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PROLONGATION OF PROJECTABLE

TANGENT VALUED FORMS

ANTONELLA CABRAS AND IVAN KOĹAŘ

First we deduce some general properties of product preserving bundle
functors on the category of fibered manifolds. Then we study the prolongation of
projectable tangent valued forms with respect to these functors and describe the
complete lift of the Frölicher-Nijenhuis bracket. We also present the coordinate
formula for composition of semiholonomic jets.

Recently it has been clarified that the Weil functors represent a unified technique
for studying a large class of geometric problems. A survey on the results concerning
the product preserving bundle functors on the categoryMf of all manifolds and all
smooth maps can be found in [6]. Our starting point was a paper by W. Mikulski,
[11]. He deduced that the product preserving bundle functors on the category FM
of all fibered manifolds and all fibered morphisms are in bijection with the Weil
algebra homomorphisms µ : A→ B. Our main aim is to study the prolongation of
projectable tangent valued forms, introduced by L. Mangiarotti and M. Modugno,
[10], with respect to such a functor Tµ. In particular, we are interested in the
Frölicher-Nijenhuis bracket, which is a powerful tool for the theory of connections,
[6], and their torsions, [8]. In the manifold case, such problems were studied in [4]
and [1].

In Section 1 we discuss Tµ in the case of product fibered manifolds. Our results
represent a basis for coordinate descriptions of Tµ. In Section 2 we study an
important special case, the functor Tr,s,qk,l of the fibered velocities of dimension
(k, l) and order (r, s, q). The coordinate formula for t he prolongation T r,s,qk,l f of
a fibered manifold morphism f is reduced to the jet composition. That is why
we present a coordinate formula for the composition of jets in the appendix. We
start with the semiholonomic case, which reflects the core of the problem. For the
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Applicata “G. Sansone”, Università di Firenze, supported by the University of Florence.
The second author was also supported by a grant of the GA ČR No. 201/99/0296.
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holonomic case, we obtain another approach to recent results by D. R. Grigore and
D. Krupka, [5], M. Kureš, [9] and M. Modugno, [12]. In Section 2 we also deduce
that each functor Tµ is dominated by a fibered velocities functor analogously to
the manifold case.

Then we describe the natural tensor fields of type (1, 1) on Weil bundles. In
Section 4 we study the flow prolongation of projectable vector fields in connection
with the natural (1, 1)-tensor fields. On one hand, the flow prolongation of pro-
jectable vector fields can be composed with the natural tensor fields determined by
the elements of the algebra A. On the other hand, the flow prolongation of vertical
vector fields admits an additional operation related to the algebra B. Hence we
need three formulae for the bracket of the flow prolongations of vector fields. As
the main result of the paper, we then deduce the corresponding three formulae for
the Frölicher-Nijenhuis bracket of the complete lifts of projectable tangent valued
forms in Proposition 6.

All manifolds and maps are assumed to be infinitely differentiable and all man-
ifolds are paracompact. Unless otherwise specified, we use the terminology and
notation from [6].

1. Product preserving bundle functors on FM

First we present one construction of a product preserving bundle functor on
FM. Let µ : A→ B be a Weil algebra homomorphism. By the classical theory, µ
induces two bundle functors TA, TB onMf and a natural transformation (denoted
by the same symbol) µ : TA → TB , [6], Chapter VIII. For every fibered manifold
p : Y →M , we consider TBp : TBY → TBM . Then we take into account the map
µM : TAM → TBM and construct the induced bundle TµY = µ∗MT

BY , which
will also be denoted by

(1) TµY = TAM ×TBM TBY .

In other words,

(2) TµY = {(x, y) ∈ TAM × TBY, µM(x) = TBp(y)} .

Given another fibered manifold q : Z → P and an FM-morphism f : Y → Z
over f : M → P , we have TBf : TBY → TBZ and we construct the induced map
Tµf := TAf ×TBf TBf : TµY → TµZ,

(3) Tµf(x, y) = (TAf (x), TBf(y)) , (x, y) ∈ TµY .

This defines a bundle functor Tµ on FM that preserves products.
In general, if we have an FM-morphism f : Y → Z over f : M → P and

we need distinguish the manifold map f : Y → Z from the FM-morphism itself,
we write (f, f ) for the latter. In [11], W. Mikulski clarified that every product
preserving bundle functor F on FM is of the above form. Let pt denote one
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element manifold and ptM : M → pt the unique map. There are two canonical
functors i1, i2 : Mf → FM defined by i1M = (idM : M → M ), i1f = (f, f),
i2M = (ptM : M → pt), i2f = (f, idpt) and a natural transformation t : i1 → i2,
tM = (idM , ptM) : i1M → i2M . Applying F , we obtain two product preserving
bundle functors F ◦ i1, F ◦ i2 onMf and a natural transformation F ◦ t : F ◦ i1 →
F ◦ i2. By the Weil theory, there exists a Weil algebra homomorphism µ : A→ B
such that F ◦ i1 = TA, F ◦ i2 = TB, F ◦ t = µ. Then F = Tµ, [11] (see also [2] for
a simplified proof).

If we have a product fibered manifold Y = M×N , it coincides with the product
Y = i1M × i2N in FM. This implies directly

(4) Tµ(M ×N ) = TAM × TBN .

In the form (2), we have

Tµ(M ×N ) = {(x, v) ∈ TAM × TB(M ×N ), µM(x) = pr1(v)}

where TB(M ×N ) = TBM × TBN . If we write v = (u, y), we obtain

(5) Tµ(M ×N ) = {(x, µM(x), y)} ≈ TAM × TBN .

Given another product fibered manifold Z = P × Q, every FM-morphism f :
Y → Z is identified with a pair f = (f1, f2), f1 : M → P , f2 : M ×N → Q,

f(x, y) = (f1(x), f2(x, y)) .

Then TAf1 : TAM → TAP and TBf2 : TBM × TBN → TBQ. The following
assertion describes Tµ in the case of product fibered manifolds.

Proposition 1. We have

(6) Tµf = (TAf1, T
Bf2 ◦ (µM × idTBN)) .

Proof. By (3) and (5),

Tµf(x, µM (x), y) = (TAf1(x), TBf1(µM (x)), TBf2(µM (x), y)) .

The naturality of µ on f1 : M → P yields TBf1(µM (x)) = µP (TAf1(x)). �

In particular, consider a function f : Y → R. It can be interpreted as an
FM-morphism Y → i2R, so that T µf : TµY → B. If Y = M × N , then
Tµf = TBf ◦ (µM × idTBN).
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2. Velocities in the fibered case

Given two manifoldsM,S and a smooth map f : M → S, we can construct the
r-jet jrxf at x ∈ M . If we replace M by a fibered manifold p : Y → M , we can
require a higher order contact along the fiber Yx passing through y ∈ Y , x = p(y).
Thus, for two maps f, g : Y → S and two integers s > r we define jr,sy f = jr,sy g by

(7) jryf = jryg and jsy(f |Yx) = jsy(f |Yx) .

The space of all such (r, s)-jets is denoted by Jr,s(Y, S).
Write Rk,l = (pk,l : Rk × Rl → Rk) for the product fibered manifold. Analo-

gously to the classical functor Trk of (k, r)-velocities, we introduce

T r,sk,l S = Jr,s0,0(Rk,l, S) , T r,sk,l f(jr,s0,0g) = jr,s0,0(f ◦ g)

for every manifold S and every map f : S → S. Hence Tr,sk,l is a bundle functor on
Mf that preserves products.

In general, we have a natural transformation %l : T rh → T rl , h > l, defined
as follows. Consider the injection Rl ↪→ Rh, (x1, . . . , xl) 7→ (0, . . . , 0, x1, . . . , xl).
Then we define

%lM (jr0ϕ) = jr0(ϕ|Rl) , ϕ : Rh→ S .

On the other hand, we have the jet projection Tsl S → T rl S, s > r. Clearly,

(8) T r,sk,l S = T rk+lS ×T rl S T
s
l S

and T r,sk,l f = T rk+lf ×T rl f T
s
l f . Write α for a multiindex of range 1, . . . , k and β for

a multiindex of range k + 1, . . . , k + l. Thus, if yp are some local coordinates on
S, the induced coordinates on Tr,sk,l S are

(9) ypαβ, |α| > 0, |α|+ |β| ≤ r and ypβ , |β| ≤ s .

Having two FM-morphisms f, g : Y → Z, we can require a higher order contact
of the base maps in addition to (7). Hence for s ≥ r ≤ q we define

jr,s,qy f = jr,s,qy g

by (7) and jqxf = jqxg. We write Jr,s,q(Y, Z) for the space of all (r, s, q)-jets from
Y to Z. Then we introduce the space of fibered velocities of dimension (k, l) and
order (r, s, q) by

T r,s,qk,l Y = Jr,s,q0,0 (Rk,l, Y ) .

Clearly, T r,s,qk,l is a product preserving bundle functor on FM.
We are going to describe Tr,s,qk,l in the product form of (1) and (6). Clearly,

T r,s,qk,l ◦ i1 = T qk . The Weil algebra of T qk is

(10) Dqk = R[x 1, . . . , xk]
/
m(k)q+1 ,
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where m(k) = 〈x1, . . . , xk〉 is the maximal ideal in the algebra R[x 1, . . . , xk]. On
the other hand, Tr,s,qk,l ◦ i2 = T r,sk,l . By [2], the Weil algebra of T r,sk,l is

(11) Dr,sk,l = R[x 1, . . . , xk+l]
/
〈m(k + l)s+1,m(k)m(k + l)r〉 .

Write ν = T r,s,qk,l ◦ t for the natural transformation in question. An FM-morphism
ϕ : Rk,l→ i1S is of the form (ϕ◦pk,l, ϕ), ϕ : Rk→ S. Then tS◦ϕ = (ϕ◦pk,l, ptRk,l).
This implies

(12) νS(jq0ϕ) = jr,s0,0(ϕ ◦ pk,l) .

Since ϕ ◦ pk,l is constant along each fiber of Rk,l, this construction is independent
of s > r. One verifies directly that the algebra form of ν is determined by the
canonical injection

R[x 1, . . . , xk] ↪→ R[x 1, . . . , xk, xk+1, . . . , xk+l] .

For the product fibered manifold M × N , we have Tr,s,qk,l (M × N ) = TqkM ×
T r,sk,lN . If xi are some local coordinates on N , then the induced coordinates on
T r,s,qk,l (M ×N ) are

(13) xiα , |α| ≤ q , ypαβ , |α| > 0 , |α|+ |β| ≤ r , ypβ , |β| ≤ s .

For every FM-morphism f : Y → Z, we have T r,s,qk,l f = T qk f ×T r,sk,l f T
r,s
k,l f and

T r,sk,l f = T rk+lf×T rl fT
s
l f . Hence Tr,s,qk,l f is expressed in terms of the jet composition.

We present a coordinate expression for the composition of jets in the appendix.
In the manifold case, every Weil bundle TA is dominated by a velocities bundle,

i.e. there exists a (k, q)-velocities bundle Tqk and a surjective natural transforma-
tion τ : T qk → TA. Indeed, let NA be the nilpotent ideal of A. The number
w(A) = dim(NA/N2

A) is called the width of A and the minimum ordA of the
integers satisfying Np+1

A = 0 is called the order of A. If we take k elements
e1, . . . , ek ∈ NA such that their projections into NA/N2

A form a basis of this vec-
tor space, then e1, . . . , ek determine a surjective algebra homomorphism Dqk → A,
where q is the order of A.

We are going to deduce a similar result for the fibered case. Let B be another
Weil algebra with nilpotent ideal NB , ordB = s. Every algebra homomorphism
µ : A→ B induces a linear map

(14) µ1 : NA/N
2
A → NB/N

2
B .

Define w(µ) := w(B) + dimKer µ1.
Our problem requires the following general concept.
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Definition 1. The smallest integer r satisfying

(15) µ(NA)Nr
B = 0

is called the order of µ.

In other words, r = ordµ is characterized by

µ(a)b1 . . . br = 0 for all a ∈ NA, b1, . . . , br ∈ NB .

Since µ(a) ∈ NB , we have ordµ ≤ ordB.

Proposition 2. For every product preserving bundle functor Tµ on FM there ex-
ists a velocities functor T r,s,qk,l and a surjective natural transformation τ : Tr,s,qk,l →
Tµ, where

(16) k = w(A), k + l = w(µ), s = ordB, r = ordµ, q = max(ordµ, ordA) .

Proof. Take e1, . . . , ek ∈ NA such that their images in NA/N2
A form a basis. This

determines a surjective homomorphism τ1 : Dqk → A. Further, take some elements
ek+1, . . . , ek+l ∈ NB with the property that their images in NB/N2

B together with
the images of µ(e1), . . . , µ(ek) generate NB/N2

B as a vector space. The elements
e1, . . . , ek+l determine a surjective homomorphism τ2 : Dsk+l → B. Since µ has
order r and Dr,sk,l is of the form (11), τ2 factorizes through a map (denoted by the
same symbol) Dr,sk,l → B. By the construction of τ1 and τ2 the following diagram
is commutative in the case q > ordµ

(17)

Dqk
ν

τ1

Dr,sk,l

τ2

A
µ

B

By the general result of W. Mikulski, [11], the pair τ1, τ2 determines a surjective
natural transformation τ : T r,s,qk,l → Tµ. �

Remark 1. We recall that a bundle functor F on FM is said to be of order
(r, s, q), s ≥ r ≤ q, [7], if jr,s,qy f = jr,s,qy g implies Ff |FyY = Fg|FyY . (We do not
assume the values of r, s, q are minimal.) Clearly, if G is another bundle functor
on FM and τ : F → G is a surjective natural transformation, then G has also the
order (r, s, q). Hence Proposition 2 characterizes the order of Tµ in an algebraic
way.
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3. Natural tensor fields of type (1,1)

In the case of one Weil algebra A, we have a canonical isomorphism κM :
TATM → TTAM , [6]. Every a ∈ A determines a (1, 1)-tensor field L(a)M :
TTAM → TTAM as follows. The multiplication of the tangent vectors by reals
is a map mM : R× TM → TM . Applying the functor T A, we obtain TAmM :
A× TATM → TATM . Then

(18) T AmM := κM ◦ TAmM ◦ (idA×κ−1
M ) : A× TTAM → TTAM

and we define L(a)M = T AmM (a,−). Since the multiplication in A is deduced
from the multiplication of reals, we have

(19) L(a1)M ◦ L(a2)M = L(a1a2)M , a1, a2 ∈ A .

In the case of µ : A→ B, the tangent bundle of TµY = TAM ×TBM TBY is

TTµY = TTAM ×TTBM TTBY .

For every a ∈ A, we have a natural (1, 1)-tensor field λ(a)Y on TµY defined by

(20) λ(a)Y (U1, U2) = (L(a)M (U1), L(µ(a))Y (U2)), (U1, U2) ∈ TTµY ,

see [13]. By (19) we obtain

(21) λ(a1a2)Y = λ(a1)Y ◦ λ(a2)Y , a1, a2 ∈ A .

(We remark that Tomáš deduced in [13] that all natural (1, 1)-tensor fields on TµY
are of the form (20).)

The vertical tangent bundle V (TµY → TAM ) is the space of all pairs (U1, U2) ∈
TTAM ×TTBM TTBY , where U1 is the zero vector. Hence the elements of
V (TµY → TAM ) are of the form (x, U ), x ∈ TAM , U ∈ TyT

BY , µM (x) =
TBp(y), TTBp(U ) = 0. By construction, the (1, 1)-tensor fields L(b)Y and L(b)M
are TBp-related for all b ∈ B. In particular, TTBp(U ) = 0
implies TTBp(L(b)Y (U )) = 0. Hence the rule

(22) L̃(b)Y (x, U ) = (x, L(b)Y (U ))

defines a natural map L̃(b)Y : V (TµY → TAM ) → V (TµY → TAM ) over the
identity of V (TµY → TAM ). By (19), we obtain directly

(23) L̃(b1)Y ◦ L̃(b2)Y = L̃(b1b2)Y .
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4. Prolongation of vector fields

In general, let p : Y → M be a fibered manifold and ϕ : Q → M be a map.
Then

Q×ϕ Y = {q ∈ Q, y ∈ Y, p(y) = ϕ(q)}

is a fibered manifold π : Q×ϕ Y →M , π(y, q) = p(y). We have Tp : TY → TM ,
Tϕ : TQ→ TM and the tangent bundle of Q×ϕ Y is of the form

T (Q×ϕ Y ) = TQ×Tϕ TY .

Consider a projectable vector field X on Y over X on M and a vector field U
on Q that is ϕ-related with X. Then the product vector field U ×X on Q × Y
is restrictible to Q ×ϕ Y . The restriction is denoted by U ×X X and is called
the fibered product of U and X. Clearly, U ×X X is a projectable vector field on
π : Q×ϕ Y →M over X.

Consider now the functor Tµ and a projectable vector field X on Y over X
on M . Then the flow prolongation T AX is a vector field on TAM that is µM -
related with the flow prolongation T BX on TBM . On the other hand, the flow
prolongation T BX is a projectable vector field on TBY over T BX on TBM . Hence
we have defined the vector field TAX ×T BX T BX. By construction, this vector
field coincides with the flow prolongation T µX, i.e.

T µX = T AX ×T BX T BX .

We recall that the flow prolongation preserves bracket of vector fields, [6].
The canonical isomorphismsκAM : TATM → TTAM and κBY : TBTY → TTBY

induce a canonical isomorphismκµY : T µTY → TTµY . The above construction im-
plies that the functorial prolongation TµX : TµY → TµTY of the FM-morphism
X : (Y →M )→ (TY → TM ) satisfies

T µX = κµY ◦ TµX .

For every a ∈ A, the composition λ(a)T µX of λ(a)Y and T µX is also a pro-
jectable vector field on TµY . From the manifold case, [1], we obtain directly

Proposition 3. For every pair X1, X2 of projectable vector fields on Y and every
a1, a2 ∈ A, we have

[λ(a1)T µX1, λ(a2)T µX2] = λ(a1a2)T µ([X1, X2]) . �

If W : Y → V Y is a vertical field on Y , then T µW is a vertical vector field on
TµY → TAM and the composition L̃(b)T µW of L̃(b)Y and T µW is defined. The
manifold result implies directly
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Proposition 4. For every pair W1, W2 of vertical vector fields on Y and every
b1, b2 ∈ B, we have

[L̃(b1)T µW1, L̃(b2)T µW2] = L̃(b1b2)T µ([W1,W2]) . �

If X is projectable and W is vertical, the bracket [X,W ] is a vertical vector
field. To deduce a result analogous to Propositions 3 and 4, we need some lemmas.
By Section 1, given a function f : Y → R, T µf : T µY → B is a vector valued
function. So its derivative with respect to any vector field on TµY is also a
B-valued function on TµY .

Lemma 1. For every projectable vector field X on Y and every function f : Y →
R, we have T µX(Tµf) = Tµ(Xf).

Proof. Let πR : TR= R× R→ R be the second projection. The derivative Xf
can be expressed as Xf = πR ◦ Tf ◦X. By functoriality,

Tµ(Xf) = TµπR ◦ TµTf ◦ TµX .

But T µX = κµY ◦TµX and TµTf◦(κµY )−1 = (κBR )−1◦TTµf by naturality of κ. We
have κBR : TBTR→ TT BRand T µπR◦κBR is the second projection of TB = B×B.

�

Given b ∈ Bwe define bTµf : TµY → B by using the multiplication in B.

Lemma 2. We have T µX(bTµf) = bTµ(Xf) for all b ∈ B.

Proof. Obviously, X(kf) = k(Xf) for all k ∈ i2R. Applying T µ and using
Lemma 1, we obtain our claim. �

Lemma 3. For every vertical field W on Y , we have

(L̃(b)T µW )Tµf = T µW (bTµf) for all b ∈ B .

Proof. Clearly, (kW )f = W (kf) for all k ∈ i2R. Applying T µ and using Lemma
1, we obtain our claim. �

Lemma 4. For every projectable vector field X on Y , we have

(λ(a)T µX)Tµf = µ(a)Tµ(Xf) .

Proof. Obviously, (kX)f = k(Xf), where k ∈ i1R on the left hand side and
k ∈ i2R on the right hand side. Then we apply T µ and use the fact that µ =
TµtR : A→ B. �
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Lemma 5. If two vertical vector fields U and U on TµY → TAM satisfy
U (bTµf) = U (bTµf) for all f : Y → R and all b ∈ B, then U = U .

Proof. It suffices to consider the case Y = M×N and such functionsf̃ : M×N →
R that are of the form f ◦p 2, where f : N → Rand p2 : M ×N → N is the second
product projection. Then Tµf̃ = TBf ◦π2, where π2 : TAM×TBN → TBN is the
second product projection. Since U (Tµf̃ ) is constructed fiberwise, we can apply
Lemma 2 from [1] to each fiber of the product fibered manifold TAM × TBN .
This proves our claim. �

Proposition 5. For every projectable vector field X on Y and every vertical
vector field W on Y , we have

[λ(a)T µX, L̃(b)T µW ] = L̃(µ(a)b)T µ([X,W ]) for all a ∈ A, b ∈ B .

Proof. Take any f : Y → R and c ∈ B. Using Lemmas 2–4, we find

[λ(a) T µX, L̃(b)T µW ](cTµf) = λ(a)T µX(L̃(b)T µW )(cTµf)

− L̃(b)T µW (λ(a)T µX)(cTµf) = λ(a)TµX(bcTµ(Wf))

− L̃(b)T µW (µ(a)cTµ(Xf)) = µ(a)bc(Tµ(XWf) − Tµ(WXf))

=µ(a)bcTµ([X,W ]f) = L̃(µ(a)b)T µ([X,W ])(cTµf) .

Then our claim follows from Lemma 5. �

5. Projectable tangent valued forms

A tensor field D of type (1, k) on Y can be interpreted as a map

D : TY ×Y · · · ×Y TY → TY .

We say that D is projectable, if there is a tensor field D of type (1, k) on M such
that the following diagram commutes

(24)

TY

Tp

×Y · · ·×Y TY

Tp

D TY

Tp

TM×M · · ·×MTM
D

TM

A projectable D is said to be vertical valued, if the values of (24) lie in the vertical
tangent bundle V Y , i.e. D is the zero tensor field.

An antisymmetric projectable (1, k)-tensor field is called a projectable tangent
valued k-form on Y , [10].
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To construct the induced (1, k)-tensor field on TµY , we proceed analogously to
the manifold case, [1], [4]. Applying T µ to (24), we obtain

(25)

TµTY

TµTp

×TµY · · ·×TµY TµTY TµD

TµTp

TµTY

TµTp

TATM×TAM · · ·×TAMTATM
TAD

TATM

If we add the canonical isomorphisms κAM and κµY , we obtain a projectable (1, k)-
tensor field T µD on TµY over the (1, k)-tensor field TAD, cf. [1], [4].

Definition 2. The (1, k)-tensor field T µD is called the complete lift of D.

In the case k = 0, D is a vector field and T µD coincides with its flow prolon-
gation.

Our main aim is to describe the Frölicher-Nijenhuis bracket of two projectable
tangent valued forms on Y in a way similar to the manifold case, [1]. We need
some lemmas.

Lemma 6. Let C and C be two projectable (1, k)-tensor fields on TµY . If they
coincide on all vector fields of the form λ(a)T µX and L̃(b)T µW , where X is a
projectable vector field on Y , W is a vertical vector field on Y and a ∈ A, b ∈ B,
then C = C.

Proof. It suffices to consider the case Y = Rm × Rn. Then TµY = TARm ×
TBRn = Am × Bn. Let 1, u1, . . . , ua or 1, v1, . . . , vb be a basis in A or B with
nilpotent u’s or v’s and xi, zi1, . . . , z

i
a or yp, wp1, . . . , w

p
b be the induced coordinates

on TARm or TBRn, respectively. Consider a constant vector field W = ηp ∂
∂yp .

Since its flow is formed by translations, we have T µW = ηp ∂
∂yp

+ 0. Then

L̃(vd)T µW = ηp ∂
∂wpd

, d = 1, . . . , b. Similarly, if we consider a constant vector field

X = ξi ∂
∂xi , we have T µX = ξi ∂

∂xi + 0. Then λ(uc)T µX = ξi ∂
∂zic

+ 0, c = 1, . . . , a.

Since ξi and ηp are arbitrary, this implies the coordinate form of our claim. �

The manifold case, [1], [4], implies directly

Lemma 7. Let D be a projectable (1, k)-tensor field on Y . Then

T µD(λ(a1)T µX1, . . . , λ(ak)T µXk) = λ(a1 . . .ak)T µ(D(X1, . . . , Xk))

for every projectable vector fields X1, . . . , Xk on Y and every a1, . . . , ak ∈ A. �

If at least one of the vector fields X1, . . .Xk is vertical, then D(X1, . . . , Xk) is
also a vertical vector field on Y .
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Lemma 8. Let D be a projectable (1, k)-tensor field on Y , X1, . . . , Xs be pro-
jectable vector fields on Y and Ws+1, . . . ,Wk be vertical vector fields on Y , s < k.
Then

T µD(λ(a1)T µX1, . . . , λ(as)T µXs, L̃(bs+1)T µWs+1, . . . , L̃(bk)T µWk)(26)

= L̃(µ(a1) . . .µ(as)bs+1 . . . bk)T µ(D(X1, . . . , Xs,Ws+1, . . . ,Wk)) .

Proof. We have D(c1X1, . . . , csXs, cs+1Ws+1, . . . , ckWk) = (c1 . . . ck)D(X1,
. . . , Xs,Ws+1, . . . ,Wk), where c1, . . . , cs ∈ i1R and c s+1, . . . , ck, (c1 . . . ck) ∈ i2R.
Applying T µ, we obtain (26) analogously to the proof of Lemma 4. �

The Frölicher-Nijenhuis bracket of a projectable tangent valued k-form P and
a projectable tangent valued l-form Q is a projectable tangent valued (k+ l)-form
[P,Q], [10].

Proposition 6. For the Frölicher-Nijenhuis bracket of two projectable tangent
valued forms P and Q on Y , we have

(27) [λ(a)T µP, λ(a′)T µQ] = λ(aa′)T µ([P,Q]) , a, a′ ∈ A .

If Q is vertical valued, then

(28) [λ(a)T µP, L̃(b)T µQ] = L̃(µ(a)b)T µ([P,Q]) , a ∈ A, b ∈ B .

If both P and Q are vertical valued, then

(29) [L̃(b)T µP, L̃(b′)T µQ] = L̃(bb′)T µ([P,Q]) , b, b′ ∈ B .

Proof. L. Mangiarotti and M. Modugno, [10], deduced the following expression
of [P,Q] in terms of the bracket of projectable vector fields

[P,Q](X1, . . . , Xk+l)

=
1
k!l!

∑
σ

signσ [P (Xσ1, . . . , Xσk), Q(Xσ(k+1), . . . , Xσ(k+l))]

+
−1

k!(l − 1)!

∑
σ

signσQ([P (Xσ1, . . . , Xσk), Xσ(k+1)], Xσ(k+2), . . . )

+
(−1)kl

(k − 1)!l!

∑
σ

signσP ([Q(Xσ1, . . .Xσl), Xσ(l+1)], Xσ(l+2), . . . )(30)

+
(−1)k−1

(k − 1)!(l − 1)!2

∑
σ

signσQ(P ([Xσ1, Xσ2], Xσ3, . . . ], Xσ(k+2), . . . )

+
(−1)(k−1)l

(k − 1)!(l − 1)!2

∑
σ

signσP (Q([Xσ1, Xσ2], Xσ3, . . . ], Xσ(l+2), . . .)
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In all three cases, we express the value of the right hand side on λ(a1)T µX1,

. . . , λ(as)T µXs, L̃(b1)T µW1, . . . , L̃(bh)T µWh, s + h = k + l. In the first case, if
h = 0, we use Proposition 3 and Lemma 7 and deduce that each term is equal to
the value of T µ on the corresponding term of (30) multiplied by λ(aa′a1 . . .ak+l).
For h > 0, Propositions 3–5 and Lemmas 7 and 8 imply that the multiplication
factor is L̃(µ(aa′a1 . . .as)b1 . . . bh). Using Lemma 6, we obtain (27). In the second
and third cases we proceed in the same way. �

APPENDIX: Jet composition in coordinates

We realized in Section 2 that the coordinate formula for Tr,s,qk,l f is reduced to
the coordinate formula for the composition of jets. We deduce the coordinate
composition formula for the semiholonomic jets and we discuss its special form in
the holonomic case.

Let M and N be two manifolds. The space of non-holonomic r-jets J̃r(M,N )
is defined by the induction J̃1(M,N ) = J1(M,N ) and J̃r(M,N ) is the first jet
prolongation of the fibered manifold α : J̃r−1(M,N )→M , where α is the source
jet projection. In other words, the elements of J̃r(M,N ) are of the form j1xσ,
where σ is a local map M → J̃r−1(M,N ) satisfying α◦σ = idM . Let P be another
manifold. The composition B◦A ∈ J̃rx(M,P )z of A ∈ J̃rx(M,N )y, A = j1

xσ(u) and
B ∈ J̃ry (N,P )z, B = j1y%(v) is defined by the following induction. Let β denote
the target jet projection. Then β ◦ σ is a local map of M into N and σ(u) and
%(β(σ(u))) are composable non-holonomic (r − 1)-jets. Then one defines

(31) B ◦A = j1x(%(β(σ(u))) ◦ σ(u))

with the composition of non-holonomic (r − 1)-jets on the right hand side, [3].
The inclusion Jr(M,N ) ⊂ J̃r(M,N ) is defined by jrxf 7→ j1

x(jr−1f) and (31)
coincides with the composition of holonomic jets. The subspace of semiholonomic
r-jets J

r
(M,N ) ⊂ J̃r(M,N ) is defined by the following induction. An element

j1
xσ ∈ J̃r(M,N ) is said to be semiholonomic, if

(i) σ is a local section M → J
r−1

(M,N ),
(ii) σ satisfies σ(x) = j1x(πr−1

r−2 ◦ σ),

where πr−1
r−2 : J

r−1
(M,N )→ J

r−2
(M,N ) is the canonical projection. The compo-

sition of two semiholonomic jets is semiholonomic as well. The coordinates of an
element A ∈ Jr0(Rm,Rn)0 are

(32) api , a
p
ij, . . . , a

p
i1...ir

that are arbitrary in all subscripts. We have Jr(M,N ) ⊂ J
r
(M,N ) and this

inclusion is characterized by symmetry in all subscripts.
Consider B ∈ Jr0(Rn,Rp)0 with coordinates

(33) bap, b
a
pq, . . . , b

a
p1...pr

Write C = B ◦A, C = (cai , c
a
ij, . . . , c

a
i1...ir

).
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Proposition 7. For every s ≤ r, consider the set Q(r, s) of all ordered decompo-
sitions of r into s summands r = r1 + · · ·+rs. For every π = (r1, . . . , rs), consider
all associated orderings % ∈ π, % = ((j1, . . . jr1), . . . , (jr1 + · · · + jrh+1, . . . , jr1 +
· · · + jrh + jrh+1), . . . , (jr−rs+1, . . . , jr)) such that the first terms satisfy j1 <
· · · < jr1 + · · · + jrh+1 < · · · < jr−rs+1 and each subsequence is increasing, i.e.
jr1 + · · ·+ jrh+1 < · · · < jr1 + · · ·+ jrh + jrh+1 for all h = 1, . . . , s. Then we have

(34) cai1...ir =
r∑
s=1

∑
π∈Q(r,s)

∑
%∈π

bap1...ps
ap1
ij1 ...ijr1

. . .apsijr−rs+1 ...ijr
.

Proof. We proceed by induction. The case r = 1 is trivial. If we analyze (31)
with (i) and (ii), we find that the formula for ci1...irir+1 is obtained by the following
procedure. Each product of s+1 elements is replaced by s+1 terms, where we grad-
ually replace bap1...ps by bap1...psps+1

a
ps+1

ir+1
, ap1
ij1...ijr1

by ap1
ij1 ...ijr1 ir+1

, . . . , apsijr−rs+1 ...ijr

by apsijr−rs+1 ...ijr ir+1
and in each case all other terms remain unchanged. This

procedure is compatible with passing from r to r + 1 in (34). �
In the holomonic case, all a’s and b’s in (34) are symmetric in all subscripts.

Then (34) can be rewritten as

(35) cai1...ir =
r∑
s=1

∑
(I1,...,Is)

bap1...psa
p1
I1
. . .apsIs ,

where the inner sum is extended to all partitions (I1, . . . , Is) of the set {i1, . . . , ir}
into s subsets. This formula was deduced by D. R. Grigore and D. Krupka, [5],
see also [12].
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[6] Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Differential Geometry, Springer-
-Verlag, 1993.
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