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ARCHIVUM MATHEMATICUM (BRNO)

Tomus 38 (2002), 209 – 217

HOMOMORPHISMS FROM THE UNITARY GROUP TO THE
GENERAL LINEAR GROUP OVER COMPLEX NUMBER FIELD

AND APPLICATIONS

CHONG-GUANG CAO AND XIAN ZHANG

Abstract. Let Mn be the multiplicative semigroup of all n × n complex

matrices, and let Un and GLn be the n–degree unitary group and general
linear group over complex number field, respectively. We characterize group

homomorphisms from Un to GLm when n > m ≥ 1 or n = m ≥ 3, and
thereby determine multiplicative homomorphisms from U n to Mm when n >

m ≥ 1 or n = m ≥ 3. This generalize Hochwald’s result in [Lin. Alg. Appl.
212/213:339-351(1994)]: if f : Un → Mn is a spectrum–preserving mul-

tiplicative homomorphism, then there exists a matrix R in GL n such that
f(A) = R−1AR for any A ∈ Un.

1. Introduction

Let C be the complex number field and In the n×n identity matrix over C . We
denote the n-degree unitary group ({A|A∗A = In}), the n-degree general linear
group and the multiplicative semigroup of all n × n matrices over C by Un, GLn
and Mn, respectively.

In the last few decades, some authors have determined multiplicative homo-
morphisms or isomorphisms between matrix (semi)groups (see [2], [3], [4], [6],
[7], [8], [9], [10], [11] and [12]). Hochwald in [5] has studied a similar problem:
characterizing the spectrum–preserving multiplicative homomorphisms from Un
to Mn. In this paper we characterize group homomorphisms from Un to GLm
when n > m ≥ 1 or n = m ≥ 3, As applications, we also determine multiplicative
homomorphisms from Un to Mm when n > m ≥ 1 or n = m ≥ 3, and thereby
generalize the mentioned result in [5].

We denote by Hom (Un,Γm) the set of the multiplicative homomorphisms from
Un to Γm, where Γm is either GLm or Mm. Let C0 , C1 and C2 be the set {c ∈
C
∣∣|c| ≤ 1}, {c ∈ C

∣∣|c| = 1} and {(a, b)|a, b ∈ C0 , |a|2 + |b|2 = 1}, respectively. Let
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Epq denote the matrix with 1 at the (p, q) position and 0 elsewhere. For positive
integers p and q, and c ∈ C1 , we denote by Dp(c) and Zpq the matrix In−(1−c)Epp
and In − Epp − Eqq + Epq + Eqp, respectively. In particular, if p < q, we denote
by Vpq(a, b) the matrix In + (a− 1)Epp + (a− 1)Eqq − bEqp + bEpq for (a, b) ∈ C2

and write Vpq(x) for Vpq(x,
√

1− x2).

2. Preliminaries

In this section, we assume that n ≥ m, n ≥ 2 and φ ∈ Hom(Un, GLm). Since
φ(AB) = φ(A)φ(B) for any A and B in Un, φ have the next propositions.

Proposition 1. φ(In) = Im.

Proposition 2. φ(A)−1 = φ(A∗) for any A ∈ Un.

Proposition 3. For A and B in Un, if A = PBP ∗ for some P ∈ Un, then
φ(A) = φ(P )φ(B)φ(P )−1.

Proposition 4. For A and B in Un, if A and B are commutative, then φ(A) and
φ(B) are also.

Proposition 5. For any mutually distinct positive integers p, q and k with p < q,
x, y ∈ [−1, 1], c ∈ C1 and (a, b) ∈ C2 , the following equations hold.

φ(Dk(c))φ(Zpq) = φ(Zpq)φ(Dk(c)) ;(1)

φ(Dp(c))φ(Zpq) = φ(Zpq)φ(Dq(c)) ;(2)

φ(Zpq)2 = Im ;(3)

φ(Zpq)φ(Zpk)φ(Zqk) = φ(Zpk) ;(4)

φ(Dk(c))φ(Vpq(x)) = φ(Vpq(x))φ(Dk(c)) ;(5)

[φ(Dp(−1))φ(Vpq(x))]2 = Im ;(6)

φ(Vpq(x)) = φ
(
Vpq
(√

x+1
2

))2

;(7)

[φ(Zpq)φ(Vpq(x))]2 = Im ;(8)

φ
(
Vpq
(
xy −

√
(1− x2)(1 − y2)

))
= φ(Vpq(x))φ(Vpq(y))
= φ(Vpq(y))φ(Vpq(x)) ;

(9)

φ(Dp(−1))φ(Vpq(x)) = φ(Vpq(−x))φ(Dq(−1)) ;(10)

φ(Vpq(a, b)) = φ
(
Dp
(
ab
|ab|
))
φ(Vpq(|a|))φ

(
Dp
(
b
|b|
))
φ
(
Dq
(
a
|a|
))

;(11)

φ(Dk(−1))2 = Im .(12)
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Lemma 1. Let {R1, R2, · · · , Rt} be a set of t mutually commutative involutory
matrices in GLn. Then there exists Q ∈ GLn such that Q−1RiQ = Λi for any
1 ≤ i ≤ t, where Λ1 = −Ir⊕In−r for some 0 ≤ r ≤ n and Λ2, · · · , Λt are diagonal
involutory matrices.

Proof. It is easy to see that
{

1
2 (In+R1), 1

2 (In+R2), · · · , 1
2 (In+Rt)

}
is a set of t

mutually commutative idempotent matrices. By a similar argument to [1, Lemma
3.1], the lemma can be obtained.

Lemma 2. Suppose A = (ast) ∈ Un. Then A =
n∏
k=p

V1k(ak, bk)(1 ⊕A1) for some

p ≥ 2, A1 ∈ Un−1 and (ap, bp), (ap+1, bp+1), · · · , (an, bn) ∈ C2 .

Proof. Case 1. Suppose a21 = · · · = an1 = 0. Then A = a11 ⊕ B from A ∈ Un,
where a11 ∈ C1 and B ∈ Un−1. Let p = n, an = a11 and bn = 0. Then
A = V1n(an, bn)(1⊕ A1) for some A1 ∈ Un−1.

Case 2. Suppose ap1 is the first nonzero element of a21, · · · , an1. Let bk = −ak1
rk

and

ak =


a11
rp if k = p

rk−1
rk if k > p

for any k ≥ p, where rk =
√∑k

j=1 |aj1|2. Then

V1n(an,−bn)V1 n−1(an−1,−bn−1) · · ·V1p(ap,−bp)A =
(

1 ∆
0 A1

)
.

Noting V1k(ak,−bk) ∈ Un for any k ≥ p, we have ∆ = 0 and A1 ∈ Un−1. Thus
the lemma follows.

From which, we can obtain the next corollary by induction.

Corollary 1. Suppose A ∈ Un. Then A = ∆1∆2 · · ·∆t(In−1 ⊕ detA) for some
∆1, ∆2, · · · , ∆t ∈ {Vpq(a, b)|1 ≤ p < q ≤ n, (a, b) ∈ C2}.

By a similar argument to Lemma 2, we have

Lemma 3. Suppose B = (bst) ∈ Un. Then

B = (1⊕ B1)V1n(cn, dn)V1 n−1(cn−1, dn−1) · · ·V1p(cp, dp)

for some (cp, dp), (cp+1, dp+1), · · · , (cn, dn) ∈ C2 and B1 ∈ Un−1.

Lemma 4. (a) If φ(Vst(x)) = Im for all x ∈ [−1, 1] and some pairs positive
integers s and t with s < t, then

φ(A) = σ(detA) , ∀A ∈ Un ,(13)

where σ is a multiplicative group homomorphism from C1 to GLm.
(b) If φ(Dk(−1)) = ±Im for some positive integer k, then φ is the form (13).
(c) If n ≥ 3 and φ(Ds(−1)) = φ(Dt(−1)) for some pairs positive integers s and

t with s < t, then φ is the form (13).
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Proof. (a) For any positive integers p and q with p < q, it follows from Vpq(x) =
ZpsZqtVst(x)ZqtZps and Proposition 3 that φ(Vpq(x)) = Im. By applying φ to the
equation Zpq = Dq(−1)Vpq(0), we have φ(Zpq) = φ(Dq(−1)). Futher

φ(Dp(c)) = φ(ZpqDq(c)Zpq) = φ(Zpq)φ(Dq(c))φ(Zpq)
= φ(Dq(−1))φ(Dq(c))φ(Dq(−1))
= φ(Dq(−1)Dq(c)Dq(−1))
= φ(Dq(c)) , ∀c ∈ C1

(14)

and

φ(Vpq(a, b)) = φ(Dp( ab
|ab|))φ(Vpq(|a|))φ(Dp( b

|b|))φ(Dq( a
|a| ))

= φ(Dq( ab
|ab|))φ(Dq( b

|b| ))φ(Dq( a
|a|))

= φ(Dq( ab
|ab|)Dq(

b
|b| )Dq(

a
|a|))

= φ(In) = Im, ∀(a, b) ∈ C2

(15)

from (11), (14) and Proposition 1. Let σ(c) = φ(Dn(c)) for any c ∈ C1 . Then φ is
the form (13) from Corollary 1 and (15).

(b) We only prove the result for k < n (because the proof is similar when k = n).
Applying (7) and (6), we obtain

φ(Vkn(x)) = φ
(
Vkn
(√

x+1
2

))2

=
[
φ(Dk(−1))φ

(
Vkn
(√

x+1
2

))]2
= Im

for any x ∈ [−1, 1]. Thus φ is the form (13) from (a).
(c) We only prove the result for t < n(because the proof is similar when t = n).

Applying (7), (12), (5), φ(Ds(−1)) = φ(Dt(−1)) and (6), we have

φ(Vtn(x)) = φ
(
Vtn
(√

x+1
2

))2

= φ(Ds(−1))2φ
(
Vtn
(√

x+1
2

))2

=
[
φ(Ds(−1))φ

(
Vtn
(√

x+1
2

))]2
=
[
φ(Dt(−1))φ

(
Vtn
(√

x+1
2

))]2
= Im , ∀x ∈ [−1, 1].

Thus φ is the form (13) from (a).

3. Homomorphisms from Un to GLm

Theorem 1. Suppose n > m ≥ 1. Then φ ∈ Hom(Un, GLm) if and only if φ is
the form (13).

Proof. The “if” part is obvious, we only need to prove the “only if” part.
We proceed by induction on m. If m = 1, the result is obvious by applying (b)

of Lemma 4. Suppose the theorem is true when m < k(k ≥ 2), we will prove that
it is true when m = k. Without loss of generality, let φ(D1(−1)) = −Ir⊕ Ik−r for
some 0 ≤ r ≤ k from Lemma 1 and (12).

Case 1. Suppose r = 0 or r = k. The theorem can be proved by applying (b)
of Lemma 4.

Case 2. Suppose 1 ≤ r ≤ k−1. For any B ∈ Un−1, since D1(−1) and 1⊕B are
commutative, it follows that φ(D1(−1)) and φ(1 ⊕ B) are also from Proposition
4. Thus

φ(1⊕B) = f1(B) ⊕ f2(B) , ∀B ∈ Un−1,
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where f1(B) ∈ GLr and f2(B) ∈ GLk−r. It is easy to see that f1 ∈ Hom(Un−1,
GLr) and f2 ∈ Hom (Un−1, GLk−r). By the inductive hypothesis,

f1(B) = σ1(detB) , f2(B) = σ2(detB) , ∀B ∈ Un−1 ,

where σ1 : C1 → GLr and σ2 : C1 → GLk−r are multiplicative group homomor-
phisms. Thus, φ(D2(−1)) = φ(D3(−1)) by choosing 1⊕B = D2(−1) and D3(−1),
respectively. The theorem now follows by (c) of Lemma 4.

Definition 1. Suppose S1 and S2 are two sets containing 1, 0 and−1. We say that
a map g : S1 → S2 is a almost homomorphism if g satisfies g(a+ b) = g(a) + g(b)
for any a, b, a + b ∈ S1, g(ab) = g(a)g(b) for any a, b ∈ S1 and g(ξ) = ξ for
ξ ∈ {1, 0,−1}.

Lemma 5. Suppose n ≥ 3, φ ∈ Hom(Un, GLn) and φ(Dk(−1)) = ηDk(−1) for
any 1 ≤ k ≤ n, where η = ±1. Then there exists P ∈ GLn such that

(I) φ(Zpq) = εPZpqP
−1 and φ(Dk(−1)) = ηPDk(−1)P−1for any p, q and k

with p < q, where ε = ±1.
(II) φ(Vpq(x)) = PVpq

(
ψ(x), ψ

(√
1− x2

))
P−1 for any p < q and x ∈ [−1, 1],

where ψ is a map from [−1, 1] to C with ψ(ξ) = ξ for ξ ∈ {1, 0,−1}.
(III) φ(Dk(c)) = λ(c)PDk(δ(c))P−1 for any 1 ≤ k ≤ n and c ∈ C1 , where λ

and δ are multiplicative homomorphisms from C1 to C .
(IV) φ(Vpq(a, b)) = PVpq(τ (a), τ (b))P−1 for any p < q and (a, b) ∈ C2 , where

τ is a almost homomorphism from C0 to C .

Proof. It follows that φ(Zpq) = εpqEpq + εqpEqp +
∑
t6=p,q

ε
(p,q)
t Ett for any p < q by

choosing c = −1 in (1) and (2), and hence φ(Zpq) = εpqEpq+ε−1
pq Eqp+

∑
t6=p,q

ε
(p,q)
t Ett

from (3), where ε(p,q)t = ±1. Again applying (4), we have φ(Zpq) = ε(In − Epp −
Eqq) + εpqEpq + ε−1

pq Eqp and εpk = εεpqεqk for any mutually distinct p, q and k,
where ε = ±1. Let P = diag(ε, ε−1

12 , · · · , ε−1
1n ). Then (I) holds.

(II) It follows from (5) and (I) that P−1φ
(
V12(x)

)
P =

(
a(x) b(x)
c(x) d(x)

)
⊕ a3(x)⊕

· · · ⊕ an(x) for any x ∈ [−1, 1], where P is as in (I). Again applying (6) and (7),
we have

P−1φ(V12(x))P =
(
a(x) b(x)
c(x) d(x)

)
⊕ In−2, ∀x ∈ [−1, 1],

where {
a(x)2 − b(x)c(x) = d(x)2 − b(x)c(x) = 1
[a(x) − d(x)] b(x) = [a(x)− d(x)] c(x) = 0

.(16)

Case 1. Suppose a(x0) 6= d(x0) for some x0 ∈ [−1, 1]. Then b(x0) = c(x0) = 0
and a(x0) = −d(x0) = ±1 from (16), and hence [φ(Z12)φ(V12(x0))]2 = D1(−1)D2(−1)
from (I), which contradicts to (8).

Case 2. Suppose a(x0) = d(x0) and b(x0) + c(x0) 6= 0 for some x0 ∈ [−1, 1].
Then a(x0) = 0 and b(x0) = c(x0) = ±1 from (8) and (I), which contradicts to
(16).
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Case 3. Suppose a(x) = d(x) and b(x) = −c(x) for any x ∈ [−1, 1]. That is

P−1φ(V12(x))P =
(
a(x) b(x)
−b(x) a(x)

)
⊕ In−2 , ∀x ∈ [−1, 1] .(17)

Again applying (9), (10) and (17), we obtain
a(x)2 + b(x)2 = 1
a(−x) = −a(x)
b(−x) = b(x)
a
(
xy −

√
(1− x2)(1 − y2)

)
= a(x)a(y) − b(x)b(y)

∀x, y ∈ [−1, 1] .(18)

It follows fromZ12 = D2(−1)V12(0) that φ(Z12) = φ(D2(−1))φ(V12(0)), and hence

a(0) = 0 , b(0) = 1(19)

by applying (I) and (17).
Let ψ(x) = a(x) for any x ∈ [−1, 1]. Then b(x) = −[a(x)a(0) − b(x)b(0)] =

−a(−
√

1− x2) = a(
√

1− x2) = ψ(
√

1− x2) for any x ∈ [−1, 1] and ψ(ξ) = ξ for
ξ ∈ {1, 0,−1} from (18) and (19). Hence (II) holds.

(III) For any c ∈ C1 and 1 ≤ j ≤ n, since Dn(c) and Dj(−1) are commutative,

it follows from (I) and Proposition 4 that P−1φ(Dn(c))P =
n∑
k=1

dk(c)Ekk, and

hence

P−1φ
(
Dn(c)

)
P = d1(c)

(n−1∑
k=1

Ekk
)

+ dn(c)Enn = d1(c)Dn
(
d1(c)−1dn(c)

)
from (I) and (1). Let λ(c) = d1(c) and δ(c) = d1(c)−1dn(c) for any c ∈ C1 . Then λ
and δ are multiplicative homomorphisms fromC1 toC by applyingDn(c1)Dn(c2) =
Dn(c1c2) for any c1 and c2 in C1 and Propositions 1 and 2. Again applying (I), (2)
and (3), we have P−1φ(Dk(c))P = λ(c)Dk(δ(c)) for any 1 ≤ k ≤ n and c ∈ C1 .

(IV) Let τ (a) =
{
ψ(|a|)δ( a

|a| ) a 6= 0
0 a = 0

for any a ∈ C0 , where ψ and δ are

as in (II) and (III) respectively. Then τ (ξ) = ξ for ξ ∈ {1, 0,−1} and

φ(Vpq(a, b)) = PVpq(τ (a), τ (b))P−1 , ∀p < q , (a, b) ∈ C2(20)

by applying (II), (III) and (11).
Let

P−1φ(A)P = λ(detA)
(
f(A) ?
? ?

)
, ∀A = (aij) ∈ Un ,(21)

where f is a map from Un to C . Then f(A) only depends on the 1–th column of
A from Lemma 2, (III) and (20). On the other hand, f(A) only depends on the
1–th row of A from Lemma 3, (III) and (20). Hence f(A) only depends on a11,
i.e., we may write f(A) = g(a11), where g is a map from C0 to C . Again applying
(20) and (21), we have

P−1φ(A)P = λ(detA)
(
τ (a11) ?
? ?

)
, ∀A = (aij) ∈ Un .(22)
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For any a, b ∈ C0 , it follows from V12

(
a,
√

1− |a|2
)
V13

(
b,
√

1− |b|2
)

=
(
ab ?
? ?

)
that φ

(
V12

(
a,
√

1− |a|2
))
φ
(
V13

(
b,
√

1− |b|2
))

= φ

(
ab ?
? ?

)
, and hence

τ (ab) = τ (a)τ (b) , ∀a, b ∈ C0(23)

from λ(1) = 1, (20) and (22).
For any a, b, a+ b ∈ C0 , without loss of generality, we can assume that |a| ≥ |b|.

Now we will prove that

τ (a+ b) = τ (a) + τ (b) , ∀a, b, a+ b ∈ C0 .(24)

Case 1. Suppose |a|2 + |b|2 ≤ 1. Let xab = a√
1−|b|2

and yab =
√

1−|b|2−|a|2√
1−|b|2

.

Then (√
2

2 (a+ b) ?
? ?

)
= V12

(√
1− |b|2, b

)
V13(xab, yab)V12

(√
2

2 ,−
√

2
2

)
,

and hence

φ

(√
2

2 (a+ b) ?
? ?

)
= φ

(
V12

(√
1− |b|2, b

))
φ(V13(xab, yab)φ

(
V12(

√
2

2 ,−
√

2
2

))
.

Again applying λ(1) = 1, (20), (22) and (23), we can obtain that (24) holds.
Case 2. Suppose |a|2 + |b|2 > 1. Then c, d, c + d ∈ C0 and |c|2 + |d|2 ≤ 1 by

letting c = a
|a|2 + |b|2 and d = b

|a|2 + |b|2 , and hence τ (c+ d) = τ (c) + τ (d) from

Case 1. Again applying (23), we have that (24) holds.
Summarizing, (IV) follows from (20), (23) and (24).
The lemma follows.

Theorem 2. Suppose n ≥ 3. Then φ ∈ Hom(Un, GLn) if and only if φ has one
of the following forms.

i) φ(A) = σ(detA) for any A ∈ Un, and some multiplicative group homomor-
phism σ from C1 to GLn.

ii) φ(A) = λ(detA)PAτP−1 for any A = (apq) ∈ Un, and some P ∈ Un, almost
homomorphism τ from C0 to C and multiplicative homomorphism λ from C1 to
C , where Aτ = (τ (apq)).

Proof. The “if” part is obvious, we only need to prove the “only if” part.
It is easy to see that {φ(D1(−1)), φ(D2(−1)), · · · , φ(Dn(−1))} satisfy the

assumption of Lemma 1, and hence φ(Dk(−1)) = P1ΛkP−1
1 for any k and some

P1 ∈ Un, where Λ1 = −Ir ⊕ In−r for some 0 ≤ r ≤ n and Λ2, · · · , Λn are diagonal
involutory matrices.

Case 1. Suppose r = 0 or r = n. Then φ is the form i) by (b) of Lemma 4.
Case 2. Suppose 2 ≤ r ≤ n− 2. Then φ is the form i) by a similar argument to

Theorem 1.
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Case 3. Suppose r = 1. Then Λk = Dg(k)(−1) by applying Proposition 3, where
g is a map from the set {1, 2, · · · , n} to itself.

a) If there exist distinct positive integers p and q such that Λp = Λq, then φ is
the form i) by (c) of Lemma 4.

b) If Λs 6= Λt for any distinct positive integers s and t, then there exists P2 ∈ Un
such that Λk = P2Dk(−1)P−1

2 for any k. Let P = P1P2. Then φ(Dk(−1)) =
PDk(−1)P−1 for any i, and hence φ is the form ii) from (III) and (IV) of Lemma
5 and Corollary 1.

Case 4. Suppose r = n− 1. By a similar argument to the Case 3, φ is the form
i) or ii).

4. Aplications

Theorem 3. Suppose n > m ≥ 1 or n = m ≥ 3. Then φ ∈ Hom (Un,Mm) if and
only if φ has one of the following forms.

i) φ(A) = Q(ρ(detA) ⊕ O)Q−1 for any A ∈ Un, where Q ∈ GLm and ρ is a
multiplicative homomorphism from C1 to GLs for some 0 ≤ s ≤ m.

ii) φ(A) = λ(detA)PAτP−1 for any A ∈ Un, where P , Aτ , τ and λ are as in
Theorem 2.

Proof. It follows from I 2
n = In that φ(In)2 = φ(In), and hence φ(In) = Q(Is ⊕

O)Q−1 for some 0 ≤ s ≤ m and Q ∈ GLm. Again applying φ to the equation A =
AIn = InA, we have Q−1φ(A)Q = f(A) ⊕ O for any A ∈ Un, where f(A) ∈ Ms.
Obviously, f is a multiplicative homomorhism from U n to Ms. Thus, φ(A)f(A∗) =
Is for any A ∈ Un from AA∗ = In, i.e., f ∈ Hom(Un, GLs). The theorem now
follows by Theorems 1 and 2.

Theorem 4. (see [5, Theorem 3]) Suppose n ≥ 3. If φ : Un →Mn is a spectrum–
preserving multiplicative map, then there exists a nonsingular matrix R in Mn

such that φ(U ) = R−1UR for any U ∈ Un.

Proof. It is easy to see that i) of Theorem 3 can not happen by choosing A =
D1(2)D2(1

2
). For any x ∈ C1 , choosing A = In + (x− 1)E11 in ii) Theorem 3, we

conclude that λ(x) is a multiple eigenvalue of φ(A), and hence λ(x) is a multiple
eigenvalue of A. This implies λ(x) = 1 for any x ∈ C1 , i.e.,

φ(A) = PAτP−1 , ∀ A ∈ Un ,(25)

where P , Aτ and τ are as in Theorem 3. For any b ∈ C0 , let A = bIn in (25),
then τ (b) is a eigenvalue of φ(A), and hence τ (b) is a eigenvalue of A. This implies
τ (b) = b for any b ∈ C0 . Hence the theorem follows.
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