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ARCHIVUM MATHEMATICUM (BRNO)
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ON RICCI CURVATURE OF TOTALLY REAL SUBMANIFOLDS
IN A QUATERNION PROJECTIVE SPACE

LIU XIMIN

Abstract. LetMn be a Riemanniann-manifold. Denote by S(p) and Ric(p)

the Ricci tensor and the maximum Ricci curvature on M n, respectively. In
this paper we prove that every totally real submanifolds of a quaternion

projective spaceQP m(c) satisfies S ≤ ((n−1)c+ n2

4
H2)g, whereH2 and g are

the square mean curvature function and metric tensor on M n, respectively.
The equality holds identically if and only if either M n is totally geodesic

submanifold or n = 2 and M n is totally umbilical submanifold. Also we show

that if a Lagrangian submanifold of QP m(c) satisfies Ric = (n− 1)c+ n2

4
H2

identically, then it is minimal.

1. Introduction

Let Mn be a Riemannian n-manifold isometrically immersed in a Riemannian
m-manifold M̄m(c) of constant sectional curvature c. Denote by g, R and h the
metric tensor, Riemann curvature tensor and the second fundamental form of Mn,
respectively. Then the mean curvature vector H of Mn is given by H = 1

n
trace h.

The Ricci tensor S and the scalar curvature ρ at a point p ∈ Mn are given
by S(X,Y ) =

∑n
i=1〈R(ei, X)Y, ei〉 and ρ =

∑n
i=1 S(ei, ei), respectively, where

{e1, . . . , en} is an orthonormal basis of the tangent space TpMn. A submanifold
M is called totally umbilical if h, H and g satisfy h(X,Y ) = g(X,Y )H for X, Y
tangent to Mn.

The equation of Gauss for the submanifold Mn is given by

g(R(X,Y )Z,W ) = c(g(X,W )g(Y, Z) − g(X,Z)g(Y,W ))

+ g(h(X,W ), h(Y, Z))− g(h(X,Z), h(Y,W )) ,(1)

where X,Y, Z,W ∈ TMn. From (1) we have

ρ = n(n− 1)c+ n2H2 − |h|2 ,(2)

2000 Mathematics Subject Classification: 53C40, 53C42.
Key words and phrases: Ricci curvature, totally real submanifolds, quaternion projective

space.
This work is supported in part by the National Natural Science Foundation of China.
Received February 21, 2001.



298 LIU XIMIN

where |h|2 is the squared norm of the second fundamental form. From (2) we have

ρ ≤ n(n− 1)c+ n2H2 ,

with equality holding identically if and only if M n is totally geodesic.
Let Ric(p) denote the maximum Ricci curvature function on Mn defined by

Ric(p) = max{S(u, u)|u ∈ T 1
pM

n, p ∈Mn} ,

where T1
pM

n = {v ∈ TpMn|〈v, v〉 = 1}.
In [2], Chen proves that there exists a basic inequality on Ricci tensor S for any

submanifold M n in M̄m(c), i.e.

S ≤
(

(n− 1)c+
n2

4
H2
)
g ,(3)

with the equality holding if and only if either Mn is a totally geodesic submanifold
or n = 2 and Mn is a totally umbilical submanifold. And in [3], Chen proves
that every isotropic submanifold Mn in a complex space form M̄m(4c) satisfies
Ric ≤ (n−1)c+ n2

4 H
2, and every Lagrangian submanifold of a complex space form

satisfying the equality case identically is a minimal submanifold. In the present
paper, we would like to extend the above results to the totally real submanifolds of
quaternion projective space, namely, we prove that every totally real submanifolds
of quaternion projective space QPm(c) satisfies S ≤ ((n− 1)c+ n2

4 H
2)g, and the

equality holds identically if and only if either Mn is totally geodesic submanifold or
n = 2 and Mn is totally umbilical submanifold. Also we show that if a Lagrangian
submanifold of QPm(c) satisfies Ric = (n − 1)c + n2

4 H
2 identically, then it is

minimal.

2. Preliminary

Let M̄m be a 4m-dimensional Riemannian manifold with metric g. M̄m is called
a quaternion Kaehlerian manifold if there exists a 3-dimensional vector space V
of tensors of type (1,1) with local basis of almost Hermitian structure I, J and K
such that

(a) IJ = −JI = K, JK = −KJ = I, KI = −IK = J , I2 = J2 = K2 = −1,
(b) for any local cross-section φ of V , ∇̄Xφ is also a cross-section of V , where

X is an arbitrary vector field on M̄m and ∇̄ the Riemannian connection on M̄m.
In fact, condition (b) is equivalent to the following condition:
(b’) there exist local 1-forms p, q and r such that

∇̄XI = r(X)J − q(X)K

∇̄XJ = − r(X)I + p(X)K(4)

∇̄XK= q(X)I − p(X)J

Now let X be a unit vector on M̄m, then X, IX, JX and KX form an or-
thonormal frame on M̄m. We denote by Q(X) the 4-plane spanned by them. For
any two orthonormal vectors X, Y on M̄m, if Q(X) and Q(Y ) are orthogonal,
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the plane π(X,Y ) spanned by X, Y is called a totally real plane. Any 2-plane in
a Q(X) is called a quaternionic plane. The sectional curvature of a quaternionic
plane π is called the quaternionic sectional curvature of π. A quaternion Kaehle-
rian manifold is a quaternion space form if its quaternionic sectional curvatures
are equal to a constant. A quaternion projective space, denoted by QPm(4c), is a
quaternion Kaehlerian manifold of constant quaternionic sectional curvature 4c.

It is known that a quaternionic Kaehlerian manifold M̄m is a quaternion space
form if and only if its curvature tensor R̄ is of the following form [7]:

R̄(X,Y )Z = c{g(Y, Z)X − g(X,Z)Y(5)

+ g(IY, Z)IX − g(IX,Z)IY + 2g(X, IY )IZ

+ g(JY, Z)JX − g(JX,Z)JY + 2g(X, JY )JZ

+ g(KY,Z)KX − g(KX,Z)KY + 2g(X,KY )KZ

for vectors X, Y , Z tangent to M̄m.
Let Mn be an n-dimensional Riemannian manifold isometrically immersed in

QPm(4c). We call Mn a totally real submanifold of QP m(4c) if each 2-plane of
Mn is mapped into a totally real plane in QPm(4c). Consequently, if Mn is a
totally real submanifold of QP m(4c), then φ(TMn) ⊂ T⊥Mn for φ = I, J or K,
where T⊥Mn is the normal bundle of Mn in QPm(4c).

An n-dimensional totally real submanifold of a quaternion projective space
QPm(4c) is called a Lagrangian submanifold when n = m.

Assume that Mn is a totally real submanifold of QP m(4c). For any orthonormal
vectors X, Y in Mn, the plane π(X,Y ) spanned by X and Y is totally real in
QPm(4c), Q(X) and Q(Y ) are orthogonal and g(X,φY ) = g(φX, Y ) = 0 for
φ = I, J or K.

By (5) we have

R̄(X,Y )Z = c{g(Y, Z)X − g(X,Z)Y } , X, Y, Z ∈ TM.

By the Gauss formula the curvature tensor R of Mn satisfies

g(R(X,Y )Z,W ) = c(g(X,W )g(Y, Z) − g(X,Z)g(Y,W ))

+ g(h(X,W ), h(Y, Z)) − g(h(X,Z), h(Y,W )).(6)

We know that when Mn is totally real in QPm(4c), then n ≤ m. We choose a
local field of orthonormal frames in QP m(4c):

e1, . . . , en, en+1, . . . , em; eI(1) = Ie1, . . . , eI(m) = Iem ;(7)
eJ(1) = Je1, . . . , eJ(m) = Jem; eK(1) = Ke1, . . . , eK(m) = Kem ,

in such a way that, restricting to Mn, e1, . . . , en are tangent to Mn.
We shall use the following convention in the range of indices unless mentioned

otherwise:

A,B,C,D, . . .= 1, . . . ,m, I(1), . . . , I(m), J(1), . . . , J(m),K(1), . . . ,K(m);

i, j, k, l, . . .= 1, . . . , n; r, s, t, . . .= n + 1, . . . ,m, I(1), . . . ,K(m);

u, v, . . .= n+ 1, . . . ,m; φ, ψ, . . . = I, J,K.
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Let Ar = Aer denote the shape operator on Mn inQPm(4c). Then Ar is related
to the second fundamental form h by

g(h(X,Y ), er) = g(ArX,Y ) .(8)

Let Mn be a totally real submanifold in QPm(4c), {φr, φs, φt} be the set
{I, J,K} or a set of the circular permutation of the three elements I, J and K.
Then we have

Lemma 2.1 [6]. For any X,Y, Z,W in TMn, we have

(i) R̄(Z,W, φrX,φrY ) = R̄(Z,W,X, Y ),
(ii) g(h(X,Y ), φrZ) = g(h(Z, Y ), φrX), r = 1, 2, 3.

3. Ricci tensor of totally real submanifolds

We will need the following algebraic lemma due to Chen [1].

Lemma 3.1. Let a1, . . . , an, c be n+ 1 (n ≥ 2) real numbers such that( n∑
i=1

ai
)2

= (n− 1)
( n∑
i=1

a2
i + c

)
.

Then 2a1a2 ≥ c, with equality holding if and only if a1 + a2 = a3 = · · · = an.

For a totally real submanifold M n in a quaternion projective space QPm(4c),
we have the following.

Theorem 3.1. If Mn is a totally real submanifold in a quaternion projective space
QPm(4c), then the Ricci tensor of Mn satisfies

S ≤
(

(n− 1)c+
n2

4
H2
)
g ,(9)

and the equality holds identically if and only if either Mn is totally geodesic or
n = 2 and Mn is totally umbilical.

Proof. Let Mn be a totally real submanifold of a quaternion projective space
QPm(4c), from Gauss equation (6), we have

ρ = n(n− 1)c+ n2H2 − |h|2 .(10)

Put δ = ρ − n(n − 1)c− n2

2
H2. Then from (10) we obtain

n2H2 = 2(δ + |h|2) .(11)

Let

ω1, . . . , ωn, ωn+1, . . . , ωm, ωI(1), . . . , ωI(m), ωJ(1), . . . , ωJ(m), ωK(1), . . . , ωK(m)

be the dual frame of the frame given by (7).
Since Mn is totally real, Q(ei) and Q(ej), i 6= j, are orthogonal. Thus

g(φ(ei), ψ(ej)) = 0 when i 6= j. From the structure equations:

dωA = −
∑

ωAB ∧ ωB , ωAB + ωBA = 0
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and from (4), we obtain

ωij = ω
φ(i)
φ(j) , ω

φ(i)
j = ω

φ(j)
i , ωiu = ω

φ(i)
φ(u) ,

ωφ(i)
u = ω

φ(u)
i , ωuv = ω

φ(u)
φ(v) , ωφ(u)

v = ωφ(v)
u .(12)

If we write ωri =
∑
j h

r
ijω

j then hrij = hrji and the mean curvature vector of Mn is
H = 1

n

∑
i,r h

r
iier.

From (12) we have

h
φ(i)
jk = h

φ(j)
ik = h

φ(k)
ji .(13)

Let L be a linear (n−1)-subspace of TpMn, p ∈Mn, such that e1, . . . , en−1 ∈ L
and if H(p) 6= 0, en+1 is in the direction of the mean curvature vector at p.

Put ai = hn+1
ii , i = 1, . . . , n. Then from (11) we get

( n∑
i=1

ai
)2

= 2
{
δ +

n∑
i=1

a2
i +

∑
i6=j

(hn+1
ij )2 +

4m∑
r=n+2

n∑
i,j=1

(hrij)
2
}
.(14)

Equation (14) is equivalent to( 3∑
i=1

āi
)2

= 2
{
δ +

3∑
i=1

ā2
i +
∑
i6=j

(hn+1
ij )2+

4m∑
r=n+2

n∑
i,j=1

(hrij)
2 −

∑
2≤i6=j≤n−1

aiaj
}
,(15)

where ā1 = a1, ā2 = a2 + · · ·+ an−1, ā3 = an.
By Lemma 3.1 we know that if (

∑3
i=1 āi)

2 = 2(c +
∑3
i=1 ā

2
i ), then 2ā1ā2 ≥ c

with equality holding if and only if ā1 + ā2 = ā3. Hence from (15) we can get

∑
1≤i6=j≤n−1

aiaj ≥ δ + 2
∑
i<j

(hn+1
ij )2 +

4m∑
r=n+2

n∑
i,j=1

(hrij)
2,(16)

which gives

n(n−1)c +
n2

2
H2 ≥ ρ −

∑
1≤i6=j≤n−1

aiaj + 2
∑
i<j

(hn+1
ij )2 +

4m∑
r=n+2

n∑
i,j=1

(hrij)
2 .(17)

Using Gauss equation we have

ρ−
∑

1≤i6=j≤n−1

aiaj + 2
∑
i<j

(hn+1
ij )2 +

4m∑
r=n+2

n∑
i,j=1

(hrij)
2(18)

= 2S(en, en) + (n− 1)(n − 2)c+ 2
∑
i<n

(hn+1
in )2

+
4m∑

r=n+2

[
(hrnn)2 + 2

n−1∑
i=1

(hrin)2 + (
n−1∑
j=1

hrjj)
2
]
.
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From (17) and (18) we have

(n − 1)c+
n2

4
H2 ≥ S(en, en) + 2

∑
i<n

(hn+1
in )2

+
4m∑

r=n+2

[ n∑
i=1

(hrin)2 +
( n−1∑
j=1

hrjj

)2]
.(19)

So we have

(n − 1)c+
n2

4
H2 ≥ S(en, en)(20)

with equality holding if and only if

hsjn = 0 , hrin = 0
n−1∑
j=1

hsjj = hsnn(21)

for 1 ≤ j ≤ n−1, 1 ≤ i ≤ n and n+ 2 ≤ r ≤ 4m and, since Lemma 3.1 states that
2ā1ā2 = c if and only if ā1 + ā2 = ā3, we also have hn+1

nn =
∑n−1
j=1 h

n+1
jj . Since en

can be any unit tangent vector of Mn, then (20) implies inequality (9).
If the equality sign case of (9) holds identically. Then we have

hn+1
ij = 0 (1 ≤ i 6= j ≤ n) ,

hrij = 0 (1 ≤ i, j ≤ n; n+ 2 ≤ r ≤ 4m) ,(22)

hn+1
ii =

∑
k 6=i

hn+1
kk ,

∑
k 6=i

hrkk = 0 , (n + 2 ≤ r ≤ 4m) .

If λi = hn+1
ii (1 ≤ i ≤ n), we find

∑
k 6=i λk = λi(1 ≤ i ≤ n) and, since the matrix

A(n) = (a(n)
ij ) with a

(n)
ij = 1 − 2δij is regular for n 6= 2 and has kernel R(1, 1) for

n = 2, we conclude that Mn is either totally geodesic or n = 2 and Mn is totally
umbilical.

The converse is easy to prove. This completes the proof of Theorem 3.1.

4. Minimality of Lagrangian submanifolds

Theorem 4.1. If Mn is a Lagrangian submanifold in a quaternion projective
space QPm(4c), then

Ric ≤ (n − 1)c+
n2

4
H2 .(23)

If Mn satisfies the equality case of (23) identically, then Mn is minimal subman-
ifold.

Clearly Theorem 4.1 follows immediately from the following Lemma.

Lemma 4.1. If Mn is a n-dimensional totally real submanifold in a quaternion
projective space QPm(4c), then we have (23). If a totally real submanifold Mn in
QPm(4c) satisfies the equality case of (23) at a point p, then the mean curvature
vector H at p is perpendicular to φ(TpMn).
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Proof. Inequality (23) is an immediate consequence of inequality (9).
Now let us assume that Mn is a totally real submanifold of QP m(4c) which

satisfies the equality sign of (23) at a point p ∈Mn. Without loss of the generality
we may choose an orthonormal basis {ē1, . . . , ēn} of TpMn such that Ric(p) =
S(ēn, ēn). From the proof of Theorem 3.1, we get

hsin = 0 ,
n−1∑
i=1

hsii = hsnn , i = 1, . . . , n− 1; s = n+ 1, . . . , 4m,(24)

where hsij denote the coefficients of the second fundamental form with respect to
the orthonormal basis {ē1, . . . , ēn} and {ēn+1, . . . , ē4m}.

If for all tangent vectors u, v and w at p, g(h(u, v), φw) = 0, there is nothing
to prove. So we assume that this is not the case. We define a function fp by

fp : T 1
pM

n → R : v 7→ fp(v) = g
(
h(v, v), φv

)
.(25)

Since T1
pM

n is a compact set, there exists a vector v ∈ T1
pM

n such that fp
attains an absolute maximum at v. Then fp(v) > 0 and g(h(v, v), φw) = 0 for all
w perpendicular to v. So from (8), we know that v is an eigenvector ofAφv. Choose
a frame {e1, e2, . . . , en} of TpMn such that e1 = v and ei be an eigenvector of Aφe1
with eigenvalue λi. The function fi, i ≥ 2, defined by fi(t) = fp(cos t e1 + sin t e2)
has relative maximum at t = 0, so f ′′i (0) ≤ 0. This will lead to the inequality
λ1 ≥ 2λi. Since λ1 > 0, we have

λi 6= λ1 , λ1 ≥ 2λi , i ≥ 2 .(26)

Thus, the eigenspace of Aφe1 with eigenvalue λ1 is 1-dimensional.
From (24) we know that ēn is a common eigenvector for all shape operators

at p. On the other hand, we have e1 6= ±ēn since otherwise, from (24) and
Aφei ēn = ±Aφeie1 = ±Aφe1ei = ±λiei⊥ēn (i = 2, . . . , n), we obtain λi = 0,
i = 2, . . . , n; and hence λ1 = 0 by (24), which is a contradiction. Consequently,
without loss of generality we may assume e1 = ē1, . . . , en = ēn.

By Lemma 2.1, Aφene1 = Aφe1en = λnen. Comparing this with (24) we obtain
λn = 0. Thus, by applying (24) once more, we get λ1 + · · · + λn−1 = λn = 0.
Therefore, trace Aφe1 = 0.

For each i = 2, . . . , n, we have

hn+i
nn = g(Aφeien, en) = g(Aφenei, en) = h2n

in .

Hence, by applying (24) again, we get hn+i
nn = 0. Combining this with (24) yields

trace Aφei = 0. So we have trace AφX = 0 for any X ∈ TpMn. Therefore, by using
the definition of the mean curvature vector, we conclude that the mean curvature
vector at p is perpendicular to φ(TpMn). This completes the proof of Lemma
4.1.

Remark 4.1. From the proof of Lemma 4.1 we know that if M n is a Lagrangian
submanifold of a quaternion projective space QPm(4c) satisfying

Ric = (n − 1)c+
n2

4
H2 ,(27)
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then Mn is minimal and Aφv = 0 for any unit tangent vector satisfying S(v, v) =
Ric. Thus, for any X tangent to Mn, by Lemma 2.1, we have AφXv = 0. Hence,
we obtain h(v,X) = 0 for any X tangent to Mn and any v satisfying S(v, v) = Ric.
Conversely, if Mn is a Lagrangian minimal submanifold of QP m(4c) such that for
each p ∈ Mn there exists a unit vector v ∈ TpMn such that h(v,X) = 0 for all
X ∈ TpMn, then it satisfies (27) indentically.

For each p ∈Mn, the kernel of the second fundamental form is defined by

D(p) =
{
Y ∈ TpMn|h(X,Y ) = 0, ∀ X ∈ TpMn

}
.(28)

From the above discussion, we conclude that Mn is a Lagrangian minimal sub-
manifold of QP m(4c) satisfying (27) at p if and only if dimD(p) is at least 1-
dimensional.

When the dimD(p) is constant, we have the following result which describes
the geometry of Lagrangian submanifold satisfying (27).

Theorem 4.2. Let Mn be a Lagrangian minimal submanifold of QPm(4c). Then
(1) Mn satisfies (27) at a point p if and only if dimD(p) ≥ 1.
(2) If the dimension of D(p) is positive constant d, then D is a completely

integral distribution and Mn is d-ruled, i.e., for each point p ∈Mn, Mn contains
a d-dimensional totally geodesic submanifold N of QPm(4c) passing through p.

(3) A ruled Lagrangian minimal submanifold of QPm(4c) satisfies (26) identi-
cally if and only if, for each ruling N in Mn, the normal bundle T⊥Mn restricted
to N is a parallel normal subbundle of the normal bundle T⊥N along N .

Proof. (1) is done already.
(2) Assume that the dimension of D(p) is constant d. We denote by D⊥ the

orthogonal complementary distribution of D in TMn. Then for any vector fields
Y, Z in D and X ∈ D⊥, we have h(Y, Z) = h(X,Z) = 0. Thus, by applying the
equation of Codazzi, we get g(X,∇Y Z) = 0 for any X ∈ D⊥. Hence ∇Y Z ∈ D,
which implies that D is completely integrable and each leaf N of D is totally
geodesic submanifold of Mn. Therefore, by (28) we conclude that each leaf N is
totally geodesic in QPm(4c) too. This implies that Mn is d-ruled.

(3) Assume Mn is a ruled Lagrangian minimal submanifold in QP m(4c). Then
we have h(Y, Z) = 0 for any vector fields Y , Z tangent to a ruling N . Hence
(3) follows from Lemma 3.5 of [1] and Remark 4.1. This completes the proof of
Theorem 4.2.
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