2 with

S =

{

b if M = 0 ,
1

M
[exp(Mb)− 1] if M > 0 .

Similarly, we find that

q′n+1(t) = F (t, zn, zn)− F (t, x, zn) + F (t, x, zn)− F (t, x, x)

+ [Fx(t, yn, zn) + Fy(t, zn, zn)][zn+1(t)− x(t) + x(t)− zn(t)]

= [Fx(t, ξ̄4, zn) + Fy(t, x, σ̄4)]qn(t)

+ [Fx(t, yn, zn) + Fy(t, zn, zn)][qn+1(t)−qn(t)]

≤ [Fx(t, zn, zn)− Fx(t, yn, zn) + Fy(t, x, x) − Fy(t, zn, x)

+ Fy(t, zn, x)− Fy(t, zn, zn)]qn(t) + [Fx(t, yn, zn) + Fy(t, zn, zn)]qn+1(t)

= {Fxx(t, ξ̄5, zn)[zn(t)− yn(t)]

− Fyx(t, ξ̄6, x)qn(t)− Fyy(t, zn, σ̄5)qn(t)}qn(t)

+ [Fx(t, yn, zn) + Fy(t, zn, zn)]qn+1(t) ,

where x(t) < ξ̄4(t), ξ̄6(t), σ̄4(t), σ̄5(t) < zn(t), yn(t) < ξ̄5(t) < zn(t) on J . Hence,
we get

q′n+1(t) ≤ {A1[qn(t) + pn(t)] +A2qn(t) +A3qn(t)}qn(t) +Mqn+1(t) ,

≤ Mqn+1(t) + B̄1p
2
n(t) + B̄2q

2
n(t) ,
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where

B̄1 =
1

2
A1 , B̄2 =

3

2
A1 +A2 +A3 .

Now, the last differential inequality implies

qn+1(t) ≤ [B̄1max
s∈J

p2n(s) + B̄2max
s∈J

q2n(s)]S , t ∈ J

or
max
t∈J

|x(t)− zn+1(t)| ≤ ā1max
t∈J

|x(t)− yn(t)|
2 + ā2max

t∈J
|x(t) − zn(t)|

2

with āi = B̄iS, i = 1, 2.

The proof is complete. �

Remark 1. Let f = h+ g, and h, hx, hxx, g, gx, gxx ∈ C(Ω1, IR) for Ω1 = {(t, u) :
t ∈ J, y0(t) ≤ u ≤ z0(t)}. Put F (t, x, y) = h(t, x) + g(t, y). Indeed, F (t, x, x) =
f(t, x) and Fxx(t, x, y) = hxx(t, x), Fxy(t, x, y) = Fyx(t, x, y) = 0, Fyy(t, x, y) =
gyy(t, y). In this case Theorem 1 reduces to Theorem 1.3.1 of [8].

Remark 2. Let f, h, g be as in Remark 1 and moreover let Φ,Φx,Φxx,Ψ,Ψx,
Ψxx ∈ C(Ω1, IR). Put F (t, x, y) = H(t, x) + G(t, y) − Φ(t, y) − Ψ(t, x) for H =
h + Φ, G = g + Ψ. Indeed, F (t, x, x) = f(t, x) and Fxx(t, x, y) = Hxx(t, x) −
Ψxx(t, x), Fxy(t, x, y) = Fyx(t, x, y) = 0, Fyy(t, x, y) = Gyy(t, y) − Φyy(t, y). If
assumptions of Theorem 1.4.3[8] hold (Hxx ≥ 0, Ψxx ≤ 0, Gyy ≤ 0, Φyy ≥ 0)
then Theorem 1 is satisfied ( see also a result of [6] for g = Ψ = 0, Φ(t, x) =
Mx2, M > 0).

Theorem 2. Assume that

(i) condition 1◦ of Theorem 1 holds,

(ii) F, Fx, Fy, Fxx, Fxy, Fyx, Fyy ∈ C(Ω, IR) and

Fxx(t, x, y) ≥ 0 , Fxy(t, x, y) ≥ 0 , Fyy(t, x, y) ≤ 0 for (t, x, y) ∈ Ω .

Then the conclusion of Theorem 1 remains valid.

Proof. Note that, in view of (ii), Fx is nondecreasing in the last two variables,
Fy is nondecreasing in the second variable, and Fy is nonincreasing in the third
one. Denote this property by (B).
We construct the monotone sequences {yn}, {zn} by formulas:

y′

n+1(t) = F (t, yn, yn) + [Fx(t, yn, yn) + Fy(t, yn, zn)][yn+1(t)− yn(t)] ,

yn+1(0) = k0 ,

z′n+1(t) = F (t, zn, zn) + [Fx(t, yn, yn) + Fy(t, yn, zn)][zn+1(t)− zn(t)] ,

zn+1(0) = k0

for n = 0, 1, . . . .
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Let p = y0 − y1 on J . Then

p′(t) ≤ F (t, y0, y0)− F (t, y0, y0)− [Fx(t, y0, y0) + Fy(t, y0, z0)][y1(t)− y0(t)]

= [Fx(t, y0, y0) + Fy(t, y0, z0)]p(t) , and p(0) ≤ 0 .

Hence p(t) ≤ 0 on J , showing that y0(t) ≤ y1(t) on J . Similarly, we can show that
z1(t) ≤ z0(t) on J . If we now put p = y1 − z1 on J, then the mean value theorem
and property (B), we have

p′(t) = F (t, y0, y0)− F (t, z0, y0) + F (t, z0, y0)− F (t, z0, z0)

+ [Fx(t, y0, y0) + Fy(t, y0, z0)][y1(t)− y0(t)− z1(t) + z0(t)]

= [Fx(t, ξ, y0) + Fy(t, z0, σ)][y0(t)− z0(t)]

+ [Fx(t, y0, y0) + Fy(t, y0, z0)][p(t)− z1(t) + z0(t)]

≤ [Fy(t, y0, z0)− Fy(t, z0, z0)][z0(t)− y0(t)]

+ [Fx(t, y0, y0) + Fy(t, y0, z0)]p(t)

≤ [Fx(t, y0, y0) + Fy(t, y0, z0)]p(t) , p(0) = 0

with y0(t) < ξ(t), σ(t) < z0(t) on J . Hence y1(t) ≤ z1(t) on J , and as a result, we
obtain

y0(t) ≤ y1(t) ≤ z1(t) ≤ z0(t) on J .

Continuing this process successively, by induction, we get

y0(t) ≤ y1(t) ≤ · · · ≤ yn(t) ≤ zn(t) ≤ · · · ≤ z1(t) ≤ z0(t) , t ∈ J ,

for all n. Indeed, the sequences {yn}, {zn} converge uniformly and monotonically
to the unique solution x of problem (2). Now, we are in a position to show that
this convergence is quadratic.
Let

pn+1 = x − yn+1 ≥ 0 , qn+1 = zn+1 − x ≥ 0 on J .

Hence pn+1(0) = qn+1(0) = 0. The mean value theorem and property (B) yield

p′n+1(t) = F (t, x, x)− F (t, yn, x) + F (t, yn, x) − F (t, yn, yn)

− [Fx(t, yn, yn) + Fy(t, yn, zn)][yn+1(t)− x(t) + x(t) − yn(t)]

= [Fx(t, ξ1, x) + Fy(t, yn, σ1)]pn(t)

+ [Fx(t, yn, yn) + Fy(t, yn, zn)][pn+1(t)−pn(t)]

≤ [Fx(t, x, x) − Fx(t, yn, x) + Fx(t, yn, x)− Fx(t, yn, yn)

+ Fy(t, yn, yn)− Fy(t, yn, zn)]pn(t)

+ [Fx(t, yn, yn) + Fy(t, yn, zn)]pn+1(t)

= {Fxx(t, ξ2, x)pn(t) + Fxy(t, yn, σ2)pn(t)

− Fyy(t, yn, σ3)[zn(t)− yn(t)]}pn(t)

+ [Fx(t, yn, yn) + Fy(t, yn, zn)]pn+1(t) ,
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where yn(t) < ξ1(t), ξ2(t), σ1(t), σ2(t) < x(t), yn(t) < σ3(t) < zn(t) on J . Thus
we obtain

p′n+1(t) ≤ {(A1 +A2)pn(t) +A3[qn(t) + pn(t)]}pn(t) +Mpn+1(t)

≤ Mpn+1(t) +D1p
2
n(t) +D2q

2
n(t) ,

where D1 = A1 +A2 +
3

2
A3, D2 =

1

2
A3. Hence, we get

0 ≤ pn+1(t) ≤

∫ t

0

[D1p
2
n(s) +D2q

2
n(s)] exp[M(t − s)] ds ,

and it yields the relation

max
t∈J

|x(t) − yn+1(t)| ≤ d1max
t∈J

|x(t)− yn(t)|
2 + d2max

t∈J
|x(t)− zn(t)|

2 ,

where di = DiS, i = 1, 2.
By the similar argument, we can show that

max
t∈J

|x(t) − zn+1(t)| ≤ d̄1max
t∈J

|x(t) − yn(t)|
2 + d̄2max

t∈J
|x(t)− zn(t)|

2 ,

with d̄i = D̄iS, i = 1, 2, for D̄1 =
1

2
A1 +A2, D̄2 =

3

2
A1 + 2A2 +A3.

This ends the proof. �
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