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NATURAL VECTOR FIELDS AND 2-VECTOR FIELDS
ON THE TANGENT BUNDLE
OF A PSEUDO-RIEMANNIAN MANIFOLD

JOSEF JANYSKA

ABSTRACT. Let M be a differentiable manifold with a pseudo-Riemannian
metric g and a linear symmetric connection K. We classify all natural (in
the sense of [4]) 0-order vector fields and 2-vector fields on T'M generated by
g and K. We get that all natural vector fields are of the form
E(u) = a(h(u) u + B(h(w))u",

where uV is the vertical lift of u € T M, uwH is the horizontal lift of u with
respect to K, h(u) = 1/2g(u,u) and «, 3 are smooth real functions defined
on R. All natural 2-vector fields are of the form

Auw) = 71 (h(u)) Alg, K) + 72 (h(w) u A,
where 71, 72 are smooth real functions defined on R and A(g, K) is the

canonical 2-vector field induced by g and K. Conditions for (E,A) to define
a Jacobi or a Poisson structure on T'M are disscused.

INTRODUCTION

In this paper M is a differentiable manifold with a of pseudo-Riemannian metric
g. Let (z%) be a typical local chart on M, then (;) and (d*) denote the canonical
local bases of modules of vector fields and forms on M. In general relativistic
theories dimM = 4 and g is a Lorentz metric, but it is not relevant for our
purposes; our considerations are correct for non-orientable manifolds if dim M > 2
and for orientable manifolds if dim M > 4.

The isomorphism T*M — TM given by the metric tensor will be as usual
denoted by # and its inverse by °.
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We consider the tangent bundle pyy : TM — M of M. The natural fibred
coordinates on T'M are denoted by (2%, #*) and the canonical local bases of modules
of vector fields and forms are denoted by (&, d;) and (d‘, d%).

The canonical natural function (kinetic energy) on T'M will be denoted by
h(u) = 3g(u,u), u € TM.

We assume a linear symmetric connection (gravitational field) K on M.

We use the term “natural operator” in the sense of [4, 6, 11]. Namely, a natural
operator is defined to be a system of local operators Ay : C*(FM) — C*(GM),
such that Ax(fis) = f&EAm(s) for any section (s : M — FM) € C*°(FM) and
any (local) diffeomorphism f : M — N, where F,G are two natural bundles, [9].
A natural operator is said to be of order r if, for all sections s,q € C*(FM)
and every point x € M, the condition jis = jrq implies Apyrs(z) = Anpg(z).
Then we have the induced natural transformation Ays : J"FM — GM such that
An(s) = Ap(j7s), for all s € C°(FM). It is well known, that the correspondence
between natural operators of order r and the induced natural transformations is
bijective. In this paper by natural operators we mean the corresponding natural
transformations. Briefly speaking, a natural operator is a fibred manifold mapping
which is invariant with respect to local diffeomorphisms of the underlying manifold.

In [1, 2] we have classified all natural 2-form fields on T'M generated by g and
K and we have found conditions for such 2-form fields to be symplectic. The
aim of this paper is to classify all natural vector fields and 2-vector fields on T'M
generated by g and K. Finally, in Sections 5 and 6, we recall, [3], conditions under
which natural vector fields and 2-vector fields define a Poisson or a Jacobi structure
on T'M. Evidently the conditions for the natural nondegenerate Poisson structure
have to be equivalent with conditions for the natural symplectic structure we have
found in [1, 2].

All manifolds and mappings are assumed to be smooth.

1. SCHOUTEN-NIJENHUIS BRACKET

Let V(M) (V°(M) = C>®(M)) denote the space of k-vector fields on a dif-
ferentiable manifold M and V(M) = (&2_,V*(M), A) be the contravariant Grass-
mann algebra of M. Let us recall that the Schouten-Nijenhuis bracketis a (natural)
bilinear map

(P,Q) € V(M) x VI(M) — [P,Q] € VP*47H(M)

satisfying the following properties:

(1) [P.@Q] = (~1)7[Q, P);

(2) (1) VD[P, [Q, 8] + (~1)a- -V [Q, (S, P

+ (_1)(5—1)((1—1)[5, [P, Ql] = 0;

B) [P,QAS]=[P,QIANS + (—1)PT791Q A [P, S];

(4) [X,Q] = LxQ, where Lx is the Lie derivative;
for any P € VP/(M), Q € VI(M), S € V*(M), X € V}(M).
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For any function f € V(M) = C*°(M) the equality (3) implies
[P, fQ] =[P, fIANQ + fIP,Q],
where [P, f] is defined by

[P7f](p25~-'7pp) :P(dfa,02,~-~7pp)

for any 1-form fields p; on M.
The Schouten-Nijenhuis bracket can be characterized by

(1.1) i([P,Q))B = (=1)¥*Vi(P)d[i(Q)]
+ (=1)Pi(Q)d[i(P)B] — i(P A Q)dp

for any (p 4+ ¢ — 1)-form field g.

A 2-vector field A defines on M a Poisson structure, |7, 12], if
(1.2) [A,A]=0.

A pair (E,A), where F is a vector field and A is a 2-vector field, defines on M
a Jacobi structure, [8], if
(1.3) [E,A] =0, [A,A]=2EAA.

2. NATURAL VECTOR FIELDS ON T'M

We can define two canonical natural vector fields on T M. The first one is
the Liouville vector field £(u), which can be considered as the wvertical lift u" of
u € T, M. In coordinates

(2.1) u =) = i'9; .

A linear connection K on T'M is a linear T'T' M-valued 1-form

K:TM —-T*MQTTM
with coordinate expression
K = dl®(51 + Kijki‘ka.j) , Kijk S COO(M) .

The space of linear connections is a natural bundle of 2nd order and we shall
denote it by CM, by C;M we shall denote the subbundle of torsion-free linear
connections on M. If we consider K as the mapping K : TM xp; TM — TTM,

called the horizontal lift, we can define the horizontal lift of u as the vector field
uf = K(u,u), i.e. in coordinates
(2.2) ufl = 30, + K, i"%0; .

The vertical and the horizontal lifts of u are natural 0-order (with respect to
the connection K) vector fields on TM, i.e. they are natural operators from
TM xp CM into TT M projectable (with respect to the projections pry : TM X 5y
CM — TM and prpy : TTM — TM) over the identity of TM. As a consequence
of the results of [10] we get that all 0-order natural vector fields on TM given by
K are linear combination (with real coefficients) of the vertical and the horizontal
lifts. In what follows we shall consider natural O-order vector fields induced by
a pseudo-Riemannian metric g and a torsion-free linear connection, i.e. we shall
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classify all 0-order natural operators from TM xyr reg @2 T*M xpr C.M into
TTM projectable over the identity of T M.

Theorem 2.1. Let M be a differentiable manifold with a pseudo-Riemannian
metric g and a linear symmetric connection K. Then all natural 0-order vector
fields on TM are of the form

(2.3) E(u) = a(h(w) u' + f(h(u))u"
where «, B are smooth real functions defined on R.

Proof. According to the general theory of natural operators, [4, 6], all natural
0-order operators from TM Xy reg ©2 T*M X C-M into TTM are given by
invariant mappings from the standard fibre Q of the functor T x reg ®? T* x C
into the standard fibre S of the functor T7T. To classify these invariant mappings
we shall use the infinitesimal method of [6].

The standard fibre Q@ = R* X reg(R**©OR*") x R*"@ R**©R*" with coordinates
(J.Ji, 9ij, Kijk), 9ij = YGji, det(gij) 75 O, Kjik' = Kkij, and the action of the 2nd order
differential group G2 = invJZ(R™,R™)y given in coordinates by

=t dsp — _ =p=q ok _ _k ~p~q k~r
(2.4) i = a,?, Gij = G; G} Gpq K" =a,. K," a; a; —ajag;
where (aJ,a %1) are the canonical coordinates on G? and tilde denotes the inverse
element.

The fundamental vector fields on @ relative to this action are

0 0 ’ i i 0
(25) CQ(Q) 8 D 2911)8 (5pKqu‘ - 5;1Kp k — 5]ZKJ P)aKJ,Lk ’
1 0 0 0
qT _—— =
26 ¢Q)=3 (aqur * aKqu> OK,P,

The standard fibre S = R™ x R™ x R™ with coordinates (i¢,¢% =) and the
action of the group G2 given in coordinates by

(2.7) it = a;a'cp, &= az,ﬁp, B = a;Ep + a;qugq.
The fundamental vector fields on S relative to this action are
0 0 .0
(28) Cp( ) 8 ) +§q8—§p+ =1 —— Hp
0
qr P q..T s qerY_ T
(2.9) p(S)—z(ﬁx +x§)8Ep.

A mapping F : Q — S is G2-invariant if and only if the corresponding fun-
damental vector fields are F-related. Let F = (& (2", gpg. Kp"q), E(2", Gpg, Kpq):
EY(2", gpg, Kp"¢)) be a coordinate expression of F. The assumption that the op-
erator is projectable over the identity of TM implies #° = ¢. Further

o€’ o€’ i i iy ¢
(210) xqajgp — 29”’@ + (5ijqk — (SjKP k — (SZKJ p)aK—J'Lk = pgq ,
1q
'qu_ E i, 859 i_q.i_Ei_i:q
(A1) 1T = 2 (GG = 6Ky~ LK) G = 2
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and .

(2.12) 8?& =0,

(2.13) 8?{—3; = %5;’,(5%’” + &9€7).
Putting (2.12) into (2.10) we get

(2.14) 908 g 28 _ 5,87,

v g
which implies, that £ is a G:-invariant mapping from R™ x reg(R*™ ® R*") into
R™ which is the GL-invariant mapping corresponding to 0-order natural operator
from TM x reg®?T*M to TM. From the classical theory of differential invariants
it is known that all such mappings are of the form
(2.15) & = a(h(u)) i,
where « is a smooth real function defined on R.
The right hand side of (2.13) we can rewrite in the form
8[(171il

1 ) . T . r 1 ) r r m . m
§5p(§qx +xq§ ) = §5P(51q715l + 5lqlsm)§ xl - 8qur§ xla
which implies that

(2.16) ==K, &Pt + 7",

where Z' is a function independent on Kj%. Putting (2.16) into (2.11) we get
that Z% has to satisfy (2.14), i.e.

(2.17) 7' = B(h(w)) &',

where 3 is a smooth real function defined on R.
Now, putting (2.15) and (2.17) into (2.16), we have

(2.18) &' = a(h(u)) i, Z' = a(h(u)) Kp' 3P + B(h(u)) ",

and it is easy to see that the natural operator corresponding to (2.18) is the vector

field (2.3). O
Lemma 2.2. We have:
1) Y, ufl]=uf; 2) MY, uV Aufl]=uY Auf;

3) W uV Au]=0; 4) [ Au ¥V Aufl]=0.

Proof. It is easy to prove the first equality by direct coordinate calculation by
using (2.1) and (2.2). The others equalities follows from the properties of the
Schouten-Nijenhuis bracket. |

Lemma 2.3. Let v be a smooth real function defined on R. Then we have

(2.19) [, y(h(u))] = 2h(u) (h(u)),
(2.20) [w, ~(h(w))] = %ﬁ(h(U))(Vg)(u, u)(u),
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where 4 = —t and V is the covariant differentiation with respect to K.

Proof. For any vector field E we have [E,v(h)] = (E, d’y(h)> = Y(h)(E,dh).
Lemma 2.3 now follows from (2.1), (2.2) and dh = $gpqi@P@%d" + gp; iPdl O

3. CANONICAL 2-VECTOR FIELD GENERATED BY g AND K
Let us denote by 9 the VT'M-valued 1-form on M given by the vertical lift, i.e.
9: M —>T*MQVTM, ¥=d®0o.
The metric g and the connection K induce naturally a 2-vector
(3.1) Mg, K) = KA : TM — N*T(TM),

where A denotes the wedge product followed by the contraction through the inverse
metric g. In coordinates

(3.2) Mg, K) = g (0; + Ki™ xi* ) N O; .
Remark 3.1. The canonical 2-vector field A(g, K) can be characterized by
Ag. K)(p",0") =0, Mg, K)(p",0")=3d(p,0),

Mg, K)(p",0")==g(p,0), Alg, K)(p",o") =0,

\4

where p, o are 1-form fields on M, p¥, oV are their vertical lifts (pullbacks) and
H o H

p are horizontal lifts with respect to K.

The metric g can be considered to be a T* M-valued 1-form on M which will be
denoted by g to distinguish it from the metric. Then, [4], we define the covariant
exterior differential of g as a T™*M-valued 2-form field dx g defined for any vector
fields Xl, XQ, Xg by

(3.3) drg(X1, X2)(X3) = (Vx,9(X2) — Vx,9(X1) — g([X1, Xa])) (X3) -
Then
dixg=RAG,
where R = R' ;3" 9;®@d? A\ d* is the curvature tensor field of K. The T*M-valued
3-form R A g is defined by
(BAG) (X1, X2, X3)(Xa) = o Z |019(Xo(3), R(Xo(1), Xo(2))(Xa)) ,

where ¢ is a permutation and |o| is its sign. In coordinates
(3.4) d%g = RPijrgpnd” @d" Nd? A d".

Lemma 3.2. Let X1, X9, X3 be three vector fields on M. Then
(A) dreg(X1, X2)(X3) =0

if and only if
(Vx,9)(X2, X3) = (Vx,9)(X1, X3),
i.e. if and only if Vg is a section Vg : M — &3T*M.
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Proof. We have
Vx, X2 — Vx, X1 =[X1, X2]
and
Vx,9(X2, X3) — 9(X2, Vx, X3) = Vx,§(X2)(X3) .
Then

(Vx.9)(X2, X3) — (Vx,9) (X1, X3) = drg(X7, X2)(X5)
implies Lemma, 3.2. |
Corollary 3.3. The condition (A) is satisfied if and only if

X19(X2, X3) — X29(X1, X3)
= g(X2a leXg) - g(Xla VX2X3) + g([Xla XQ]’ X3)

for any three vector fields X1, X2, X35 on M.

Theorem 3.4. A(g, K) defines a Poisson structure if and only if the condition
(A) is satisfied.
Proof. We have from (1.1)
(35)  [Ag, K), Mg, K) = 9797 g™ (gpm,r + Gms Kp*r)0i N Oj N Oy

+ (R¥*, + RI% 4 RF im0 A Dy A O .

On the other hand
dkg = (9ijx + 955 Ki*r)d' @d N d".
The condition dxg = 0 imply d%g = 0 which is from (3.4) equivalent to
(3.6) Rijrr + Rjkir + Rpijr =0,
i.e. by increasing indices
Rk, 4 RIM 4 RMI =0,

which implies Theorem 3.4. |
Lemma 3.5. Let v be a smooth real function defined on R. Then we have:
(1) [Alg, K), y(h(w))] = 5 (h(w))( = u™ + 5((Vg)(u,u)")")
(2) [Alg, K),u"] = —A(g, K) .
Proof. It is easy to prove it in coordinates. O

Lemma 3.6.
(Vo) (u,u))")V Au't =0
if and only if
Vg=0.

Proof. In coordinates we have
(Vo) (u,u)H)Y Auf = (Vingre)d"ag™ 0; A (i70; + K 4iPi90;) .
which vanishes if and only if V,,g,s = 0. |
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Lemma 3.7. The following relations are equivalent:
(B) 9(X1,X3)(Vx,9) (X4, X5) = g(X2, X3)(Vx,9)( X4, X5) for any vector fields
Xi,i=1,...,5;
(1) (Vo) (u,u))))V AA(g, K) =0;
(2) (Vo) (u,u))))V Au” =0.
Proof. The condition (B) in coordinates reads as
gijvkgrs - gkjvigrs =0.
(B) & (1) In coordinates we have
(V) (u,w))")¥ A A(g, K)
= _gpkgmj (Vmgrs)xrxs((sz,al A 83’ A 8k + Kpiqi'qa.i A 8j A\ 8k) .
Now

(6" g™ — "7 g™ ) (Vingrs) = (9% 9™ gan g™ — 97 9™ 9av g™ ) (Vinrs)
ak mj

=g 9g gbp(gabvmgrs - gmbvagrs)

which implies the first equivalence.
(B) < (2) In coordinates we have

(Vo) (w,w)) A" = g™ (Vongrs)d"5°0; A D
The equivalence now follows from

(gmji'k - gmki'j)(vaTS) = gjmgkpi'q(gpqvmgrs - gmqvp9r5) . O

Lemma 3.8. We have
[A(g, K),u"] =0 +=Vg=0.

Proof. In coordinates
(3.7) [A(g, K),ufl] = 2"V, g7 d; A 0;
+ (R + K Vg™ a"a%0; A\ 0 .
If K is the metric connection, i.e. Vg = 0 then g(R(X1, X2)(X3), X3) = 0 which
in coordinates reads as
R,ijs@"2® =0.

Then, by using the cyclic permutations of the first three indices, we have

0= Ryijst"@® = (Rirjs — Rjris)&"&°
which, by increasing indices, implies (R!,.7s — R7,%)i"2% = 0. O
Lemma 3.9. Let X;,i=1,...,5, be vector fields on M. Then the conditions (A)
and (B) imply
(3.8) V(g g)=0.
and
(3.9) > 9(X1, Xa)g(R(Xs, X3)(X4), X4) =0,
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where Y is taken over the cyclic permutation of X, Xo, X3.

Proof. For any vector fields X3, ..., X5 we have

151

VXS (g Y g)(Xl ) X2a Xga XZ) = g(Xga XZ)szg(Xl ) X2) + g(Xla XQ)szg(Xga XZ)
= 9(X5, X4)Vx;9(X1, Xa) — 9(X1, X2)Vx; 9(X5, X4)

which follows from
Vx,9(X5,X5) = —Vx,9(X3, X4) -

(3.8) now follows from the fact that the conditions (A) and (B) imply that g ® Vg

is a symmetric tensor, i.e. g®Vg: M — O5T*M.
To prove (3.9) we consider the covariant derivative of the equation

9(X1, Xa)(Vx,9) (X4, Xa) — 9(X2, X4)(Vx,9)(Xa, X4) =0

with respect to X3. Then taking the sum with respect to the cyclic permutation

of X1, X5, X3, (A), (B) and

(V29)(Xa, X4, X1, Xa) — (V29)(Xa, Xu, X2, X1) = —29(R(X1, X2)(Xa), X4)
we get (3.9).
Lemma 3.10. The conditions (A) and (B) imply

(3.10) (V) (u,u)(w)u" AAg, K) =0
and
(3.11) [A(g, K),u]AuY =0.

Proof. In coordinates (3.8) reads as
gpqvmgrs — _grsvmgpq .
Then we have
(Vg)(u,u)(w)u" A A(g, K)
= (Vingrs)&"@°0™ a7 g1 (820 A Oj A Ok + K" g@P0; A O A O
which vanishes if and only if
0 =2 25" (& g% — ik gV)V ngrs = 27252 (27 Grs Ving® — 7 grsVing?)
= 2h(u)E™ (Vg7 — &IV, g"7) .
But
(312) @™ ("Vig¥ — ¥ Vig®™) = "0 (7P 9" Vingps — 997 Vingps)
=" &° g g7 9" (GutVmGps — GpuVmgts)
=" &g g7 9" (GutV pgrs — GpuVigrs)

which proves the first part of Lemma 3.10.
In coordinates

Ag, K), v AuY = i"i*V,.g™I (8¢ 0; A 05 N O+ Km'si0; A O; A ak)
J J
+ R "5 05 A 3j A

O
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The first term on the right hand side vanishes because of (3.12). The second term
vanishes because of (3.9). Really in coordinates (3.9) reads as

@253 (gir Rsjkt + Gjr Rskit + Ger Rsije) = 0
which, by using (3.6) and increasing indices, implies

it (2RI, — 'R 4 i RE, — I RLR 4 iM R, — 2RI =0, O

4. CLASSIFICATION OF NATURAL 2-VECTOR FIELDS GENERATED BY g AND K

Any 2-vector field on TM has coordinate expression A = AYd; A 8; + AYd; A
d; + NJ i A 8J, A = —AS A = —A}’. The canonical 2-vector field A(g, K)
is given by AY = 0, AY = g9 and AY = (¢ K,,', — g™ K,7,)i". Alg, K) is
a natural O-order operator from TM X, reg ©2 T*M xp C-M into A2T(TM)
projectable over the identity of T'M. In this section we shall classify all operators
of this type.

Let us recall the standard fibre Q of the functor T x reg G? T* x C, with the
action of the group G2 on @ given by (2.4) and the fundamental vector fields (2.5)
and (2.6).

Let us denote by S = R™ x A2R?"* the standard fibre of A?*T(T) with the

i ij
A A2.>), AY = —A}', AY = =A%’ The action of

. . .1:
canonical coordinates (47, (_ AN
2 3

G? on S is given by

P o I .
(4.1) T = ayi?, AY = ajal AT, Ay = ayal AY + ayal " AT

Ay = alal A8 + (a),.a) — al al)i" AT + al ) @73 AR

The fundamental vector fields on S relative to this action are

) ;0 i O ;0 ;0
(4.2) &(5) =il52 + 2A{ oA +A quw + A3 OAT + 2A§ IV
81. + Aigr 81.
ONP ONP

(4.3) 2647 (S) = Airid + 2(AYi" 4+ AL i
4 2 2

ONY
First we shall prove

Theorem 4.1. All G?-equivariant mappings F : Q — S (over the identity of R™)
are given by

Y =9y,
(4.4) F;j = YK 3 Ay

Fy! = K WKy md d™ + (v Kk — 98 K ) 5



NATURAL VECTOR FIELDS AND 2-VECTOR FIELDS ... 153

where % are functions on Q which are solutions of the following system of partial
differential equations

ac
(4.5) il
O A s s
(4.6) 1> 2 =16) + (9,

. T -
ozP pagm
i i i ji
Moreover, v = —~]", 75 = —4".

Proof. A mapping F': Q — S is G2-equivariant if and only if the corresponding
fundamental vector fields (2.5), (2.6) and (4.2), (4.3) are F-related. If F' has the
coordinate expression

xl:xl’ A,Lof :Fézj(j"p5gpq5quT)7 @ = 1a2737

then FJ have to satisfy the following system of partial differential equations

OFY OFY OF
-.q o o] T q _ £q r o _ £q r o]
(A7) @158 =2, . + (K — 61K, — 61 K p)aKsrt
= F96] + F35)
OF}
(4.8) K~ 0,
OFY 1,
(4.9) 8Kq2pr = 5(F1 @967 + Fy93"67) |
(4.10) OFy _ l(F‘%’”ai + Fyl 3968 — Ff'am sl — Fyia6d)
. 8qur - 2 2 j4 2 D 2 D 2 )

Now we have to prove that all solutions of (4.7) — (4.10) are of the form (4.4)
where (4.5) and (4.6) are satisfied.
Substituting (4.8) into (4.7), where o = 1, we get that

(@11) T
and ~¥ satisfies (4.5) and (4.6).
Let us rewrite (4.9) in the form
oFy 1

S = 5 F1 A" 0p(d)0; + 0308,
q T

i.e. in the form -
oFy’ 0., OK,J
2 — Ffbl.'a b .
OKP, OKP,
Integrating this formula and substituting (4.11) we get

(4.12) FY =K, 3 + 95 .
It is easy to see that 74 satisfies (4.5) and (4.6).



154 J. JANYSKA

Finally (4.10) can be rewritten in the form

8FZ§] 1aj~bi qcr T $q 1ai~bj qcr T oq
K7, = §F1 ©76,,(6,0q + 6508) — §F1 1767 (6, 0 + 0 02)
i.e. in the form B
OF 0Ky 0K,
_ FaJ -b a _ Fal -b a .
oKy 2 UK, 2T 0K,

Integrating this formula and substituting (4.12) we get

(413)  F3’ = 7Ky 1Ky md i™ + (4 Kol — 98 Ko ) i* + 75

where 75 = —~}" and ¥ satisfies (4.5) and (4.6). O
According to Theorem 4.1 to classify all natural operators from T M Xz

reg ©2T*M xp C;M into A2T*(TM) it is sufficient to classify all operators

with equivariant mappings expressed by (4.5) and (4.6), i.e. operators from

TM xpreg @2 T*M to TM®T M. To classify all such operators we shall use the
following Theorem, [5, 4],

Theorem 4.2. Let (M, g) be an oriented pseudo-Riemannian manifold of dimen-
sion n > 3. Then all natural operators from TM xyrreg®?> T*M to T*M @ T* M
(natural F-metrics) are symmetric and are of the form

(4.14) Bu(X,Y) = p(h(u)) (X, Y) 4+ v(h(u)) g(X, u)g(Y, u)

where X, Y are vector fields and p,v are smooth real functions defined on R.
In coordinates

Bij = u(h(w)) gij + v(h(u)) gipgjqa? . 0
Now we can prove the inverse version of the above Theorem 4.2.
Theorem 4.3. Let (M, g) be an oriented pseudo-Riemannian manifold of dimen-
sion n > 3. Then all natural operators from TM xyrreg @2 T*M to TM @ TM
are symmetric and are of the form
(4.15) Yu(p,0) = 71(h(w)) §(p, o) + 12(h(u)) p(u)o(u)

where p,o are 1-form fields and 1,72 are smooth real functions defined on R.
In coordinates

(4.16) Y7 =m(h(u) g7 + y2(h(u)) i'd .

Proof. Any natural operator TM x ;reg®?T* M to TM @TM can be interpreted
as a natural real function on TM xp; T*M xpr T* M x 3r reg ®2 T* M bilinear on
T*M. Similarly any natural F-metric of Theorem 4.2 is a natural real function
on T'M xpr TM xpr TM Xar reg ®2 T*M bilinear on TM. Theorem 4.3 now
follows from the classification of Theorem 4.2 and the fact, [2], that all natural
isomorphisms T*M — T M induced by the metric g are of the form

(4.17) X = r(h(w) ¢(p), X' = r(h(w)) g¥p,
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where p is a 1-form field and « is a smooth real function defined on R such that
k(t) # 0 for any t € R. The operator 7 is now a composition of the operator (4.17)
and natural F-metric 3, i.e. in coordinates

(4.18) 77 = K (h(w) g7 ¢ (u(h(w)) gpg + v(h(W)) Gprgpsi”i®)
=n(h(w)) g7 + 2 (h(u)) @i’ ,

where v; = k2,72 = k?v. (4.18) is just the equivariant mapping corresponding
to (4.15). O

Remark 4.4. In Theorems 4.2 and 4.3 we have restricted the dimension of the
underlying manifold on n > 3 because our standard model is an Lorentzian man-
ifold of dimension 4 (spacetime). But both Theorems 4.2 and 4.3 are correct
for non-oriented manifolds if n > 2. For oriented manifolds in dimensions 2 and
3 there are also antisymmetric natural F-metrics and so antisymmetric natural
operators v (see [5]).

Now we can classify all natural 2-vector fields. We have

Theorem 4.5. Let (M,g) (dim M > 3) be an oriented pseudo-Riemannian man-
ifold endowed with a symmetric linear connection K. Then all natural operators
from TM X reg ©2 T*M xpr C- M into N2°T(TM) projectable over the identity
of TM are of the form

(4.19) Ay, K) = KAL0,

where A denotes the wedge product followed by the contraction through the oper-
ator v of Theorem 4.3. In coordinates

(420)  A(y, K) = (m(h(w)) g7 + 72 (h(u)) i'd” ) (8; + K™ i*Om) A O;

where 1,7y are smooth real functions defined on R.

Proof. By Theorem 4.3 we have %‘j = fygj = 0 in Theorem 4.1. So we have the
equivariant mappings F' : @Q — S corresponding to our operators in the form

(421) FY=0, F =9, F=08Kg-8 KWk
where

75 = (h(w)) g7 + 2 (h(w)) &'d7 .
It is easy to see that it is just the mapping corresponding to (4.19).

O

Remark 4.6. The canonical 2-vector field from Section 3 corresponds to v =
1, 72 = 0. From (2.1) and (2.2) it follows that the 2-vector field corresponding to
11 =0, 72 =1is uff Au". Then (4.19) can be written in the form

(4.22) Aly, K) = 71(h(u) Mg, K) + 72 (h(u)) u™ A

which is much more convenient for our further purposes.
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Remark 4.7. The 2-vector field A(v, K) can be characterized by

A(’% K)(pV,O,V) =0, A(’Y’ K)(pvaUH) = '7(p70')7
Ay, E)(p . 0") = =v(p,0), Ay, K)(p". o) =0,

VV

where p, o are 1-form fields on M, p are their vertical lifts (pullbacks) and
H o H

p are horizontal lifts with respect to K.

5. NATURAL POISSON STRUCTURES

In this Section we shall recall, [3], conditions for A(7y, K) to define a Poisson
structure on T'M, i.e. we have to find conditions for A(~, K) to satisfy (1.2).

Lemma 5.1. The 2-vector field A(vy, K) is of constant mazimal rank if and only

if v1(t) # 0 and v () + 2ty2(t) # 0 for any t € R.

Proof. A(v, K) is of constant maximal rank if and only if the matrix v;(h) g% +
y2(h) @37 is regular. It is easy to see that it is so if and only if v (t) and 71 (t) +
2ty5(t) are everywhere nonvanishing functions. O

Lemma 5.2. We have

[A(, K), A(y, K)] = 77 (h) [A(g, K), Alg, K)]
+71(h)A(h) (Vg) (u, u)')” A A(g, K)
+71(h)A2(h) (Vg) (u, )Y Au A
+2(71(h)r2(h) — m(R)¥1(h) — 2hye(h)31 (h)) u™ A A(g, K)
)

) —
+ y2(h)(h) (V) (u,u)(u) u¥ AA(g, K)
+ 271 (h)ya(h) [A(g, K), u"] Au .

Proof. It is easy to prove it by using (4.22) and properties of the Schouten-
Nijenhuis bracket. O

Theorem 5.3. The nondegenerate 2-vector field A(vy, K) defines a Poisson struc-
ture on TM if and only if the conditions (A), (B) and

(®) Y1 (0)2(t) = 11 ()1 (t) — 2t72(t) 1 (t) =0
are satisfied for any t € R.

Proof. «< It follows from Theorem 3.4, Lemma 3.7 and Lemma 3.10.

= All 2-vector fields on the right hand side of Lemma 5.2 are independent, i.e.
[A(7y, K), A(, K)] = 0 if and only if all terms on the right hand side vanish. Since
~v1(h) # 0 the first term vanishes (by Theorem 3.4) if and only if the condition (A)
is satisfied. The second and the third terms vanish if and only if the condition (B)
is satisfied (Lemma 3.7) and the fourth term vanishes if and only if the condition
(C) is satisfied. The others terms vanish because of the conditions (A) and (B)
(Lemma 3.10). O
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Now, let us compare the conditions of Theorem 5.3 for natural Poisson struc-
tures with conditions for natural symplectic structures given in [1]. First we recall
that any 2-form field Q(8, K) on TM, dimM > 3, naturally given by g and K can
be characterized by

Q(8, K)(XH,YH) =0, Q8 K)(XT,YV) = —B(X,Y),

GD g k)XY Y =y, x), B K)(XV.YY) =o.

where X, Y are vector fields on M and (8 is a natural F-metric given by Theorem
4.2. In coordinates

QB,K) = (,u(h(u)) Gmj +v(h(u)) gmrgjsx'rx's) (dm — Kimka'ckdi) N
Then we have, [1],

Theorem 5.4. Q(0, K) is a symplectic form on TM if and only if v = i and the
real smooth function u satisfies

(5.2) u(t) # 0, pu(t) +2ta(t) # 0
for all t € R. Moreover g and K have to satisfy conditions (A) and (B). O

Let us suppose that the 2-vector field A(y, K) is the Poisson 2-vector field given
by the symplectic 2-form field Q(3, K). It is easy to see that in this case v (given
by (4.16)) is the inverse of the natural F-metric 8 (given by Theorem 4.2), i.e.
Bixy™ = 51] Then

(5.3) p(On @) =1, pt)rw(t) +vE)n () + 2tv(t)r(t) = 0.

If the conditions of Theorem 5.4 are satisfied, then p = 'y% and v = —% (from

the condition v = g for symplectic forms). Substituting these equalitlies into
second term of (5.3) we get the condition (C) of Theorem 5.3. On the other
hand if Q(8, K) is a symplectic 2-form field given by the nondegenerate Poisson
2-vector field A(y, K), then the conditions of Theorem 5.3 induce in the same way
conditions of Theorem 5.4. So the conditions for natural symplectic and natural
Poisson structures on T'M are equivalent.

Remark 5.5. In Theorem 5.3 we have supposed A(v, K) to be nondegenerate. If
we admit also 2-vector fields A(~, K') which are not of maximal rank we get from
Lemma 5.2 that all such 2-vector fields are characterized by 14 = 0, i.e. they are of
the form A(y, K) = 2 (h(u)) u AuY, where v, is arbitrary smooth real function
on R

6. NATURAL JACOBI STRUCTURES

In this Section we shall recall, [3], conditions for E, A(, K) to define a Jacobi
structure on T'M, i.e. we have to find conditions for E, A(y, K) to satisfy (1.3).
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Lemma 6.1. We have
[E,A(v, K)] = a(h)y (h) [u', A(g, K)]

+ (30051 Vo)) + 20300150 () — B0 (1)) Al K
+ ((3alh0) Vot n)w) + 23R + Blha()
— 203 h) ~ (1) Vol u)(w) = k() ) A ¥

+ S e (1) Vgl w)Y Au + 30 () (Vy(w,w))” Au”

Proof. It is easy to prove Lemma 6.1 by using properties of the Schouten-Nijenhuis
bracket. 0

Lemma 6.2. Let A(v, K) be of maximal rank. We have
[E,A(y, K)] =0

if and only if one of the following groups of conditions is satisfied:
L a=0,0=0;
II. Vg =0 and the equalities

(6.1) B (n(t) =265 (1) =
(6.2) B(t) (v2(t) + 2t32 (1)) — B(O) (1 () + 2t72(t)) =
are satisfied for allt € R.

)

Proof. All terms on the right hand side in Lemma 6.1 have to vanish. The first
term vanishes if and only if « = 0 or [u*, A(g, K)] = 0.

First let us suppose [u, A(g, K)] = 0 which is equivalent by Lemma 3.8 with
Vg =0, i.e. K is the metric connection. The last two terms in Lemma 6.1 vanish
and the second and third terms vanish if and only if (6.1) and (6.2) are satisfied
and we have II.

Now, let us suppose a = 0 and Vg # 0. Then the second and the third terms
vanish if and only if (6.1) and (6.2) are satisfied and the last term vanishes if and
only if 8 =0, i.e. §is a constant function. Then for 3 # 0 (6.1) is equivalent with

(6.3) n(t) =2t (1), ie. m(t)=Vt

and similarly (6.1) is equivalent with

1
6.4 ) = —263(1), ie. o(t) = —=
(6.4) 2(t) (1) 2(t) 7
which is in the contradiction with the globality of v1,v2. Hence (6.1) and (6.2)
are satisfied only for 5 = 0 and we have 1. O

Lemma 6.3. Let A(v, K) be of maximal rank. We have
[A(y, K), Ay, K)] = 2E A A(y, K)



NATURAL VECTOR FIELDS AND 2-VECTOR FIELDS ... 159
if and only if the conditions (A), (B) and
(6.5) a(t)y(t) =1 ()r2(t) — ()9 (t) = 2tv()n(l), pt) =0
are satisfied for any t € R.
Proof. We have
2EAA(y, K) = 2ay1u? AA(g, K) + 26871 uY AA(g, K).

Comparing this with expression of [A(y, K), A(y, K)] from Lemma 5.2 we get

(6.6) [Alg, K),A(g, K)] =0,
(6.7) (V) (u,u)")" AA(g, K) =0,
(6.8) A2 ((Vg)(u,uw))Y Al Au" =0,
(6.9) Y1 (0)2(t) = 11 ()9 (t) = 2072 ()1 (1) = a(t) 1 (1),
(6.10) (26m — 7271 (V) (u,u)(w))u¥ AA(g, K) =0,
(6.11) Y[A(g, K),u]AuY =0.

By Theorem 3.4 (6.6) holds if and only if (A) is satisfied, (6.7) is equivalent with
(B). (A) and (B) imply (6.8) and (6.11) and (6.10) is reduced by Lemma 3.10 to
6=0. |

Theorem 6.4. Let A(v, K) be of mazimal rank and E be a non-zero vector field.
E and A, K) define a Jacobi structure on TM if and only if K is the metric
connection and E = a(h)u!?, where

(D) a(t)(t) = n)re(t) — v () (t) — 2ty2(t) ()
for any t € R.
Proof. Theorem 6.4 follows from Lemma 6.1 and Lemma 6.3. O

Remark 6.5. If F is the zero vector field then Theorem 6.4 reduces to Theorem
5.3 and the Jacobi structures reduces to the Poisson structure.

Remark 6.6. In Theorem 6.4 we have supposed A(~, K) to be of maximal rank.
If we admit also 2-vector fields which are not of maximal rank we get from Lemma
6.3 that all such 2-vectors are characterized by 4 = 0. Lemma 6.1 then implies
that the functions «, § and 7, have to satisfy

%Vg(u, uw)(w) (a(h(u)F2(h(u)) — é(h(u))2 (h(w)))
+ 2h(w) (B(A(u)2 (h(w)) = B(h(w) )2 (h(w))) + B(h(u))y2(h(w) = 0.
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