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ON QUADRATICALLY INTEGRABLE SOLUTIONS OF THE
SECOND ORDER LINEAR EQUATION

T. CHANTLADZE, N. KANDELAKI AND A. LOMTATIDZE

Abstract. Integral criteria are established for dimV i(p) = 0 and dimVi(p) =
1, i ∈ {0,1}, where Vi(p) is the space of solutions u of the equation

u′′ + p(t)u = 0

satisfying the condition
+∞

u2(s)

si
ds < +∞ .

1. Main Results

Consider the equation

u′′ + p(t)u = 0 ,(1)

where p : [0,+∞[→]−∞,+∞[ is a locally integrable function.
Under a solution of equation (1) is understood a locally absolutely continuous

together with its first derivative function u : [0,+∞[→ ]−∞,+∞[ satisfying (1)
almost everywhere.

Denote by Vi(p) (i = 0, 1) the set of solutions u of equation (1) satisfying the
condition

+∞∫
u2(s)
si

ds < +∞ ,(2)

and denote the set of solutions u satisfying

lim
t→+∞

u(t) = 0

by Z(p).
Below we give some new results on the interlocation as well as on the dimen-

sionality of the above sets.
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Theorem 1. Let i ∈ {0, 1}, p(t) ≤ 0 in some neighbourhood of +∞, and

+∞∫
ds

si
[∫ s

0
η|p(η)| dη

]2 < +∞ .(3)

Then Vi(p) = Z(p) and dimVi(p) = 1.

Suppose that there exists a finite limit

lim
t→+∞

1
t

t∫
1

s∫
1

p(η) dη ds = cp

and put

p∗ = lim inf
t→+∞

t

cp − t∫
1

p(s) ds

 , p∗ = lim sup
t→+∞

t

cp − t∫
1

p(s) ds

 .

Theorem 2. Let p∗ ≤ −3
4 and

p∗ < p∗ − 1 +
1
2

√
1− 4p∗ .(4)

Then dimV0(p) = 1. If, moreover, p(t) ≤ 0 in some neighbourhood of +∞, then
V0(p) = Z(p).

Theorem 3. Let p∗ < 0 and

p∗ < p∗ −
1
2

+
1
2

√
1− 4p∗ .

Then dimV1(p) = 1. If, moreover, p(t) ≤ 0 in some neighbourhood of +∞, then
V1(p) = Z(p).

It is proved in [1] that if p∗ > −1
2

and p∗ < 1
4
, then V0(p) = {0}. The following

theorem makes this result more complete.

Theorem 4. Let p∗ < −1
2 and

p∗ < −
√
p2
∗ − p∗ −

3
4
.(5)

Then V0(p) = {0}.

2. Proof

Proof of Theorem 1. From (3) it follows that
∫+∞

s|p(s)|ds = +∞. However
this condition is necessary and sufficient for Z(p) 6= {0} (see [2] and [3]). On the
other hand, obviously dimZ(p) = 1 and Vi(p) ⊂ Z(p). Thus it is sufficient to show
that Z(p) ⊂ Vi(p).
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Suppose u ∈ Z(p). Without loss of generality we can assume that for some
t0 > 0,

p(t) ≤ 0 for t > t0 ,(6)

u(t) > 0, u′(t) < 0 for t > t0 .(7)

Multiplying both sides of (1) by t and integrating from t0 to t, we obtain
t∫

t0

sp(s)u(s) ds = tu′(t) − t0u′(t0)− u(t) + u(t0) for t > t0 .

Hence on account of (6) and (7), we easily conclude that for some r > 0,

u(t)

t∫
0

s|p(s)| ds < M for t > t0 .

Therefore, by virtue of (3) condition (2) holds. Thus the theorem is proved.

Proof of Theorem 2. According to (4), we can find ε > 0 such that p∗ < −1
2−2ε

and

p∗ < p∗ − 1 +
1
2

√
1− 4(p∗ − ε) − 3ε .(8)

Suppose

Q(t) = t

cp − t∫
1

p(s) ds

 for t > 0(9)

and choose tε > 1 such that

p∗ − ε < Q(t) < p∗ + ε for t > tε .(10)

Let α = −1
2 − p∗ − 2ε. It is evident that α > 0 and

α−
√
α+ p∗ + ε < 0 .(11)

Due to (8), it is easy to see that α+
√
α+ p∗ − ε < 0. If along with this we take

into account (11), then from (10) we get

−α−
√
α < Q(t) < −α+

√
α for t > tε ,

and therefore, Q2(t) + 2αQ(t) +α(α− 1) < 0 for t > tε. In view of this, it is clear
that the function w(t) = tα satisfies the inequality

w′′(t) ≤ −Q
2(t)
t2

w(t) − 2Q(t)
t

w′(t) for t > tε .

Consequently, the equation

v′′ = −Q
2(t)
t2

v − 2Q(t)
t

v′(12)

has a solution v satisfying the inequalities

0 < v(t) < tα for t > tε(13)
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(see, e.g., [4]).
It can be directly checked that the function

u(t) = v(t) exp

 t∫
1

Q(s)
s

ds

 for t > tε(14)

is a solution of equation (1). By (10) and (13), there are M > 0 and t1 > tε such
that

0 < u(t) < Mtα+p∗+ε for t > t1 .

Hence, taking into consideration how α is, we conclude that u ∈ V0(p). Therefore
we have proved that V0(p) 6= {0}.

Since u(t) > 0 for t > t1, we have dimV0(p) ≤ 1 (see, e.g., [1]). However
dimV0(p) = 1, since V0(p) 6= {0}.

Let us now suppose that p(t) ≤ 0 in some neighbourhood of +∞. Then it is
obvious that dimZ(p) ≤ 1 and V0(p) ⊂ Z(p). Hence in view of the fact that
dimV0(p) = 1, we obtain V0(p) = Z(p). This completes the proof of the theorem.

The proof of Theorem 3 is omitted, since it is analogous to that of Theorem 2
with the only difference α = −p∗ − ε.

Proof of Theorem 4. Assume the contrary. Let u be a nontrivial solution of
equation (1) and u ∈ V0(p). According to (5) and applying Theorem 1.6 from [5],
equation (1) is nonoscillatory. Thus without loss of generality we can assume that
u(t) > 0 for t > t0. Choose ε ∈ ] 0, 1

2 [ and tε > t0 such that (10) holds and

p∗ − ε < −
1
2
,(15)

p∗ + ε < −
√

(p∗ − ε)2 − (p∗ − ε) −
3
4
.(16)

It is evident that the function v defined by (14) and (9) is a solution of equation
(12). According to our assumption,

v(t) > 0 for t > t0 ,(17)
+∞∫

v2(s) exp

2

s∫
1

Q(η)
η

dη

 ds < +∞ .(18)

Let us show that for some t1 > t0,

v′(t) > 0 for t > t1 .(19)

Indeed, if there exists t∗ > t1 such that v′(t∗) ≤ 0, then by virtue of the equalityv′(t) exp

2

t∫
1

Q(η)
η

dη

′ = −Q
2(t)
t2

exp

2

t∫
1

Q(η)
η

dη

 v(t) for t > 0 ,
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we have

v′(t) < 0 for t > t∗ .(20)

Then in view of (15), from (12) we find v′′(t) < 0 for t > t∗. But this together
with (20) contradicts inequality (17).

By (10), (17), and (19), from (12) we get

v′′(t) ≤ −(p∗ + ε)2

t2
v(t) − 2(p∗ − ε)

t
v′(t) for t > t1 .

Consequently, the equation

w′′ = −(p∗ + ε)2

t2
w − 2(p∗ − ε)

t
w′(21)

has a solution w satisfying the inequalities

0 < w(t) < v(t) for t > t1 .

Hence due to (10) and (18), we have

+∞∫
w2(s)s2(p∗−ε) ds < +∞ .(22)

On the other hand, we can easily check that the functions wk(t) = tλk , k = 1, 2,
where

λk =
1
2

[
1− 2(p∗ − ε) − (−1)k

√
(1− 2(p∗ − ε))2 − 4(p∗ + ε)2

]
, k = 1, 2,

are linearly independent solutions of equation (21). By (16), 2λ1 + 2(p∗− ε) > −1
and therefore,

+∞∫
w2
k(s)s

2(p∗−ε) ds = +∞ , k = 1, 2 .

Thus neither of nontrivial solutions of equation (21) satisfies condition (22). This
concludes the proof of the theorem.
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