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HOMOMORPHISMS FROM THE UNITARY GROUP TO THE
GENERAL LINEAR GROUP OVER COMPLEX NUMBER FIELD
AND APPLICATIONS

CHONG-GUANG CAO AND XIAN ZHANG

ABSTRACT. Let M, be the multiplicative semigroup of all n X n complex
matrices, and let U, and GL, be the n—degree unitary group and general
linear group over complex number field, respectively. We characterize group

homomorphisms from U,, to GLy, when n > m > 1 or n = m > 3, and
thereby determine multiplicative homomorphisms from U ,, to M, when n >
m > 1 or n = m > 3. This generalize Hochwald’s result in [Lin. Alg. Appl.
212/218:389-351(1994)]: if f : Uy, — M, is a spectrum—preserving mul-
tiplicative homomorphism, then there exists a matrix R in GL 5 such that
f(A) = R'AR for any A € Uj,.

1. INTRODUCTION

Let C be the complex number field and J, the n x n identity matrix over C. We
denote the n-degree unitary group ({A|A*A = I,,}), the n-degree general linear
group and the multiplicative semigroup of all n x n matrices over C by U,, GL,
and M, respectively.

In the last few decades, some authors have determined multiplicative homo-
morphisms or isomorphisms between matrix (semi)groups (see [2], [3], [4], [6],
[7], 8], [9], [10], [11] and [12]). Hochwald in [5] has studied a similar problem:
characterizing the spectrum—preserving multiplicative homomorphisms from U,
to M,. In this paper we characterize group homomorphisms from U, to GL,,
when n > m > 1 or n =m > 3, As applications, we also determine multiplicative
homomorphisms from U, to M,, when n > m > 1 or n = m > 3, and thereby
generalize the mentioned result in [5].

We denote by Hom (U,,, T';;,) the set of the multiplicative homomorphisms from
U, to I'y,, where Iy, is either GL,, or M,,. Let Cy, C; and Cy be the set {c €
Clle| < 1}, {c € C||¢| = 1} and {(a,b)|a,b € Cy, |a|*>+|b|* = 1}, respectively. Let
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E,q denote the matrix with 1 at the (p, ¢) position and 0 elsewhere. For positive
integers p and ¢, and ¢ € C;, we denote by D,(c) and Z,, the matrix I, — (1—c) Epp
and I, — Epp — Eqq + Epq + Egp, respectively. In particular, if p < ¢, we denote
by Vpg(a,b) the matrix I, + (@ — 1) Epp + (a — 1) Eyq — bEy, + bEy, for (a,b) € Cy
and write Vpg(x) for Vyg(z, v1 — 22).

2. PRELIMINARIES

In this section, we assume that n > m, n > 2 and ¢ € Hom (U,,, GL,,). Since
?(AB) = ¢(A)p(B) for any A and B in U, ¢ have the next propositions.

Proposition 1. ¢(I,) = Ip,.
Proposition 2. qb(A)*1 = ¢(A*) for any A € U,.

Proposition 3. For A and B in U,, if A = PBP* for some P € U,, then
¢(A) = (P)d(B)p(P)~".

Proposition 4. For A and B in Uy, if A and B are commutative, then ¢(A) and
¢(B) are also.

Proposition 5. For any mutually distinct positive integers p, q and k with p < g,
z,y € [-1, 1], c € C; and (a,b) € Cy, the following equations hold.

(M) S(DH())D(Zpa) = 6(Zpg)6(Di(c)

(2) P(Dp(€))9(Zpg) = &(Zpq)d(Dy(c))

(3) ¢(qu)2 =Inm;

(4) ¢(qu>¢(zpk:)¢(zq ) = ¢(Zpk) ;

(5) B(DK())6(Vo(2)) = 0(Vya () S(Dr(c))

(6) [O(Dy(= 1) (Vo (@))% = L

7) V() = (Ve (\/551))

(8) [0(Zp) (Vg (@) = I

o) & (Via (29 = V=2 =12) ) ) = 0(Vyg(2))$(Vig 1)
= OV (1)B(Vpa ()

(10) H(Dp(—1))8(Vg (2) = 6(Vp(—2))@(Dy(~1))

(11) (Vpq(a, b)) = 6(Dy (121)) 6 (Voa(a])) ¢ (Dp (1)) #(Dq (1)) 5

(12) $(Dip(=1))* = Im -
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Lemma 1. Let {R1,Ra, -, R:} be a set of t mutually commutative involutory
matrices in GL,. Then there exists Q € GL, such that Q" 'R;Q = A; for any
1<i<t, where A\ = -1, &1L, forsome0 <71 <nand Ay, ---, Ay are diagonal
involutory matrices.

Proof. It is easy to see that {%(InJrRl), $(In+Ra2), -+, %(InJrRt)} is a set of ¢

mutually commutative idempotent matrices. By a similar argument to [1, Lemma
3.1], the lemma can be obtained. O

Lemma 2. Suppose A = (as) € U,. Then A = [] Vir(ar,bx)(1 & A1) for some
k=p
p=2, A1 €Up—1 and (apab;ﬁ)7 (ap+1abp+1)7 Tt (anabn) €G.

Proof. Case 1. Suppose ao; = -+ = an1 = 0. Then A = a;7 & B from A € U,,
where a1; € C; and B € U,_1. Let p = n, a, = @11 and b, = 0. Then
A= Vip(an,b,)(1 @ A;) for some A € Uy,—1.

Case 2. Suppose ay; is the first nonzero element of as1, - - -, an1. Let by = f%a—’jcl
and o
# if k=p
ke = Tk—1 .
T if k > p
for any k > p, where rp = 2?21 laj1]2. Then
Vin (@ —bu)Vi met (@D —bn1) -+ Vip(@m, —by) A = (= ).
n\Wn, n n— n—1, n— p\™p> p 0 Al
Noting Vix(ax, —br) € U, for any k > p, we have A = 0 and A; € U,—1. Thus
the lemma follows. O

From which, we can obtain the next corollary by induction.

Corollary 1. Suppose A € U,,. Then A = A1Ag---Ay(I,—1 @ detA) for some
Al; AZ; Tty At S {qu(%b)u S p<q S n, ((l, b) € (C2}

By a similar argument to Lemma 2, we have
Lemma 3. Suppose B = (bst) € U,. Then
B = (1® B1)Vin(cn, dn)Vi n-1(cn—1,dn-1) -+ - Vip(cp, dp)
for some (¢p,dp), (Cpt1,dps1), -+, (Cn,dn) € Co and By € Up_1.

Lemma 4. (a) If ¢(Vsi(z)) = I, for all x € [—1,1] and some pairs positive
integers s and t with s < t, then
(13) P(A) = o(det A), VA eU,,
where o is a multiplicative group homomorphism from C; to GL,,.
(b) If ¢(Dr(—1)) = £1,, for some positive integer k, then ¢ is the form (13).
(¢) If n > 3 and ¢p(Ds(—1)) = ¢(D(—1)) for some pairs positive integers s and
t with s < t, then ¢ is the form (13).
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Proof. (a) For any positive integers p and ¢ with p < ¢, it follows from Vp,(z) =
ZpsZqt Vet (€) Zgt Zps and Proposition 3 that ¢(Vpe(z)) = In. By applying ¢ to the

equation Zp, = Dg(—1)V,q(0), we have ¢(Zpq) = ¢(Dg(—1)). Futher
P(Dp(c)) = ¢(ZpgDy(¢)Zpg) = (Zpqg)(Dq(c))P(Zpq)
" = 6(Dy(~1))0(Dy(e))(Dy(~1)
= ¢(Dq(—1)Dq(c)Dq(—1))
= d(Dy(c)), Veel
and B
S (Vog(a, b)) = (D (1257))0(Vaq(lal))&(Dp(3))(Dq (1))
- — SDLEID, ()P, )
= QS(DQ(%)DQ(%)Dq(ﬁ )

from (11), (14) and Proposition 1. Let o(c) = ¢(Dy(c)) for any ¢ € C;. Then ¢ is
the form (13) from Corollary 1 and (15).

(b) We only prove the result for k& < n (because the proof is similar when k = n).
Applying (7) and (6), we obtain

Ven()) = 0(Vin (y52)) " = [oD6 (=106 (Veu (y552))] = I

for any x € [—1,1]. Thus ¢ is the form (13) from (a).
(¢) We only prove the result for ¢t < n(because the proof is similar when ¢ = n).
Applying (7), (12), (5), (Ds(~1)) = 6(Di(~1)) and (6), we have

o) = 0(Vin (y/551))” = 00120 (vin({/257))
= [o(Dy(—1 ))‘i’(”“(\/ﬁ))r:[¢<Dt<71>>¢(wn(\/§))r

= In, Yzre[-1,1].
Thus ¢ is the form (13) from (a). O

3. HOMOMORPHISMS FROM U,, TO GL,,

Theorem 1. Suppose n > m > 1. Then ¢ € Hom (U,,GL,,) if and only if ¢ is
the form (13).

Proof. The “if” part is obvious, we only need to prove the “only if” part.

We proceed by induction on m. If m = 1, the result is obvious by applying (b)
of Lemma 4. Suppose the theorem is true when m < k(k > 2), we will prove that
it is true when m = k. Without loss of generality, let ¢(Dy(—1)) = —I, & Ij_, for
some 0 < r < k from Lemma 1 and (12).

Case 1. Suppose r = 0 or = k. The theorem can be proved by applying (b)
of Lemma 4.

Case 2. Suppose 1 <r < k—1. For any B € U,,_1, since D1(—1) and 1® B are
commutative, it follows that ¢(D1(—1)) and ¢(1 @ B) are also from Proposition
4. Thus

o(1® B) = fi(B)& f2(B), VBeU,,
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where fi1(B) € GL, and fo(B) € GLi_,. It is easy to see that fi € Hom (U,_1,
GL,) and fy € Hom (Uy,—1, GLk—,). By the inductive hypothesis,

fi(B) = o1(det B),  fo(B) = oo(det B), VB € Un_1,

where 01 : C; — GL, and o3 : C; — GLj_, are multiplicative group homomor-
phisms. Thus, ¢(D2(—1)) = ¢(D3(—1)) by choosing 1® B = Dy(—1) and Ds(—1),
respectively. The theorem now follows by (c¢) of Lemma 4. O

Definition 1. Suppose S; and Ss are two sets containing 1, 0 and —1. We say that
amap g:S1 — Sy is a almost homomorphism if g satisfies g(a +b) = g(a) + g(b)
for any a,b,a +b € S1, g(ab) = g(a)g(b) for any a,b € S; and g(§) = & for
€€ {1,0,—1}.

Lemma 5. Suppose n > 3, ¢ € Hom (U,,GLy,) and ¢p(Dy(—1)) = nDi(—1) for
any 1 <k <mn, where n = +£1. Then there exists P € GL,, such that
(1) ¢(Zpq) = €PZpgP~' and ¢(Dy(—1)) = nPDy(—1)P~ for any p, q and k

with p < q, where e = £1.

(T1) ¢(Vpg(2)) = PVpg (¥(2), ¢ (VI —22)) P~ for any p < q and x € [-1,1],
where v is a map from [—1,1] to C with (&) = & for £ € {1,0,—1}.

(II1) ¢(Dx(c)) = Mc)PDy(5(c))P~t for any 1 < k < n and ¢ € C;, where \
and & are multiplicative homomorphisms from C; to C.

(IV) ¢(Vig(a, b)) = PVyy(r(a), 7(b))P~ for any p < q and (a,b) € C,, where
T is a almost homomorphism from Cy to C.

Proof. It follows that ¢(Zpq) = €pqEpg + €gpEqp + egp”J)Eﬁ for any p < ¢ by
t#p,q

choosing ¢ = —1in (1) and (2), and hence ¢(Z,q) = €pqEpgte,, Egpt+ > € (p DEy,
t#p,q
from (3), where é”"” = +1. Again applying (4), we have ¢(Zpq) = €(I, — Epp —
Eqq) + €pgEpg + e;qlEqp and €y = €€pqeqr for any mutually distinct p, ¢ and k,
where € = 1. Let P = diag(e, ej5,---,€5,.). Then (I) holds.
-1 _ (olz) b(z)
(II) It follows from (5) and (I) that P~'¢(Viz(z)) P = (c(x) d(z) P az(z) P
-+ @ ap(z) for any z € [—1,1], where P is as in (I). Again applying (6) and (7),
we have

P~ 1¢(Via(z))P = (“(x) b(”)> &I, 5 Vrel|-1,1],

c(z) d(x)
where
a(x)* — b(z)c(x) ()*b()C():l
1o { ot bt ot -
Case 1. Suppose a(zg) # d(x) for some xg € [—1,1]. Then b(zo) = ¢(x9) =0
and a(xg) = —d(zg) = £1 from (16), and hence [¢(Z12) (Viz(z0)))? = D1(—1)Dao(

¢
from (I), which contradicts to (8).

Case 2. Suppose a(zg) = d(xg) and b(zo) + c(zg) # 0 for some zo € [—1, 1].
Then a(xzg) = 0 and b(zg) = c¢(xp) = £1 from (8) and (I), which contradicts to
(16).

~1)
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Case 3. Suppose a(z) = d(x) and b(x) = —c¢(z) for any x € [—1,1]. That is

(17) P o(Via(z))P = (“b(g) 2(&))) @Iy, Voel[-1,1].
Again applying (9), (10) and ( 7), we obtain
a(z)? 4+ b(z)? =
(18) Z(( )) (Z)(:U v,y € [—1,1].

a(ay = VT =T =) = alw)aly) - b(a)b(y)
It follows from Z15 = D3(—1)Vi2(0 ) 0) that ¢(Z12) = ¢(D2(—1))¢(V12(0)), and hence
(19) a(0) = b(0) =1

by applying (I) and (17).

Let ¢(x) = a(z) for any = € [—1,1]. Then b(z) = —[a(x)
—a(—v1—22) = a(v/1 —22) = Y(v/1 —22) for any z € [-1,1
&€ {1,0,—1} from (18) and (19). Hence (II) holds.

(III) For any c € C; and 1 < j < n, since D,(c) and D;(—1) are commutative,

it follows from (I) and Proposition 4 that P~'¢(D,(c))P = > di(c)Ekk, and
k=1

hence

P~ ¢(Dy(c))P = di(c (Z Ekk) + dn () Enp = di(c) Dy (di(c) " dn(c))

from (I) and (1). Let A(c) = di(c) and §(c) = di(c)~td,(c) for any ¢ € C;. Then A
and § are multiplicative homomorphisms from C; to C by applying D, (¢1)Dn(c2) =
D,,(c1¢2) for any ¢; and ¢o in C; and Propositions 1 and 2. Again applying (I), (2)
and (3), we have P~1¢(Dy(c))P = Xc)Dg(6(c)) for any 1 <k <n and c € C;.
(IV) Let 7(a) = { gp(|a|)5(m) 27_&8 for any a € Cy, where ¢ and ¢ are

as in (II) and (III) respectively. Then 7(§) = & for € € {1,0,—1} and

(20)  ¢(Vpg(a,b)) = PVpg(r(a), 7(b)) P, Vp<q, (a,b) €Cy
by applying (II), (III) and (11).

Let
(21) P1H(A)P = A(det A) (f(*A) :) . VA= (ay) €U,

where f is a map from U,, to C. Then f(A) only depends on the 1-th column of
A from Lemma 2, (III) and (20). On the other hand, f(A) only depends on the
1-th row of A from Lemma 3, (IIT) and (20). Hence f(A) only depends on aq,
i.e., we may write f(A) = g(a11), where g is a map from Cy to C. Again applying
(20) and (21), we have

(22) P rp(A)P = A(det A) (T(i“) :

) , VA:(aij)GUn.
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For any a,b € Cy, it follows from Vu(a, v1—a )Vlg(b v 1—1b ) (ab *>
that gf)(VH(E, v1—]a )) (Vlg(b v 1—1b )) (ab :) and hence

(23) (ab) = 7(a)7(b) , Va,b € C

from A(1) = 1, (20) and (22).
For any a,b,a+b € Cy, without loss of generality, we can assume that |a| > |b].
Now we will prove that

(24) T(a+b) = 7(a) + 7(b), Va,b,a+bec (.
Thjjse 1. Suppose |a? + [b|? < 1. Let x4 = \/EW and Yqp = 7w.
(@(if b) :) = Via (V1 = b2, B) Vi3 (@b, Yar) Viz (52, —42) .
and hence
6 (FOD ) = 6(a (VIR olVislran v (Via(F ).

Again applying A(1) = 1, (20), (22) and (23), we can obtain that (24) holds.

Case 2. Suppose |a|> + |b]2 > 1. Then ¢, d, c+d € Cy and |c|? + |d|*> < 1 by
letting ¢ = P and d = Wi—“}lg, and hence 7(c+ d) = 7(¢) + 7(d) from
Case 1. Again applying (23), we have that (24) holds.

Summarizing, (IV) follows from (20), (23) and (24).

The lemma follows. O

Theorem 2. Suppose n > 3. Then ¢ € Hom (U, GL,,) if and only if ¢ has one
of the following forms.

i) ¢(A) = o(det A) for any A € U,,, and some multiplicative group homomor-
phism o from Cy to GL,.

ii) p(A) = A(det A)PA™P~ for any A = (apq) € Uy, and some P € U,, almost
homomorphism T from Cy to C and multiplicative homomorphism X from G to
C, where A = (1(apq)).

Proof. The “if” part is obvious, we only need to prove the “only if” part.

It is easy to see that {¢(D1( 1)), ¢(Da2(-1)), -+, ¢(Dn(—1))} satisfy the
assumption of Lemma 1, and hence ¢(Dy(—1)) = PiAxP; " for any k and some
P, eU,, where Ay = -1, ®1I,,_, for some 0 < r <nand Ag, ---, A, are diagonal

involutory matrices.
Case 1. Suppose r = 0 or » = n. Then ¢ is the form i) by (b) of Lemma 4.

Case 2. Suppose 2 < r < n—2. Then ¢ is the form i) by a similar argument to
Theorem 1.
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Case 3. Suppose r = 1. Then Ay = Dg1)(—1) by applying Proposition 3, where
¢ is a map from the set {1, 2, -+, n} to itself.

a) If there exist distinct positive integers p and ¢ such that A, = Ay, then ¢ is
the form i) by (c) of Lemma 4.

b) If Ag # A for any distinct positive integers s and ¢, then there exists B € U,
such that Ay = PyDy(—1)P; ! for any k. Let P = PyP,. Then ¢(Dy(—1)) =
PDy(—1)P~! for any i, and hence ¢ is the form ii) from (IIT) and (IV) of Lemma
5 and Corollary 1.

Case 4. Suppose = n — 1. By a similar argument to the Case 3, ¢ is the form
i) or ii). O

4. APLICATIONS

Theorem 3. Suppose n >m >1 orn=m > 3. Then ¢ € Hom (U, M,,) if and
only if ¢ has one of the following forms.

i) 9(A) = Q(p(det A) & O)Q~! for any A € U, where Q € GL,, and p is a
multiplicative homomorphism from Cy to GLg for some 0 < s < m.

ii) (A) = A(det A)PATP~! for any A € U, where P, A7, 7 and \ are as in
Theorem 2.

Proof. It follows from I2 = I,, that ¢(I,)?> = ¢(I,), and hence ¢(I,) = Q(I; ©
0)Q ™! for some 0 < s <m and Q € GL,,. Again applying ¢ to the equation A =
Al, = I, A, we have Q 1¢(A)Q = f(A) ® O for any A € U, where f(A) € M.
Obviously, f is a multiplicative homomorhism from U,, to M. Thus, ¢(A)f(A*) =
I, for any A € U,, from AA* = 1, i.e., f € Hom(U,,, GLs). The theorem now
follows by Theorems 1 and 2. O

Theorem 4. (see [5, Theorem 3]) Supposen > 3. If ¢ : U, — M, is a spectrum—
preserving multiplicative map, then there exists a nonsingular matriz R in M,
such that p(U) = R-'UR for any U € Uy,.

Proof. It is easy to see that i) of Theorem 3 can not happen by choosing A =
D1(2)Dy(3). For any = € Cy, choosing A = I,, + (# — 1)E1; in ii) Theorem 3, we
conclude that A(z) is a multiple eigenvalue of ¢(A), and hence A(z) is a multiple
eigenvalue of A. This implies A(z) = 1 for any = € Cy, i.e.,

(25) #(A) = PATP!, VAeU,,

where P, A™ and 7 are as in Theorem 3. For any b € Cy, let A = bl,, in (25),
then 7(b) is a eigenvalue of ¢(A), and hence 7(b) is a eigenvalue of A. This implies
7(b) = b for any b € Cy. Hence the theorem follows. O
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