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PROLONGATION OF PROJECTABLE
TANGENT VALUED FORMS

ANTONELLA CABRAS AND IVAN KOIAR

ABsTRACT. First we deduce some general properties of product preserving bundle
functors on the category of fibered manifolds. Then we study the prolongation of
projectable tangent valued forms with respect to these functors and describe the
complete lift of the Frolicher-Nijenhuis bracket. We also present the coordinate
formula for composition of semiholonomic jets.

Recently it has been clarified that the Weil functors represent a unified technique
for studying a large class of geometric problems. A survey on the results concerning
the product preserving bundle functors on the category M f of all manifolds and all
smooth maps can be found in [6]. Our starting point was a paper by W. Mikulski,
[11]. He deduced that the product preserving bundle functors on the category F.M
of all fibered manifolds and all fibered morphisms are in bijection with the Weil
algebra homomorphisms y : A — B. Our main aim is to study the prolongation of
projectable tangent valued forms, introduced by L. Mangiarotti and M. Modugno,
[10], with respect to such a functor T". In particular, we are interested in the
Frolicher-Nijenhuis bracket, which is a powerful tool for the theory of connections,
[6], and their torsions, [8]. In the manifold case, such problems were studied in [4]
and [1].

In Section 1 we discuss T* in the case of product fibered manifolds. Our results
represent a basis for coordinate descriptions of 7*. In Section 2 we study an
important special case, the functor 7;;"? of the fibered velocities of dimension
(k,1) and order (r,s,q). The coordinate formula for t he prolongation 7,7} f of
a fibered manifold morphism f is reduced to the jet composition. That is why
we present a coordinate formula for the composition of jets in the appendix. We
start with the semiholonomic case, which reflects the core of the problem. For the

2000 Mathematics Subject Classification: 53C05, 58 A20.

Key words and phrases: projectable tangent valued form, product preserving bundle functor,
jet, Weil bundle, Frolicher-Nijenhuis bracket.

This work has been performed during the visit of I. Kolaf at Dipartimento di Matematica
Applicata “G. Sansone”, Universita di Firenze, supported by the University of Florence.
The second author was also supported by a grant of the GA CR No. 201/99/0296.

Received January 10, 2000.



244 A. CABRAS AND I. KOLAR

holonomic case, we obtain another approach to recent results by D. R. Grigore and
D. Krupka, [5], M. Kures, [9] and M. Modugno, [12]. In Section 2 we also deduce
that each functor T* is dominated by a fibered velocities functor analogously to
the manifold case.

Then we describe the natural tensor fields of type (1,1) on Weil bundles. In
Section 4 we study the flow prolongation of projectable vector fields in connection
with the natural (1,1)-tensor fields. On one hand, the flow prolongation of pro-
jectable vector fields can be composed with the natural tensor fields determined by
the elements of the algebra A. On the other hand, the flow prolongation of vertical
vector fields admits an additional operation related to the algebra B. Hence we
need three formulae for the bracket of the flow prolongations of vector fields. As
the main result of the paper, we then deduce the corresponding three formulae for
the Frolicher-Nijenhuis bracket of the complete lifts of projectable tangent valued
forms in Proposition 6.

All manifolds and maps are assumed to be infinitely differentiable and all man-
ifolds are paracompact. Unless otherwise specified, we use the terminology and
notation from [6].

1. PRODUCT PRESERVING BUNDLE FUNCTORS ON FM

First we present one construction of a product preserving bundle functor on
FM. Let u: A — B be a Weil algebra homomorphism. By the classical theory, p
induces two bundle functors T4, T'% on M f and a natural transformation (denoted
by the same symbol) p : T4 — T, [6], Chapter VIIL. For every fibered manifold
p:Y — M, we consider TBp : TBY — TBM. Then we take into account the map
pnr 2 TAM — TBM and construct the induced bundle T"Y = pu},TBY, which
will also be denoted by

(1) THY =TAM xp5,; TBY .
In other words,
(2) 'Y = {(z,y) € T*M x TPY, pu(w) = TPp(y)} -

Given another fibered manifold ¢ : Z — P and an FM-morphism f : ¥ — Z
over f: M — P, we have T? f : TBY — TP Z and we construct the induced map
Thf =TAf xpu; TBf : THY — THZ,

(3) T f(a,y) = (T4f(2), TP f(y)),  (z,y) € T"Y .
This defines a bundle functor 7" on FM that preserves products.

In general, if we have an FM-morphism f : Y — Z over f : M — P and
we need distinguish the manifold map f : Y — Z from the FM-morphism itself,
we write (f, f) for the latter. In [11], W. Mikulski clarified that every product
preserving bundle functor F on FM is of the above form. Let pt denote one
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element manifold and pta; : M — pt the unique map. There are two canonical
functors 41,92 : Mf — FM defined by uM = (idpy : M — M), irf = (f, f),
ioM = (ptar : M — pt), iaf = (f,idp:) and a natural transformation ¢ : i1 — 142,
tar = (idas, ptar) @ 1M — oM. Applying F', we obtain two product preserving
bundle functors F oi;, F'oiy on M f and a natural transformation F ot : Foi; —
F ois. By the Weil theory, there exists a Weil algebra homomorphism p: A — B
such that Foi; = T4, Foiy = T8 Fot=pu. Then F = T", [11] (see also [2] for
a simplified proof).

If we have a product fibered manifold Y = M x N, it coincides with the product
Y =i M x 2N in F M. This implies directly

(4) TH(M x N)=T*M x TEN .
In the form (2), we have

TH(M x N) = {(z,v) € TAM x TB(M x N), ups(z) = pri(v)}
where TB(M x N) =TBM x TEN. If we write v = (u,y), we obtain
(5) TH(M x N) = {(z, upr(2),9)} =~ TAM x TEN .

Given another product fibered manifold Z = P x @, every F M-morphism f :
Y — Z is identified with a pair f = (f1, f2), fi: M — P, fo : M x N — Q,

f(x,y) = (f1($)7f2(33,y)) :

Then TAf; : TAM — TAP and TBf, : TBEM x TBEN — TBQ. The following
assertion describes T* in the case of product fibered manifolds.

Proposition 1. We have

(6) THf = (T4 f1, TP f2 0 (par x idgsy)) .

Proof. By (3) and (5),

T f(a, paa (), y) = (T4 f1(2), TP fr(pae (), TP fo(par (2), ) -

The naturality of 4 on f; : M — P yields T8 f1(unr(2)) = pp (T4 f1(2)). d

In particular, consider a function f : ¥ — R. It can be interpreted as an
FM-morphism Y — 3R, so that T#f : THY — B. If Y = M x N, then
Trf =TEf o (un x idps ).
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2. VELOCITIES IN THE FIBERED CASE

Given two manifolds M, S and a smooth map f : M — S, we can construct the
r-jet jrf at © € M. If we replace M by a fibered manifold p : Y — M, we can
require a higher order contact along the fiber ¥, passing through y € Y, z = p(y).
Thus, for two maps f,g:Y — S and two integers s > r we define j;>* f = j;>*g by

(7) Jyf =dyg and  jy(f1Ya) =5y (f1Yz) .

The space of all such (r, s)-jets is denoted by J"*(Y,.5).
Write RF! = (pg; : R¥ x Rl — R¥) for the product fibered manifold. Analo-
gously to the classical functor T} of (k,r)-velocities, we introduce

TIZ:ISS = Jg:S(Rkl S), JZISf(Jo 09) = jg:é(f °g)

for every manifold S and every map f : S — S. Hence T} is a bundle functor on
M f that preserves products.

In general, we have a natural transformation o' : T} — T}, h > [, defined
as follows. Consider the injection R! < R" (z!,... 2!) — (0,...,0,21,... 2.
Then we define

A (iow) = is(#R), ¢:R"— 3.

On the other hand, we have the jet projection 1S — 1;'S, s > r. Clearly,
(8) T;7 S =TS xops I;'S

and T.7) f = Tj,  f X7y ¢ T f. Write o for a multiindex of range 1,...,k and § for
a multiindex of range k 4+ 1,...,k + [. Thus, if y? are some local coordinates on
S, the induced coordinates on 7,/ S are

(9) Yogr lal >0, o]+ [ <7 and yf, [B]<s.

Having two F M-morphisms f,g : Y — Z, we can require a higher order contact
of the base maps in addition to (7). Hence for s > r < ¢ we define

Grsaf = qun,s,qg

by (7) and jf = jig. We write J"*4(Y, Z) for the space of all (r, s, g)-jets from
Y to Z. Then we introduce the space of fibered velocities of dimension (k,1) and
order (r,s,q) by

oY = JogY(RMLY).

Clearly, T;"? is a product preserving bundle functor on FM.
We are gomg to describe 7,7;"? in the product form of (1) and (6). Clearly,
Ty % oip = Tyl. The Weil algebra of T} is

(10) D} =Rlz,...,zx]/m(k)I,
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where m(k) = (x1,...,2) is the maximal ideal in the algebra R[z 1,...,x%]. On
the other hand, T;")% 0 iy = T} By [2], the Weil algebra of T}}" is

(11) DS = Rlzy,..., 2] / (m(k + D)5, mk)ym(k + 1)) .

Write v = T ot for the natural transformation in question. An FM-morphism
¢ : RM! — 41 S is of the form (opy 1, ), ¢ : R*¥ — S. Then tgop = (popi.i, ptrs.t).
This implies

(12) vs(Jg%) = Joo(p © k1) -

Since ¢ o py; is constant along each fiber of R¥, this construction is independent
of s > r. One verifies directly that the algebra form of v is determined by the
canonical injection

Rz1,...oxu] = RE 1, .o, Ty Thot1y -+, Thotl] -

For the product fibered manifold M x N, we have T;""*(M x N) = T/M x
TZ:ISN . If 2% are some local coordinates on N, then the induced coordinates on
T, 7(M x N) are

(13) zh, lal < q, vhy, lal >0, lal+ 8] <7, yh, (8] <s.

For every FM-morphism f : Y — Z, we have T)"/"f = T} f xqre; T, f and
Tor f =Ty f <oy s T f. Hence T, f is expressed in terms of the jet composition.
We present a coordinate expression for the composition of jets in the appendix.

In the manifold case, every Weil bundle 74 is dominated by a velocities bundle,
i.e. there exists a (k, ¢)-velocities bundle 7} and a surjective natural transforma-
tion 7 : Ty — T“. Indeed, let N4 be the nilpotent ideal of A. The number
w(A) = dim(N4/N3) is called the width of A and the minimum ord A of the
integers satisfying N£+1 = 0 is called the order of A. If we take k elements
€1,...,ex € N4 such that their projections into NA/Nfl form a basis of this vec-
tor space, then e, ..., e, determine a surjective algebra homomorphism D} — A,
where ¢ is the order of A.

We are going to deduce a similar result for the fibered case. Let B be another
WEeil algebra with nilpotent ideal Np, ord B = s. Every algebra homomorphism
i A — B induces a linear map

(14) p1: Na/N% — Np/N3.

Define w(p) := w(B) + dimKer p;.
Our problem requires the following general concept.
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Definition 1. The smallest integer r satisfying
(15) #(Na)Np =0

is called the order of .

In other words, r = ord i is characterized by
w(a)by...b, =0 for all a € Ng,by,...,b. € Np.

Since p(a) € Np, we have ord u < ord B.

Proposition 2. For every product preserving bundle functor T* on FM there ex-
ists a velocities functor T;')"? and a surjective natural transformation 7 : T, —
T", where

(16) k=w(A), k+!=w(u), s=ordB, r =ordu, ¢ =max(ord p,ord A).

Proof. Takeei,...,e; € N4 such that their images in N4 /N% form a basis. This

determines a surjective homomorphism 7y : D} — A. Further, take some elements

€k+1,- -+, €x+1 € Np with the property that their images in Ng/N% together with

the images of p(e1),...,u(ex) generate Ng/N% as a vector space. The elements

€1, .., ek determine a surjective homomorphism 72 : D, — B. Since u has

order 7 and I}} is of the form (11), 72 factorizes through a map (denoted by the
S

same symbol) DZ’J — B. By the construction of 1 and 7 the following diagram
is commutative in the case ¢ > ord

q |14 TS
]D)k ]D)k,l

(17) TlJ JTQ

A—F B

By the general result of W. Mikulski, [11], the pair 71, 7o determines a surjective
natural transformation 7 : T} — T*. O

Remark 1. We recall that a bundle functor F on FM is said to be of order
(r,8,9), s 21 < g, [7],if j*f = j > implies F'f|F,Y = Fg|F,Y. (We do not
assume the values of r, s, ¢ are minimal.) Clearly, if G is another bundle functor
on FM and 7 : F' — G is a surjective natural transformation, then G has also the
order (r,s,q). Hence Proposition 2 characterizes the order of 7" in an algebraic
way.
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3. NATURAL TENSOR FIELDS OF TYPE (1,1)

In the case of one Weil algebra A, we have a canonical isomorphism ) :
TATM — TTAM, [6]. Every a € A determines a (1,1)-tensor field L(a)y :
TTAM — TTAM as follows. The multiplication of the tangent vectors by reals
is a map my; : Rx TM — TM. Applying the functor T4, we obtain T4my; :
A X TATM — TATM. Then

18 TAmpg i= seag 0 Ty o (ida x3e2 ) : Ax TTAM — TTAM
M

and we define L(a)yr = T4mps(a,—). Since the multiplication in A is deduced
from the multiplication of reals, we have

(19) L(a1) o L(az)n = L(araz)nm aj,az € A.
In the case of yu: A — B, the tangent bundle of T*Y = TAM x 75, TPY is
TTHY = TTAM Xprsy TTPY .
For every a € A, we have a natural (1,1)-tensor field A(a)y on T*Y defined by
(200 AMa)y (Ur,Uz) = (L(a)m(Ur), L(p(a))y (U2)),  (Ur,Uz) € TT"Y,
see [13]. By (19) we obtain
(21) Aaraz)y = AMa1)y o A(a2)y, ay,as € A.
(We remark that Tomas deduced in [13] that all natural (1, 1)-tensor fields on T+Y
are of the form (20).)

The vertical tangent bundle V (T"Y — T M) is the space of all pairs (Uy, Us) €
TTAM xprsy TTPY, where Uy is the zero vector. Hence the elements of
V(THY — TAM) are of the form (z,U), x € TAM, U € T,TPY, um(z) =
TBp(y), TTBp(U) = 0. By construction, the (1, 1)-tensor fields L(b)y and L(b) s

are TBprelated for all b € B. In particular, TTPp(U) = 0
implies TTZp(L(b)y (U)) = 0. Hence the rule

(22) L(b)y (z,U) = (z, L(b)y (U))

defines a natural map L(b)y : V(T"Y — TAM) — V(T"Y — TAM) over the
identity of V(T*Y — TAM). By (19), we obtain directly

(23) L(by)y o L(bs)y = L(b1b)y .
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4. PROLONGATION OF VECTOR FIELDS

In general, let p : Y — M be a fibered manifold and ¢ : Q — M be a map.
Then

Qx,Y={qcQyecY,ply) =v()}

is a fibered manifold 7: Q x, Y — M, n(y,q) = p(y). We have Tp: TY — TM,
Te :TQ — TM and the tangent bundle of @ X, Y is of the form

TQx,Y)=TQ xp, TY .

Consider a projectable vector field X on Y over X on M and a vector field U
on @ that is p-related with X. Then the product vector field U x X on @ x Y
is restrictible to @ X, Y. The restriction is denoted by U xx X and is called
the fibered product of U and X. Clearly, U xx X is a projectable vector field on
T:Q xX,Y — M over X.

Consider now the functor 7" and a projectable vector field X on Y over X
on M. Then the flow prolongation 74X is a vector field on T4M that is -
related with the flow prolongation 72X on T2M. On the other hand, the flow
prolongation 72 X is a projectable vector field on T?Y over 72X on T2 M. Hence
we have defined the vector field 74X x75y 72 X. By construction, this vector
field coincides with the flow prolongation 7#X, i.e.

THX =T*X x78x TPX .

We recall that the flow prolongation preserves bracket of vector fields, [6].

The canonical isomorphisms 3y : TATM — TTAM and »£ : TETY — TTBY
induce a canonical isomorphism s¢}. : THTY — TT"Y . The above construction im-
plies that the functorial prolongation T#X : THY — THTY of the F M-morphism
X : (Y - M)— (TY — TM) satisfies

THX =3 o THX .

For every a € A, the composition A(a)7"X of A(a)y and 7#X is also a pro-
jectable vector field on T"Y. From the manifold case, [1], we obtain directly

Proposition 3. For every pair X1, X2 of projectable vector fields on'Y and every
a1, as € A, we have

[)\(Cll)T‘qu, )\(GQ)T‘”XQ] = )\(alag)T“([Xl, XQ]) . O
IfW:Y — VY is a vertical field on Y, then 7#W is a vertical vector field on

TrY — TAM and the composition L(b)T*W of L(b)y and T*W is defined. The
manifold result implies directly
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Proposition 4. For every pair W1, W of vertical vector fields on' Y and every
b1, by € B, we have

[L(by)T* W1, L(b2)T*Wa) = L(byby)TH (W1, Wa)). O

If X is projectable and W is vertical, the bracket [X, W] is a vertical vector
field. To deduce a result analogous to Propositions 3 and 4, we need some lemmas.
By Section 1, given a function f : Y — R T#f : TFY — B is a vector valued
function. So its derivative with respect to any vector field on T"Y is also a
B-valued function on T#Y .

Lemma 1. For every projectable vector field X on'Y and every function f:Y —
R, we have THX(TH f) = TH(Xf).

Proof. Let g : TR= R x R — R be the second projection. The derivative X f
can be expressed as X f = mg o T'f o X. By functoriality,

THXf) = T'rgr o THTf o THX .

But 7HX = sd,oTHX and THT fo(sd) ™1 = (58)~LoTT* f by naturality of . We
have 2 : TBTR — TTBRand T #rgosf is the second projection of TB = B x B.
O

Given b € B we define 0T* f : T*Y — B by using the multiplication in B.
Lemma 2. We have THX (bT*f) = bT*(X f) for allb € B.

Proof. Obviously, X(kf) = k(X f) for all k£ € xR Applying T# and using
Lemma 1, we obtain our claim. Il

Lemma 3. For every vertical field W on Y, we have

(L(OL)T*W)THf = T*W (bT*f) forall beB.

Proof. Clearly, (kW) f = W (kf) for all k € isR. Applying T# and using Lemma
1, we obtain our claim. O

Lemma 4. For every projectable vector field X on'Y, we have
(\@)T#X)T* f = u(a)T*(X ) .
Proof. Obviously, (kX)f = k(X f), where k € 1R on the left hand side and

k € iR on the right hand side. Then we apply 7# and use the fact that u =
THgr : A — B. O
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Lemma 5. If two wvertical vector fields U and U on T"Y — TAM satisfy
UbTHf) =UMTHf) forall f:Y —Rand allb € B, thenU =U.

Proof. It suffices to consider the case Y = M x N and such functionsf MXxN —
Rthat are of the form fopg, where f : N — Rand pa : M x N — N is the second

product projection. Then T* f = T fomy, where my : T*M x TN — TP N is the
second product projection. Since U(7*f) is constructed fiberwise, we can apply
Lemma 2 from [1] to each fiber of the product fibered manifold TAM x TEN.
This proves our claim. O

Proposition 5. For every projectable vector field X on Y and every vertical
vector field W on Y, we have

Aa)T*X, L(b)T*W] = L(u(a)b)T*([X,W]) forall acAbeB.

Proof. Take any f:Y — Rand ¢ € B. Using Lemmas 2-4, we find

[A(a) THX, LO)T*W)(T" f) = Ma)T* X (L(0)T*W)(cT" f)
LOT*W A @)T*X)(T* f) = Ma)T" X (beT* (W f))
LOT*W (u(@)eT™ (X f)) = pla)be(TH(XW ) = T*(WX f))

=p(a)beT™ (X, W]f) = L(u(a)b) T ([X, W])(cT* ) .

Then our claim follows from Lemma 5. O

5. PROJECTABLE TANGENT VALUED FORMS

A tensor field D of type (1,k) on Y can be interpreted as a map
D:TY Xy~'~><yTY—>TY.

We say that D is projectable, if there is a tensor field D of type (1, %) on M such
that the following diagram commutes

TY xy---xy TY — 2Ty

(24) TpJ TpJ JTp

D
TMX]y]“-X]y]TM;TM

A projectable D is said to be vertical valued, if the values of (24) lie in the vertical
tangent bundle VY, i.e. D is the zero tensor field.

An antisymmetric projectable (1, k)-tensor field is called a projectable tangent
valued k-form on Y, [10].
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To construct the induced (1, k)-tensor field on T*Y", we proceed analogously to
the manifold case, [1], [4]. Applying T* to (24), we obtain

THTY xqguy - Xqpuy TPTY —L2D_ pupy
(25) THTp T“TpJ JT“Tp
A
TATM Xqpayy - Xpay TATM —=-TATM

If we add the canonical isomorphisms s, and s, we obtain a projectable (1, k)-
tensor field 7#D on T*Y over the (1, k)-tensor field 74D, cf. [1], [4].

Definition 2. The (1, k)-tensor field 7#D is called the complete lift of D.

In the case k = 0, D is a vector field and 7# D coincides with its flow prolon-
gation.

Our main aim is to describe the Frolicher-Nijenhuis bracket of two projectable
tangent valued forms on Y in a way similar to the manifold case, [1]. We need
some lemmas.

Lemma 6. Let C and C be two projectable (1,k)-tensor fields on TY . If they
coincide on all vector fields of the form A(a)T*X and Z(b)T“W, where X is a
projectable vector field on' Y, W is a vertical vector field on' Y and a € A, b € B,
then C = C.

Proof. It suffices to consider the case Y = R™ x R”. Then THY = TAR™ x
TBR™ = A™ x B™. Let 1 ;UL Uq OF 1,v1,...,vp be a basis in A or B with
nilpotent u’s or v’s and z°, 2%,. ..,z or y?,wl, ..., w! be the induced coordinates
on TAR™ or TBR™, respectively. Consider a constant vector field W = 1 agp

Since its flow is formed by translations, we have 7HW = nP5= 8 + 0. Then
L(vg)TFW = P 8 Fu? d=1,...,b. Similarly, if we consider a constant vector field
X = {1 7, We have THX = {1 (ue)THX = 861"'0 c=1,.

Since ¢! and 7P are arbitrary, thlS 1mphes the coordinate form of our claim. D

The manifold case, [1], [4], implies directly

Lemma 7. Let D be a projectable (1, k)-tensor field on' Y. Then
TFDMa))T X, ., Mag)TH X)) = Maq .. .ap)TH(D(X1,. .., Xk))

for every projectable vector fields Xy, ..., X on'Y and every ay,...,ar € A. O

If at least one of the vector fields X, ... X}, is vertical, then D(Xy,..., X§) is
also a vertical vector field on Y.
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Lemma 8. Let D be a projectable (1,k)-tensor field on Y, Xi,..., X, be pro-
jectable vector fields on'Y and Wsy1,..., Wy be vertical vector fields on Y, s < k.
Then

(26) T*D(Na1)T" X1, ..., Mas)T" Xy, L(bsy1)T"Weia, ..., L(bp) THWy)
= L(p(ay) ... p(as)bsgr . . bp)T*(D(X1, ..., Xo, Wagr,...,Wi)).

Proof. We have D(c1Xy,...,¢sXs,Cs41Wesi1,...,cWx) = (c1...ck)D(X,
coy Xy Weit, ..., Wi), where ¢1,...,¢5s € i1Rand cgy1,...,¢, (c1...¢ck) € iR
Applying 7#, we obtain (26) analogously to the proof of Lemma 4. O

The Frolicher-Nijenhuis bracket of a projectable tangent valued k-form P and
a projectable tangent valued I-form @ is a projectable tangent valued (k + {)-form

[P, ], [10].

Proposition 6. For the Frélicher-Nijenhuis bracket of two projectable tangent
valued forms P and @ on'Y , we have

(27) Na)THP,\a)T"Q] = Mad)T™([P,Q)), a,a’ € A.
If Q is vertical valued, then

(28) Aa)T"*P,L(0)T"Q] = L(u(a)b)T*([P,Q]), acAbeB.
If both P and Q are vertical valued, then

(29) [L(b)T"P,L(Y)T"Q) = L(bY)T*([P,Q)]),  bb € B.

Proof. L. Mangiarotti and M. Modugno, [10], deduced the following expression
of [P, Q] in terms of the bracket of projectable vector fields

[P, Q)(X1,. .., Xkt1)

1 .
:W ZSIgnU [P(Xo'la .- '7Xo'k)7 Q(Xd(k—‘rl)a .- '7Xo'(k+l))]

_1 ‘
+ m Zs1gnaQ([P(X01, .. '7Xo'k‘)7Xa'(k+1)]aXo'(k+2); o)

-1 kl
B0+ s P Xat) Kot Xt
(k— DI -1)12 & g ol Loz Aoy o[y Ao(kt2) -
(_1>(k—1)l .
T T 2 S P Xoal Xo ) Koo
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In all three cases, we express the value of the right hand side on A& )7*Xj,
M) T X, L(b))T*WA, ..., L(bp)T Wy, s+ h = k+ 1. In the first case, if
h = 0, we use Proposition 3 and Lemma 7 and deduce that each term is equal to
the value of 7# on the corresponding term of (30) multiplied by A(ad’a;y .. .ak11).
For h > 0, Propositions 3-5 and Lemmas 7 and 8 imply that the multiplication
factor is Z(u(aa’al ...a5)b1...by). Using Lemma 6, we obtain (27). In the second
and third cases we proceed in the same way. |

APPENDIX: JET COMPOSITION IN COORDINATES

We realized in Section 2 that the coordinate formula for 7,77 f is reduced to
the coordinate formula for the composition of jets. We deduce the coordinate
composition formula for the semiholonomic jets and we discuss its special form in
the holonomic case. _

Let M and N be two manifolds. The space of non-holonomic r-jets J" (M, N)

is defined by the induction JY(M, N) = JY(M, N) and J" (M, N) is the first jet
prolongation of the fibered manifold v : J™=*(M, N) — M, where « is the source
jet projection. In other words, the elements of j’”(M, N) are of the form jlo,
where o is a local map M — j’”_l(M, N) satisfying aoo = idps. Let P be another
manifold. The composition Bo A € J% (M, P), of A € J7(M, N),, A= jlo(u) and
B e ,7; (N,P)., B = j,o(v) is defined by the following induction. Let 3 denote
the target jet projection. Then (o ¢ is a local map of M into N and o(u) and
0(B(o(u))) are composable non-holonomic (r — 1)-jets. Then one defines

(31) Bo A= j(o(B(o(u))) o o(u))

with the composition of non-holonomic (r — 1)-jets on the right hand side, [3].

The inclusion J"(M,N) C J"(M,N) is defined by j~f — j1(;"~'f) and (31)
coincides with the composition of holonomic jets. The subspace of semiholonomic
r-jets J (M,N) C J"(M,N) is defined by the following induction. An element
jlo € J7(M, N) is said to be semiholonomic, if

(i) o is a local section M — T (M, N),

(ii) o satisfies o(x) = jL(n" "5 0 0),
where 77”3 : T_l(M, N) — T_Q(M, N) is the canonical projection. The compo-
sition of two semiholonomic jets is semiholonomic as well. The coordinates of an
element A € Jj(R™,R™)g are

(32) af,afj,...,aflmir
that are arbitrary in all subscripts. We have J"(M,N) C J (M,N) and this
inclusion is characterized by symmetry in all subscripts.
Consider B € 78(R", RP)q with coordinates
(33) by bpgs -+ -5 0p

pa " Up1.pr

Write C = Bo A, C = (c?,ct,...,c% ).

(R Y B R A ST
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Proposition 7. For every s < r, consider the set Q(r, s) of all ordered decompo-
sitions of r into s summands r =r1+---+r,. For everym = (r1,...,7rs), consider
all associated orderings 0 € m, 0 = ((Jiy---Jry)s--vs Ury F o F Jrntlseosdr +
A+ e F Jrnga)s oo Gr=rot1s-- -, Jr)) Such that the first terms satisfy j1 <
< Gy F A G < o0 < Jror.41 and each subsequence is increasing, i.e.
Jro Fo Gt <o < ey oo Gry + Jrayy forallh =1,...,s. Then we have

T
34 ct .= E E E be aPt* . laPe o
( ) 1. P1ewPs iy ey [ ¥

s=1rmeQ(r,s) 0ET

Proof. We proceed by induction. The case r = 1 is trivial. If we analyze (31)
with (i) and (ii), we find that the formula for ¢;,. 4 4, ,, is obtained by the following
procedure. Each product of s+1 elements is replaced by s+1 terms, where we grad-

a a Ps+1 _Dp1 Ps
ually replace b by bp1~»-psps+1a’ir+1 ’ain---ijrl by a? 1]1 dgeyirenr o Gy,

and in each case all other terms remain unchanged. This

1.Ds
by a’L]r 7‘9+1 7«jrir+1
procedure is compatible with passing from 7 to r + 1 in (34). O

In the holomonic case, all a’s and b’s in (34) are symmetric in all subscripts.
Then (34) can be rewritten as

(35) : -—Z Z bp1 pga%l a?*

s= 1([1

where the inner sum is extended to all partitions (f, ..., Is) of the set {i1,...,i,}
into s subsets. This formula was deduced by D. R. Grigore and D. Krupka, [5],
see also [12].
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