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ARCHIVUM MATHEMATICUM (BRNO)

Tomus 38 (2002), 61 – 71

A NOTE ON THE CAUCHY PROBLEM FOR FIRST ORDER
LINEAR DIFFERENTIAL EQUATIONS WITH A DEVIATING

ARGUMENT

ROBERT HAKL AND ALEXANDER LOMTATIDZE

Abstract. Conditions for the existence and uniqueness of a solution of the
Cauchy problem

u′(t) = p(t)u(τ(t)) + q(t) , u(a) = c ,

established in [2], are formulated more precisely and refined for the spe-

cial case, where the function τ maps the interval ]a, b[ into some subinterval
[τ0, τ1] ⊆ [a, b], which can be degenerated to a point.

Introduction

The following notation is used throughout.
R is the set of all real numbers,

[x]+ =
|x|+ x

2
, [x]− =

|x| − x
2

.

C̃([a, b];R) is the set of absolutely continuous functions u : [a, b]→ R.
L(]a, b[;R) is the space of Lebesgue integrable functions p : ]a, b[→ R with the

norm

‖p‖L =

b∫
a

|p(s)| ds .

By a solution of the equation

u′(t) = p(t)u(τ (t)) + q(t) ,(1)

where p, q ∈ L(]a, b[;R), τ : ]a, b[→ [a, b] is a measurable function, we understand
a function u ∈ C̃([a, b];R) satisfying the equation (1) almost everywhere in ]a, b[.
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Consider the problem of the existence and uniqueness of a solution of (1) sat-
isfying the initial condition

u(a) = c ,(2)

where c ∈ R. According to Theorem 1.1 in [4] (for more general version of this
result see [1]), the problem (1), (2) has a unique solution if and only if the corre-
sponding homogeneous problem

u′(t) = p(t)u(τ (t)) , u(a) = 0(3)

has only the trivial solution. In [2] and [3] there were established optimal in some
sense sufficient conditions for the existence and uniqueness of a solution of the
problem (1), (2). In the present paper, those conditions are formulated more
precisely and refined for the case, where the function τ maps the segment [a, b]
into some subsegment [τ0, τ1] ⊆ [a, b], which can be eventually degenerated to a
point. Precisely, we will suppose that there exist τ0, τ1 ∈ [a, b], τ0 ≤ τ1 such that
τ (t) ∈ [τ0, τ1] for almost all t ∈ [a, b]. Thus, in the sequel it will be assumed that

τ0 = ess inf{τ (t) : t ∈ ]a, b[} , τ1 = ess sup{τ (t) : t ∈ ]a, b[} .

1. Main Results

Theorem 1. Let there exist a function γ ∈ C̃([a, τ1]; ]0; +∞[) such that

γ′(t) ≥ [p(t)]+γ(τ (t)) + [p(t)]−(4)

and either

γ(τ1)− γ(a) < 3(5)

or

γ(τ0)− γ(a) > 1 and γ(τ1)− γ(τ0) < 1 +
1

γ(τ0) − γ(a)
.(6)

Then the problem (1), (2) has a unique solution.

Remark 1. In general, the strict inequality in (5) cannot be replaced by the
nonstrict one. However, according to the condition (6), in the case γ(τ0)−γ(a) > 1,
the constant 3 in (5) can be improved.

Corollary 1. Let (t− τ (t))[p(t)]+ ≥ 0 for almost all t ∈ ]a, b[,
τ0∫
a

exp

 τ0∫
s

[p(ξ)]+dξ

 [p(s)]−ds > 1 ,

and
τ1∫
a

exp

 τ1∫
s

[p(ξ)]+dξ

 [p(s)]−ds−
τ0∫
a

exp

 τ0∫
s

[p(ξ)]+dξ

 [p(s)]−ds

< 1 +

 τ0∫
a

exp

 τ0∫
s

[p(ξ)]+dξ

 [p(s)]−ds

−1

.
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Then the problem (1), (2) has a unique solution.

Theorem 2. Let
τ1∫
a

[p(s)]+ds < 1(7)

and either

τ1∫
a

[p(s)]−ds < 1 + 2

√√√√√1−
τ1∫
a

[p(s)]+ds(8)

or

τ1∫
τ0

[p(s)]−ds < 1 +
1−

∫ τ1
a

[p(s)]+ds∫ τ0
a

[p(s)]−ds
,

τ0∫
a

[p(s)]−ds >

√√√√√1−
τ1∫
a

[p(s)]+ds .(9)

Then the problem (1), (2) has a unique solution.

Remark 2. For τ0 = a and τ1 = b, from Theorems 1 and 2 we obtain Theorems
1.2 and 1.3 in [2].

The following theorem can be understand as a supplement of the previous theo-
rem for the case, where the norm of the positive part of the coefficient p is greater
than one.

Theorem 3. Let
τ1∫
τ0

[p(s)]+ds < 1 ,

τ1∫
τ0

[p(s)]−ds < 1 ,(10)

and
τ0∫
a

[p(s)]+ds > 1 +
1

1− T

τ1∫
a

[p(s)]−ds ,(11)

where

T = max


τ1∫
τ0

[p(s)]+ds ,

τ1∫
τ0

[p(s)]−ds

 .(12)

Then the problem (1), (2) has a unique solution.

Remark 3. All of the above theorems are optimal in the sense that the strict
inequalities in the conditions (5)–(11) cannot be replaced by the nonstrict ones.
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2. Proofs

According to Theorem 1.1 in [4] (see also [1]), to prove the theorems it is
sufficient to show that the homogeneous problem (3) has only the trivial solution.

Proof of Theorem 1. Assume the contrary that there exists a nontrivial solution
u of (3). According to Theorem 1.1 in [2] and condition (4), u changes its sign in
[τ0, τ1]. Put

M = max{u(t) : t ∈ [τ0, τ1]} , m = max{−u(t) : t ∈ [τ0, τ1]} ,
and choose c1, c2 ∈ [τ0, τ1] such that u(c1) = M , u(c2) = −m. Without loss of
generality we can assume that c1 < c2.

In view of the condition (4) and Theorem 1.1 in [2], the problems

α′(t) = [p(t)]+α(τ (t)) +
1
M

[p(t)]−[u(τ (t))]+ , α(a) = 0 ,(13)

β′(t) = [p(t)]+β(τ (t)) +
1
m

[p(t)]−[u(τ (t))]− , β(a) = 0(14)

are uniquely solvable on [a, τ1]. Let α, resp. β, be a solution of the problem (13),
resp. (14). Then, according to (4) and Theorem 1.1 in [2], we have α(t) ≥ 0,
β(t) ≥ 0 for t ∈ [a, τ1], and so due to (4) and (13), resp. (14), γ′(t) ≥ α′(t), resp.
γ′(t) ≥ β′(t) for almost all t ∈ ]a, τ1[, i.e.,

γ(x) − γ(y) ≥ α(x)− α(y)

γ(x) − γ(y) ≥ β(x)− β(y)
for x, y ∈ [a, τ1] , x ≥ y .(15)

Moreover, from (3), (13) and (14) it follows that

Mα′(t) ≥ −u′(t), mβ′(t) ≥ u′(t) for t ∈ ]a, τ1[ .

Integration of the latter inequalities from c1 to c2, resp. from a to c1, results in

M
(
α(c2)− α(c1)

)
≥ m+ M, resp. m

(
β(c1)− β(a)

)
≥M.

Consequently, in view of the monotonicity of γ and (15),

γ(τ1)− γ(c1) ≥ m

M
+ 1 , γ(c1)− γ(a) ≥ M

m
,

i.e.,

1 +
1

γ(c1) − γ(a)
≤ γ(τ1)− γ(c1).(16)

Assume that the condition (5) holds. Then from (16) we have

3 ≤ 1 +
1

γ(c1)− γ(a)
+ γ(c1) − γ(a) ≤ γ(τ1)− γ(a) ,

which contradicts (5).
Assume now that the inequality (6) holds. Then from (16) we have

γ(τ1)− γ(τ0) ≥ 1 +
1

γ(c1)− γ(a)
+ γ(c1) − γ(a) −

(
γ(τ0)− γ(a)

)
.



A NOTE ON THE CAUCHY PROBLEM 65

Hence, taking into account γ(c1) ≥ γ(τ0), γ(τ0) − γ(a) > 1 and the fact that the
mapping t 7→ t+ 1

t
is increasing for t > 1, we get

γ(τ1) − γ(τ0) ≥ 1 +
1

γ(τ0)− γ(a)
,

which contradicts the condition (6). 2

Proof of Corollary 1. Choose ε > 0 such that

ε

exp

 τ1∫
a

[p(ξ)]+dξ

− exp

 τ0∫
a

[p(ξ)]+dξ


+

τ1∫
a

exp

 τ1∫
s

[p(ξ)]+dξ

 [p(s)]−ds −
τ0∫
a

exp

 τ0∫
s

[p(ξ)]+dξ

 [p(s)]−ds

< 1 +

 τ0∫
a

exp

 τ0∫
s

[p(ξ)]+dξ

 [p(s)]−ds + ε

exp

 τ0∫
a

[p(ξ)]+dξ

− 1

−1

.

Put

γ(t) = ε exp

 t∫
a

[p(ξ)]+dξ

+

t∫
a

exp

 t∫
s

[p(ξ)]+dξ

 [p(s)]−ds .

Then the inequalities (4) and (6) in Theorem 1 are fulfilled. 2

Proof of Theorem 2. Assume the contrary that there exists a nontrivial solution
u of the problem (3).

First suppose that u does not change its sign in [τ0, τ1]. Without loss of gener-
ality we can assume that u(t) ≥ 0 for t ∈ [τ0, τ1]. Put

M = max{u(t) : t ∈ [τ0, τ1]}

and choose t0 ∈ [τ0, τ1] such that u(t0) = M . It is clear that M > 0, since otherwise
from (3) it would follow u ′(t) = 0, u(a) = 0, and we would obtain u(t) = 0 for
t ∈ [a, b].

Integration of (3) from a to t0 yields

M =

t0∫
a

[p(s)]+u(τ (s))ds −
t0∫
a

[p(s)]−u(τ (s))ds ≤M

τ1∫
a

[p(s)]+ds ,

which together with (7) results in the contradiction M < M .
Now assume that u changes its sign in [τ0, τ1]. Put

M = max{u(t) : t ∈ [τ0, τ1]} , m = max{−u(t) : t ∈ [τ0, τ1]} .(17)

It is clear that M > 0, m > 0. Choose α, β ∈ [τ0, τ1] such that

u(α) = M, u(β) = −m.
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Without loss of generality we can assume that α < β. Set

A1 =

α∫
a

[p(s)]+ds , A2 =

τ1∫
α

[p(s)]+ds , A =

τ1∫
a

[p(s)]+ds ,(18)

B1 =

τ0∫
a

[p(s)]−ds , B2 =

α∫
τ0

[p(s)]−ds ,

B3 =

τ1∫
α

[p(s)]−ds , B =

τ1∫
a

[p(s)]−ds ,

(19)

f(t) =
1−A
B1 + t

+ t for t > −B1 .(20)

Integrating (3) from a to α, resp. from α to β and taking into account (17)–(19),
we obtain

M ≤ MA1 +m(B1 + B2) ,
M + m ≤ mA2 + MB3 .

On the other hand, due to (6) we have A1 < 1, A2 < 1. Thus from the last two
inequalities we get B1 +B2 > 0, B3 > 1, and

B3 ≥ 1 +
m

M
(1−A2),

m

M
≥ 1−A1

B1 + B2
.(21)

On account of (1−A1)(1− A2) ≥ 1− (A1 +A2) = 1−A, from (21) we find

B3 ≥ 1 +
1− A
B1 + B2

.(22)

Suppose that the condition (8) is satisfied. From (22) we have

1− A ≤ (B1 +B2)(B3 − 1) .

This, according to A < 1 and (B1+B2)(B3−1) ≤ 1
4 (B1+B2+B3−1)2 = 1

4(B−1)2,
implies

2
√

1− A ≤ B − 1 ,

which in view of (18) and (19) contradicts (8).
Now suppose that the condition (9) is satisfied. It is easy to verify that the

function f defined by (20) is increasing in the interval ]
√

1−A − B1,+∞[, and
so, on account of B1 ≥

√
1−A, it is increasing in the interval ]0,+∞[. Therefore

from (22) we obtain
τ1∫
τ0

[p(s)]−ds = B3 +B2 ≥ 1 +
1− A
B1 +B2

+B2 = 1 + f(B2) ≥ 1 + f(0) = 1 +
1− A
B1

,

which contradicts (9). 2
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Proof of Theorem 3. Assume the contrary that there exists a nontrivial solution
u of (3). First suppose that u has a zero in [τ0, τ1]. Put

M = max{u(t) : t ∈ [τ0, τ1]} , m = max{−u(t) : t ∈ [τ0, τ1]} ,
and choose t1, t2 ∈ [τ0, τ1] such that

u(t1) = −m, u(t2) = M .

We have M + m > 0. Without loss of generality we can assume that t1 < t2.
Integration of (3) from t1 to t2 yields

M + m ≤M

τ1∫
τ0

[p(s)]+ds+ m

τ1∫
τ0

[p(s)]−ds ,

which together with (10) results in the contradiction M + m < M +m.
Now suppose that u is of constant sign in [τ0, τ1]. Without loss of generality we

can assume that u(t) > 0 for t ∈ [τ0, τ1]. Put

M = max{u(t) : t ∈ [τ0, τ1]} , m = min{u(t) : t ∈ [τ0, τ1]} ,
and choose α, β ∈ [τ0, τ1] such that

u(α) = M, u(β) = m.

First assume that α < β. Then the integration of (3) from α to β yields

m −M ≥ −M
β∫
α

[p(s)]−ds ,

and, consequently,

1−
τ1∫
τ0

[p(s)]−ds ≤
m

M
.(23)

Now assume that β ≤ α. Then the integration of (3) from β to α results in

M −m ≤M

α∫
β

[p(s)]+ds ,

and, consequently,

1−
τ1∫
τ0

[p(s)]+ds ≤
m

M
.(24)

From (23) and (24) we get

M

m
≤ 1

1− T ,(25)

where T is defined by (12).
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Integrating (3) from a to β, we find

m =

β∫
a

[p(s)]+u(τ (s))ds −
β∫
a

[p(s)]−u(τ (s))ds ≥ m

τ0∫
a

[p(s)]+ds−M
τ1∫
a

[p(s)]−ds .

Consequently,
τ0∫
a

[p(s)]+ds ≤ 1 +
M

m

τ1∫
a

[p(s)]−ds .

The last inequality together with (25) contradicts (11). 2

3. On Remark 1.3

In the examples below we will construct functions p and τ such that the cor-
responding homogeneous problem (3) has a nontrivial solution. According to the
Fredholm property of the Cauchy problem for a linear functional differential equa-
tion (see [1,4]), there exist q ∈ L(]a, b[;R) and c ∈ R such that the problem (1),
(2) has no solution.

Example 1. Let ε0 ∈ [0, 1[, k ∈ [0,+∞[,

p(t) =


−k for t ∈ ]0, 1[
1 for t ∈ ]1, 1 + ε0[
− 1√

1−ε0
for t ∈ ]1 + ε0, 2[

−1 for t ∈ ]2, 3 +
√

1− ε0[

,

τ (t) =


1 for t ∈ ]0, 1[
2 for t ∈ ]1, 1 + ε0[ ∪ ]2, 3 +

√
1− ε0[

3 +
√

1− ε0 for t ∈ ]1 + ε0, 2[
.

(26)

On the segment [0, 3 +
√

1− ε0] consider the problem

u′(t) = p(t)u(τ (t)) , u(0) = 0 .(27)

Then a = 0, τ0 = 1, τ1 = 3 +
√

1− ε0,

τ1∫
a

[p(s)]+ds = ε0 ,

τ1∫
a

[p(s)]−ds = k + 1 + 2
√

1− ε0 ≥ 1 + 2

√√√√√1−
τ1∫
a

[p(s)]+ds .

On the other hand,

u(t) =


0 for t ∈ [0, 1[
t− 1 for t ∈ [1, 2[
3− t for t ∈ [2, 3 +

√
1− ε0]

(28)

is a nontrivial solution of (27).
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Moreover, let ε ≥ 0. Put k = 0 and choose ε0 ∈ [0, 1[ such that

ε0

1− ε0
+

1√
1− ε0

+
√

1− ε0 = 2 + ε .

Then the function

γ(t) =


1 for t ∈ [0, 1[
1+
√

1−ε0
1−ε0

(t− 1) + 1 for t ∈ [1, 1 + ε0[
t−1√
1−ε0

+ 1
1−ε0

for t ∈ [1 + ε0, 2[

t− 2 + 1√
1−ε0

+ 1
1−ε0

for t ∈ [2, 3 +
√

1− ε0]

satisfies the inequality (4), where p and τ are defined by (26). Furthermore,

γ(τ1)− γ(a) = 1 +
ε0

1− ε0
+

1√
1− ε0

+
√

1− ε0 = 3 + ε .

However, as we have shown, the problem (27) has the nontrivial solution (28).
This example verifies the optimality of the condition (5) in Theorem 1 as well

as the optimality of the condition (8) in Theorem 2.

Example 2. Let k > 1,

p(t) =

{
−k for t ∈ ]0, 1[
−1 for t ∈ ]1, 2 + 1

k
[
, τ (t) =

{
2 + 1

k
for t ∈ ]0, 1[

1 for t ∈ ]1, 2 + 1
k
[
,

and on the segment [0, 2 + 1
k

] consider the problem (27). Then a = 0, τ0 = 1,
τ1 = 2 + 1

k , and the function

γ(t) =

{
kt+ 1 for t ∈ [0, 1[
t+ k for t ∈ [1, 2 + 1

k ]

satisfies the inequality (4). Moreover,

γ(τ0)− γ(a) = k > 1 , γ(τ1) − γ(τ0) = 1 +
1
k

= 1 +
1

γ(τ0) − γ(a)
.

On the other hand, the problem (27) has a nontrivial solution

u(t) =

{
t for t ∈ [0, 1[
2− t for t ∈ [1, 2 + 1

k ]
.

This example shows that the strict inequality in the condition (6) cannot be re-
placed by the nonstrict one.

To verify the optimality of the condition (9) means to show that whenever ε0,
x0, and y0 are such that

ε0 ∈ [0, 1[ , x0 >
√

1− ε , y0 ≥ 1 +
1− ε0

x0
,(29)
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then there exist a function p ∈ L(]a, b[;R) and a measurable function τ : ]a, b[→
[a, b] such that

τ1∫
a

[p(s)]+ds = ε0 ,

τ0∫
a

[p(s)]−ds = x0 ,

τ1∫
τ0

[p(s)]−ds = y0 ,(30)

and the problem (3) has a nontrivial solution.

Example 3. Let ε0, x0, and y0 be such that the conditions (29) are fulfilled. Put

p(t) =


1 for t ∈ ]0, ε0[
− x0

1−ε0
for t ∈ ]ε0, 1[

−1 for t ∈ ]1, 2[ ∪ ]3, 3 + 1−ε0
x0

[
1 + 1−ε0

x0
− y0 for t ∈ ]2, 3[

,

τ (t) =


1 for t ∈ ]0, ε0[ ∪ ]1, 2[ ∪ ]3, 3 + 1−ε0

x0
[

3 + 1−ε0
x0

for t ∈ ]ε0, 1[
2 for t ∈ ]2, 3[

.

On the segment [0, 3 + 1−ε0
x0

] consider the problem (27). Then a = 0, τ0 = 1,
τ1 = 3 + 1−ε0

x0
, and the equalities (30) are fulfilled.

On the other hand,

u(t) =


t for t ∈ [0, 1[
2− t for t ∈ [1, 2[
0 for t ∈ [2, 3[
3− t for t ∈ [3, 3 + 1−ε0

x0
]

is a nontrivial solution of the problem (27).

Example 4. Let k > 1,

p(t) =

{
k for t ∈ ]0, 1[
−k−1

k for t ∈ ]1, 2[
, τ (t) =

{
2 for t ∈ ]0, 1[
1 for t ∈ ]1, 2[

,

and on the segment [0, 2] consider the problem (27). Then a = 0, τ0 = 1, τ1 = 2,

τ1∫
τ0

[p(s)]+ds = 0 ,

τ1∫
τ0

[p(s)]−ds =

τ1∫
a

[p(s)]−ds =
k − 1
k

, T =
k − 1
k

,

and
τ0∫
a

[p(s)]+ds = k = 1 +
1

1− T

τ1∫
a

[p(s)]−ds .
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On the other hand,

u(t) =

{
t for t ∈ [0, 1[
−k−1

k
t+ 2k−1

k
for t ∈ [1, 2]

is a nontrivial solution of the problem (27).
This example shows that the strict inequality in the condition (11) cannot be

replaced by the nonstrict one.
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