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ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF

NEUTRAL NONLINEAR DIFFERENTIAL EQUATIONS

JOZEF DŽURINA

In this paper we study asymptotic behavior of solutions of second order
neutral functional differential equation of the form

x(t) + px(t− τ)
′′

+ f(t, x(t)) = 0 .

We present conditions under which all nonoscillatory solutions are asymptotic to
at+ b as t→ ∞, with a, b ∈ R. The obtained results extend those that are known
for equation

u′′ + f(t, u) = 0 .

Introduction

We shall study the asymptotic behavior for t → ∞ of nonoscillatory solutions
of the following nonlinear neutral differential equation

(1)
(
x(t) + px(t− τ )

)′′
+ f(t, x(t)) = 0 .

Recently, the problem of establishing conditions for all nonoscillatory solutions of
nonlinear differential equation

u′′(t) + f(t, u) = 0

to behave like linear function at + b as t → ∞ has been of great interest. This
problem has been treated by Cohen [3] and Tong [8], who used Bihari’s inequality
to achieve their results. Efforts in this direction have been undertaken by Naito
[4] and Philos and Purnaros [5], who showed that solutions of

u′′(t) + a(t)f(u) = 0
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behave like solutions of equation u′′ = 0. Those results have been generalized
by Rogovchenko in [6]. Since neutral differential equations often preserve some
properties of associated non-neutral equations, it is natural to expect that Ro-
govchenko’s results are extendable to equation (1). This is the aim of this paper.

By a solution of (1) we mean a continuous function x on [Tx,∞) such that
x(t)+px(t−τ ) is twice continuously differentiable and x(t) satisfies (1) for t > Tx.
As is customary a nontrivial solution of (1) is called oscillatory if it has arbitrarily
large zeros, otherwise, it is called nonoscillatory. In the sequel, it is assumed that
(1) possesses such nontrivial solutions.

All inequalities in this paper are assumed to hold eventually, i.e. they are
satisfied for all sufficiently large t.

Main Results

In what follows we shall use the following lemma, which gives useful information
about properties of nonoscillatory solutions of (1).

Lemma 1. Let y(t) > 0 (or y(t) < 0) eventually and define

(2) w(t) = y(t) + p
t − τ
t

y(t − τ ) , 0 ≤ p < 1 , τ > 0 .

If lim
t→∞

w(t) = c, then lim
t→∞

y(t) = c
1+p .

Proof. Suppose that y(t) > 0. Then c ≥ 0 and it is easy to verify that

lim sup
t→∞

y(t) ≥ c

1 + p
and

lim inf
t→∞

y(t) ≤ c

1 + p
.

Assume that

lim sup
t→∞

y(t) = lim
n→∞

y(t̄n) =
c+ q1
1 + p

and

lim inf
t→∞

y(t) = lim
n→∞

y(tn) =
c− q2
1 + p

.

where q1 ≥ 0, q2 ≥ 0. We shall prove that q1 = q2 = 0.
(a) Suppose that q1 ≥ q2 ≥ 0 and q1 > 0. It follows from (2) that for any ε > 0

w(t) ≥ y(t) + p
t− τ
t

c− q2 − ε
1 + p

.

Taking t = t̄n and letting n→∞, we get

c ≥ c + q1
1 + p

+ p
c− q2 − ε

1 + p
.
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That is
q1 ≤ q2p+ pε .

Setting ε = [(1− p)q2]/(2p) we are led to

q1 ≤ p(2q2 − q1) ≤ pq2 < q2

a contradiction.
(b) Suppose that q2 ≥ q1 ≥ 0 and q2 > 0. Then (2) implies

w(t) ≤ y(t) + p
c + q1 + ε

1 + p
, ε > 0 .

Putting t = tn and letting n→∞ we see that

c ≤ c − q2
1 + p

+ p
c+ q1 + ε

1 + p
.

Then q2 ≤ pq1 + pε. Setting ε = [(1− p)q2]/2p and proceeding similarly as above
we get desired contradiction. The proof is complete now. �
Theorem 1. Suppose that 0 ≤ p < 1, τ > 0 and f(t, u) satisfies

(i) f(t, u) is continuous in D = {(t, u); t ∈ [t0,∞), u ∈ R}, where t0 ≥ 1
(ii) there exist continuous functions h, g : R+ → R+ such that

|f(t, u)| ≤ h(t)g

(
|u|
t

)
on D ,

where for s > 0, the function g(s) is positive and nondecreasing and∫ ∞
t0

h(s)ds <∞

and

G(x) =
∫ x

t0

ds

g(s)
→∞ as x→∞ .

Then every nonoscillatory solution x(t) of (1) is asymptotic to at+ b, where a,
b are real constants.

Proof. Assume that x(t) is a nonoscillatory solution of (1). Set

(3) z(t) = x(t) + px(t− τ ) ,

then |z(t)| > |x(t)| and it follows from (1) that

z′′(t) = −f
(
t, x(t)

)
.
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If we denote z(t0) = c1, z′(t0) = c2, then integrating the previous equality two
times from t0 to t we get

z′(t) = c2 −
∫ t

t0

f
(
s, x(s)

)
ds ,(4)

z(t) = c2(t − t0) + c1 −
∫ t

t0

(t− s)f
(
s, x(s)

)
ds .

It follows that

(5) |z(t)| ≤
(
|c1|+ |c2|

)
t + t

∫ t

t0

∣∣f(s, x(s)
)∣∣ ds

and in view of (ii) it is obvious that

∣∣f(t, x(t)
)∣∣ ≤ h(t)g

(
|x(t)|
t

)
≤ h(t)g

(
|z(t)|
t

)
.

Thus from (5)

(6)
|z(t)|
t
≤ |c1|+ |c2|+

∫ t

t0

h(s)g
(
|z(s)|
s

)
ds .

Applying Bihari’s inequality to (6), we get

|z(t)|
t
≤ G−1

(
G
(
|c1|+ |c2|

)
+
∫ t

t0

h(s) ds
)
,

where G−1(x) is the inverse function of G(x). We put

k1 = G
(
|c1|+ |c2|

)
+
∫ ∞
t0

h(s) ds <∞ .

Since G−1(x) is increasing, we conclude that

|z(t)|
t
≤ k2 = G−1(k1) <∞ .

On the other hand, by (ii) we have∫ t

t0

∣∣f(s, x(s)
)∣∣ds ≤ ∫ t

t0

h(s)g
(
|x(s)|
s

)
ds ≤

∫ t

t0

h(s)g
(
|z(s)|
s

)
ds

≤ g(k2)
∫ ∞
t0

h(s) ds < k3 .
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Therefore
∫∞
t0

∣∣f(s, x(s)
)∣∣ds exists and from (4) we see that there exists an a1 ∈ R

such that
lim
t→∞

z′(t) = a1 .

Then by the l’Hospital’s rule we verify that

lim
t→∞

z(t)
t

= lim
t→∞

z′(t) = a1 .

Now we put w(t) = z(t)/t, then (3) implies

w(t) = y(t) + p
t − τ
t

y(t − τ ) ,

where y(t) = x(t)/t. Lemma 1 insures that

lim
t→∞

x(t)
t

= a =
a1

1 + p
.

The proof is complete.

Remark 1. If in the proof of Theorem 1 we choose c2 sufficiently large then
limt→∞ z

′(t) 6= 0 and the corresponding solution x(t) of Eq. (1) is asymptotic to
at+ b, where a 6= 0.

Example 1. Consider the nonlinear differential equation

(7)

(
x(t) +

1
2
x(t− 1)

)′′
−
(

2
t3

+
1

(t− 1)3

)
·
(

1 +
t4

(t2 + 1)2

)
· x2(t)
x2(t) + t2

= 0 ,

where t ≥ 2. Set h(t) = 2
(

2
t3

+ 1
(t−1)3

)
and g(u) = u2

u2+1 . Then applying Theo-

rem 1 we deduce that for any nonoscillatory solution x(t) of (7) there exist real a,
b such that x(t)− (at+ b)→ 0 as t→∞. Observe that

x(t) = t+
1
t

is the solution of (7) which is asymptotic to t as t→∞.

Corollary 1. Consider the equation

(8)
(
x(t) + px(t− τ )

)′′
+ a(t)x(t) = 0

where 0 ≤ p < 1, τ > 0 and ∫ ∞
t|a(t)| dt <∞ .

Then every nonoscillatory solution of (8) is asymptotic to at+ b as t→∞.

Proof. The conclusion of Corollary 1 follows from Theorem 1 with

h(t) = t|a(t)| and g(u) = u .

Remark 2. For p = 0 Corollary 1 corresponds to the well known result (see e.g.
[1, Theorem 5, page 114] or [6, Corollary1]) for equation x ′′ + a(t)x = 0.
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Corollary 2. Consider the equation

(9)
(
x(t) + px(t− τ )

)′′
+ a(t)xα(t) = 0 , 0 < α < 1

where 0 ≤ p < 1, τ > 0, α is a quotient of two odd integers and∫ ∞
tα|a(t)|dt <∞ .

Then every nonoscillatory solution of (8) is asymptotic to at+ b as t→∞.

Proof. Apply Theorem 1 with

h(t) = tα|a(t)| and g(u) = uα . �

Example 2. Consider the following kind of Emden-Fowler equation

(10)
(
x(t) + px(t− τ )

)′′
+ tβxα(t) = 0 , 0 < α < 1

where 0 ≤ p < 1, τ > 0 and α is a quotient of two odd integers. Then by Corollary
2 every nonoscillatory solution of (10) is asymptotic to at+ b as t→∞ provided
that α+ β + 1 < 0.

If we let h(t) = t fu(t, 0) and g(u) = u in Theorem 1 we get the following
asymptotic criterion, which extends Cohen’s result known for u′′ + f(t, u) = 0 to
Eq. (1):

Corollary 3. Let 0 ≤ p < 1, τ > 0. Assume that f(t, u) satisfies (i) and

(iii) the derivative fu(t, u) exists on D and fu(t, u) > 0 on D.
(iv) |f(t, u)| ≤ fu(t, 0)|u| on D.

In addition suppose that ∫ ∞
tfu(t, 0) dt <∞ .

Then every nonoscillatory solution of (1) is asymptotic to at+ b as t→∞.

As a matter of fact we are able to extend conclusions of Theorem 1 to more
general equation.

Theorem 2. Suppose that 0 ≤ p < 1, τ > 0 and f(t, u, v) satisfies

(i) f(t, u, v) is continuous in D = {(t, u, v); t ∈ [t0,∞), u, v ∈ R}, where
t0 ≥ 1

(ii) there exist continuous functions h, g : R+ → R+ such that

|f(t, u, v)| ≤ h(t)g
(
|u|
t

)
|v| on D ,

where function h is the same as in case (ii) of Theorem 1 and g is positive,
nondecreasing and∫ x

t0

ds

sg(s)
→∞ as x→∞ .
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Then every nonoscillatory solution x(t) of(
x(t) + px(t− τ )

)′′
+ f(t, x(t), x′(t)) = 0

is asymptotic to at + b, where a, b are real constants.

The proof of the theorem is analogous to that of Theorem 1 and thus is omitted.
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